Efficacy and Selectivity of Potassium Bicarbonate Salts against Cacopsylla pyri on Pears
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insecticides
2.2. Experimental Conditions
2.3. Statistical Analysis
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Civolani, S.; Boselli, M.; Butturini, A.; Chicca, M.; Cassanelli, S.; Tommasini, M.G.; Aschonitis, V.; Fano, E.A. Testing Spirotetramat as an Alternative Solution to Abamectin for Cacopsylla pyri (Hemiptera: Psyllidae) Control: Laboratory and Field Tests. J. Econ. Entomol. 2015, 108, 2737–2742. [Google Scholar] [CrossRef] [PubMed]
- Civolani, S.; Cassanelli, S.; Rivi, M.; Manicardi, G.C.; Peretto, R.; Chicca, M.; Pasqualini, E.; Leis, M. Survey of susceptibility to abamectin of pear psylla (Hemiptera: Psyllidae) in northern Italy. J. Econ. Entomol. 2010, 103, 816–822. [Google Scholar] [CrossRef] [PubMed]
- Brück, E.; Elbert, A.; Fischer, R.; Krueger, S.; Kühnhold, J.; Klueken, A.M.; Nauen, R.; Niebes, J.F.; Reckmann, U.; Schnorbach, H.J.; et al. Movento®, an innovative ambimobile insecticide for sucking insect pest control in agriculture: Biological profile and field performance. Crop Prot. 2009, 28, 838–844. [Google Scholar] [CrossRef]
- Nin, S.; Ferri, A.; Sacchetti, P.; Giordani, E. Pear resistance to Psilla (Cacopsylla pyri L.). A review. Adv. Hortic. Sci. 2012, 26, 59–74. [Google Scholar] [CrossRef]
- Dondini, L.; De Franceschi, P.; Ancarani, V.; Civolani, S.; Fano, E.A.; Musacchi, S. Identification of a QTL for psylla resistance in pear via genome scanning approach. Sci. Hortic. 2015, 197, 568–572. [Google Scholar] [CrossRef]
- Ganassi, S.; Germinara, G.S.; Pati, S.; Civolani, S.; Cassanelli, S.; Sabatini, M.A.; De Cristofaro, A. Evidence of a female-produced sex pheromone in the European pear psylla, Cacopsylla pyri. Bull. Insectology 2018, 71, 57–64. [Google Scholar]
- Khursheed, A.; Rather, M.A.; Jain, V.; Wani, A.R.; Rasool, S.; Nazir, R.; Malik, N.A.; Majid, S.A. Plant based natural products as potential ecofriendly and safer biopesticides: A comprehensive overview of their advantages over conventional pesticides, limitations and regulatory aspects. Microb. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef] [PubMed]
- Fallir, E.; Grinberg, S.; Ziv, O. Potassium bicarbonate reduces postharvest decay development on bell pepper fruits. J. Hortic. Sci. 1997, 72, 35–41. [Google Scholar] [CrossRef]
- Möth, S.; Redl, M.; Winter, S.; Hüttner, F.; Steinkellneret, S. Efficiency of inorganic fungicides against the formation of Erysiphe necator chasmothecia in vineyards. Pest Manag. Sci. 2023; Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Abd-El-Kareem, F. Potassium or sodium bicarbonate in combination with Nerol for controlling early blight disease of potato plants under laboratory, greenhouse and field conditions. Egypt. J. Phytopathol. 2007, 35, 73–86. [Google Scholar]
- Cushman, K.E.; Evans, W.B.; Ingram, D.M.; Gerard, P.D.; Straw, R.A.; Canaday, C.H.; Wyatt, J.E.; Kenty, M.M. Reduced foliar disease and increased yield of pumpkin regardless of management approach or fungicide combinations. HortTechnology 2007, 17, 56–61. [Google Scholar] [CrossRef]
- Ziv, O.; Zitter, T.A. Effects of bicarbonates and film-forming polymers on cucurbit foliar diseases. Plant Dis. 1992, 76, 513–517. [Google Scholar] [CrossRef]
- Ziv, O.; Hagiladi, A. Controlling powdery mildew in euonymus with polymer coatings and bicarbonate solutions. HortScience 1993, 28, 124–126. [Google Scholar] [CrossRef]
- Hogendorp, B.K.; Cloyd, R.A. Effect of Potassium Bicarbonate (MilStop) and Insecticides on the Citrus Mealybug, Planococcus citri (Risso), and the Natural Enemies Leptomastix dactylopii (Howard) and Cryptolaemus montrouzieri (Mulsant). HortScience 2013, 48, 1513–1517. [Google Scholar] [CrossRef]
- Abbott, W.S.A. Method for computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Farm to Fork Strategy. Available online: https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en (accessed on 4 April 2023).
