Analysis of Spatiotemporal Variation in Habitat Suitability for Oedaleus decorus asiaticus Bei-Bienko on the Mongolian Plateau Using Maxent and Multi-Source Remote Sensing Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Processing
2.2.1. Grasshopper Survey Data
2.2.2. Habitat Indicators Based on Remote Sensing and Other Geospatial Data
2.2.3. Maxent Model
2.2.4. Calculation of Habitat Suitability for Grasshoppers
3. Results
3.1. Assessment of the Habitat Suitability for Grasshoppers on the Mongolian Plateau
3.1.1. Accuracy of Maxent Models
3.1.2. Percentage Contribution of Each Habitat Factor to Determining Habitat Suitability
3.1.3. Classification of Key Habitat Factors Determining Habitat Suitability
3.2. Habitat Suitability for Grasshoppers on the Mongolian Plateau
3.3. Spatial and Temporal Variability in Habitat Suitability for Grasshoppers on the Mongolian Plateau and the Effects of Environmental Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hewitt, G.B. Review of Forage Losses Caused by Rangeland Grasshoppers; Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1977.
- Belovsky, G.E.; Slade, J.B. Grasshoppers affect grassland ecosystem functioning: Spatial and temporal variation. Basic Appl. Ecol. 2018, 26, 24–34. [Google Scholar] [CrossRef]
- Lucas, J.M.; Jonas, J.; Laws, A.N.; Branson, D.H.; Pennings, S.C.; Prather, C.M.; Strickland, M.S. Functional and taxonomic diversity of grasshoppers differentially shape above-and below-ground communities and their function. Funct. Ecol. 2021, 35, 167–180. [Google Scholar] [CrossRef]
- Olfert, O.; Weiss, R.M.; Giffen, D.; Vankosky, M.A. Modeling Ecological Dynamics of a Major Agricultural Pest Insect (Melanoplus sanguinipes; Orthoptera: Acrididae): A Cohort-Based Approach Incorporating the Effects of Weather on Grasshopper Development and Abundance. J. Econ. Entomol. 2021, 114, 122–130. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, N.; He, B.; Liu, C.-Y.; Li, Y.; Zhang, H.-Y.; Chen, X.-Y.; Lin, H. Construction of a GeogDetector-based model system to indicate the potential occurrence of grasshoppers in Inner Mongolia steppe habitats. Bull. Entomol. Res. 2015, 105, 335–346. [Google Scholar] [CrossRef] [PubMed]
- Qingkun, B.; Tuya, A. Response of grassland cover change to drought in the Mongolian Plateau from 2001 to 2020. Pratacultural Sci. 2022, 39, 443–454. (In Chinese) [Google Scholar] [CrossRef]
- Dong, Y.; Yan, H.M.; Du, W.P.; Hu, Y.F. Spatio-temporal analysis of grassland carrying capacity in Mongolian Plateau based on supply-consumption relationship. J. Nat. Resour. 2019, 34, 1093–1107. (In Chinese) [Google Scholar] [CrossRef]
- Du, G.L.; Zhao, H.L.; Tu, X.B.; Zhang, Z.H. Division of the inhabitable areas for Oedaleus decorus asiaticus in Inner Mongolia. Plant. Prot. 2018, 44, 24–31. (In Chinese) [Google Scholar] [CrossRef]
- Cease, A.J.; Elser, J.J.; Ford, C.F.; Hao, S.; Kang, L.; Harrison, J.F. Heavy livestock grazing promotes locust outbreaks by lowering plant nitrogen content. Science 2012, 335, 467–469. [Google Scholar] [CrossRef]
- Kang, L.; Chen, Y. Dynamics of grasshopper communities under different grazing intensities in Inner Mongolian steppes. Insect Sci. 1995, 2, 265–281. [Google Scholar] [CrossRef]
- Huang, X.B.; Wu, H.H.; Qin, X.H.; Cao, G.C.; Wang, G.J.; Nong, X.Q.; Tu, X.B.; Gexigeduren, H.E.; Eerdengbatu, W.; Zhang, Z.H. Comprehensive evaluation and risk assessment of grasshoppers’ habitat based on a projection pursuit model. Acta Prataculturae Sin. 2015, 24, 25–33. (In Chinese) [Google Scholar]
- Chen, S.H.; Wu, X. Respones of grasshoppers’ subsistence and breeding to climatic change in Inner Mongolia. J. Nat. Disasters 2007, 16, 66–69. (In Chinese) [Google Scholar]
- Gao, S.J.; Yan, F.; Guo, N.; Wang, N.; Han, H.B.; Lin, K.J.; He, B. Activities of the enzymes related to energy metabolism in the flight muscles of gregarious and solitarious phases of grasshopper Oedaleus asiaticus. J. Plant Prot. 2021, 48, 144–151. (In Chinese) [Google Scholar] [CrossRef]
- Lu, L.; Kong, W.; Ye, H.; Sun, Z.; Wang, N.; Du, B.; Zhou, Y.; Huang, W. Detecting Key Factors of Grasshopper Occurrence in Typical Steppe and Meadow Steppe by Integrating Machine Learning Model and Remote Sensing Data. Insects 2022, 13, 894. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wang, X.J. Progress in application of remote sensing and GIS to the study of locust habitats. Ecol. Environ. Sci. 2012, 21, 970–976. (In Chinese) [Google Scholar] [CrossRef]
- De Wysiecki, M.L.; Arturi, M.; Torrusio, S.; Cigliano, M.M. Influence of weather variables and plant communities on grasshopper density in the Southern Pampas, Argentina. J. Insect. Sci. 2011, 11, 109. [Google Scholar] [CrossRef]