Mean Number of Juvenile Individuals per Shoot | ||||||||
---|---|---|---|---|---|---|---|---|
21 May | 28 May | 4 June | 11 June | |||||
Treatment | Mean ± SE * | Eff. % ** | Mean ± SE * | Eff. % ** | Mean ± SE * | Eff. % ** | Mean ± SE * | Eff. % ** |
Untreated Control | 27.9 ± 2.97 a | 63.3 ± 5.32 a | 42.5 ± 3.59 a | 16.4 ± 2.40 a | ||||
Polyethylene glycol 1 L ha−1 | 19.0 ± 2.78 b | 31.9 | 48.9 ± 6.22 ab | 22.7 | 41.1 ± 6.58 a | 3.3 | 13.1 ± 1.38 a | 20.0 |
Potassium bicarbonate 7 kg ha−1 | 10.2 ± 1.20 c | 63.4 | 41.0 ± 6.23 b | 35.2 | 14.4 ± 2.04 b | 66.1 | 1.4 ± 0.67 b | 91.4 |
Potassium Bicarbonate 5 kg ha−1 Polyethylene glycol 1 L ha−1 | 9.9 ± 0.98 c | 64.5 | 36.4 ± 6.02 c | 42.5 | 9.9 ± 0.98 bc | 76.7 | 2.3 ± 0.87 b | 86.0 |
Potassium bicarbonate 7 kg ha−1 Polyethylene glycol 1 L ha−1 | 7.0 ± 0.78 c | 74.9 | 20.3 ± 4.17 c | 67.9 | 4.5 ± 1.33 bc | 89.4 | 1.1 ± 0.41 b | 93.3 |
spirotetramat 4.5 L ha−1 | 1.7 ± 0.71 d | 93.9 | 1.9 ± 0.91 d | 97.0 | 1.4 ± 0.30 c | 96.7 | 0.3 ± 0.13 b | 98.2 |
Mean Number of Juvenile Individuals per Shoot | ||||||||
---|---|---|---|---|---|---|---|---|
21 May | 28 May | 4 June | 11 June | |||||
Treatment | Mean ± SE * | Eff. % ** | Mean ± SE * | Eff. % ** | Mean ± SE * | Eff. % ** | Mean ± SE * | Eff. % ** |
Untreated Control | 28.8 ± 0.91 a | 81.4 ± 12.74 a | 52.6 ± 4.17 a | 16.5 ± 2.54 a | ||||
Polyethylene glycol 1 L ha−1 | 28.0 ± 2.57 a | 2.8 | 70.2 ± 5.46 a | 13.6 | 45.1 ± 5.84 a | 14.3 | 7.9 ± 0.77 b | 52.1 |
Potassium bicarbonate 7 kg ha−1 | 7.3 ± 2.29 c | 74.7 | 38.9 ± 3.44 b | 52.1 | 11.4 ± 2.56 b | 78.3 | 4.5 ± 1.27 bc | 72.7 |
Potassium Bicarbonate 5 kg ha−1 Polyethylene glycol 1 L ha−1 | 13.7 ± 1.87 b | 52.4 | 42.3 ± 3.81 b | 48.0 | 8.0 ± 1.38 b | 84.8 | 0.7 ± 0.18 c | 95.8 |
Potassium bicarbonate 7 kg ha−1 Polyethylene glycol 1 L ha−1 | 6.7 ± 1.04 c | 76.7 | 38.4 ± 1.29 b | 52.8 | 7.3 ± 1.45 b | 86.1 | 2.1 ± 0.64 c | 87.3 |
spirotetramat 4.5 L ha−1 | 4.5 ± 1.41 c | 84.4 | 2.2 ± 1.44 c | 97.3 | 0.5 ± 0.23 b | 99.0 | 0.1 ± 0.09 c | 99.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Civolani, S.; Boselli, M.; Radicetti, E.; Bernacchia, G. Efficacy and Selectivity of Potassium Bicarbonate Salts against Cacopsylla pyri on Pears. Insects 2023, 14, 491. https://doi.org/10.3390/insects14060491
Civolani S, Boselli M, Radicetti E, Bernacchia G. Efficacy and Selectivity of Potassium Bicarbonate Salts against Cacopsylla pyri on Pears. Insects. 2023; 14(6):491. https://doi.org/10.3390/insects14060491
Chicago/Turabian StyleCivolani, Stefano, Mauro Boselli, Emanuele Radicetti, and Giovanni Bernacchia. 2023. "Efficacy and Selectivity of Potassium Bicarbonate Salts against Cacopsylla pyri on Pears" Insects 14, no. 6: 491. https://doi.org/10.3390/insects14060491
APA StyleCivolani, S., Boselli, M., Radicetti, E., & Bernacchia, G. (2023). Efficacy and Selectivity of Potassium Bicarbonate Salts against Cacopsylla pyri on Pears. Insects, 14(6), 491. https://doi.org/10.3390/insects14060491