- White, E.; Sedcole, J. A 20-year record of alpine grasshopper abundance, with interpretations for climate change. N. Zeal. J. Ecol. 1991, 15, 139–152. [Google Scholar]
- Steck, C.E.; Bürgi, M.; Bolliger, J.; Kienast, F.; Lehmann, A.; Gonseth, Y. Conservation of grasshopper diversity in a changing environment. Biol. Conserv. 2007, 138, 360–370. [Google Scholar] [CrossRef]
- Poniatowski, D.; Beckmann, C.; Löffler, F.; Münsch, T.; Helbing, F.; Samways, M.J.; Fartmann, T. Relative impacts of land-use and climate change on grasshopper range shifts have changed over time. Glob. Ecol. Biogeogr. 2020, 29, 2190–2202. [Google Scholar] [CrossRef]
- Prinster, A.J.; Resasco, J.; Nufio, C.R. Weather variation affects the dispersal of grasshoppers beyond their elevational ranges. Ecol. Evol. 2020, 10, 14411–14422. [Google Scholar] [CrossRef]
- Çiplak, B. Locust and grasshopper outbreaks in the near east: Review under global warming context. Agronomy 2021, 11, 111. [Google Scholar] [CrossRef]
- Meynard, C.N.; Lecoq, M.; Chapuis, M.P.; Piou, C. On the relative role of climate change and management in the current desert locust outbreak in East Africa. Glob. Change Biol. 2020, 26, 3753–3755. [Google Scholar] [CrossRef] [PubMed]
- Humbert, J.-Y.; Delley, S.; Arlettaz, R. Grassland intensification dramatically impacts grasshoppers: Experimental evidence for direct and indirect effects of fertilisation and irrigation. Agric. Ecosyst. Environ. 2021, 314, 107412. [Google Scholar] [CrossRef]
- Veran, S.; Simpson, S.J.; Sword, G.A.; Deveson, E.; Piry, S.; Hines, J.E.; Berthier, K. Modeling spatiotemporal dynamics of outbreaking species: Influence of environment and migration in a locust. Ecology 2015, 96, 737–748. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Wang, S.; Cease, A.; Kang, L. Landscape level patterns of grasshopper communities in Inner Mongolia: Interactive effects of livestock grazing and a precipitation gradient. Landsc. Ecol. 2015, 30, 1657–1668. [Google Scholar] [CrossRef]
- Leonard, A.; Egonyu, J.P.; Tanga, C.M.; Kyamanywa, S.; Tonnang, H.Z.; Azrag, A.G.; Khamis, F.M.; Ekesi, S.; Subramanian, S. Predicting the current and future distribution of the edible long-horned grasshopper Ruspolia differens (Serville) using temperature-dependent phenology models. J. Therm. Biol. 2021, 95, 102786. [Google Scholar] [CrossRef]
- Fartmann, T.; Poniatowski, D.; Holtmann, L. Habitat availability and climate warming drive changes in the distribution of grassland grasshoppers. Agric. Ecosyst. Environ. 2021, 320, 107565. [Google Scholar] [CrossRef]
- Burt, P.; Colvin, J.; Smith, S. Remote sensing of rainfall by satellite as an aid to Oedaleus senegalensis (Orthoptera: Acrididae) control in the Sahel. Bull. Entomol. Res. 1995, 85, 455–462. [Google Scholar] [CrossRef]
- Branson, D.H. Effects of altered seasonality of precipitation on grass production and grasshopper performance in a northern mixed prairie. Environ. Entomol. 2017, 46, 589–594. [Google Scholar] [CrossRef]
- Li, L.; Zhao, C.; Zhao, X.; Wang, D.; Li, Y. Pattern of plant communities’ influence to grasshopper abundance distribution in heterogeneous landscapes at the upper reaches of Heihe River, Qilian Mountains, China. Environ. Sci. Pollut. Res. 2022, 29, 13177–13187. [Google Scholar] [CrossRef]
- Nufio, C.R.; Buckley, L.B. Grasshopper phenological responses to climate gradients, variability, and change. Ecosphere 2019, 10, e02866. [Google Scholar] [CrossRef]
- Yadav, S.; Stow, A.; Dudaniec, R.Y. Elevational partitioning in species distribution, abundance and body size of Australian alpine grasshoppers (Kosciuscola). Austral. Ecol. 2020, 45, 609–620. [Google Scholar] [CrossRef]
- Buckley, L.B.; Graham, S.I.; Nufio, C.R. Grasshopper species’ seasonal timing underlies shifts in phenological overlap in response to climate gradients, variability and change. J. Anim. Ecol. 2021, 90, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Kistner-Thomas, E.; Kumar, S.; Jech, L.; Woller, D.A. Modeling Rangeland Grasshopper (Orthoptera: Acrididae) Population Density Using a Landscape-Level Predictive Mapping Approach. J. Econ. Entomol. 2021, 114, 1557–1567. [Google Scholar] [CrossRef] [PubMed]
- Ni, S.; Lockwood, J.A.; Wei, Y.; Jiang, J.; Zha, Y.; Zhang, H. Spatial clustering of rangeland grasshoppers (Orthoptera: Acrididae) in the Qinghai Lake region of northwestern China. Agric. Ecosyst. Environ. 2003, 95, 61–68. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, K.; Zhao, C.; Zhang, Q.-P. Analysis of spatial pattern among grasshopper and vegetation in Heihe based on GIS. Phys. Procedia 2012, 33, 1261–1268. [Google Scholar] [CrossRef]
- Bröder, L.; Tatin, L.; Danielczak, A.; Seibel, T.; Hochkirch, A. Intensive grazing as a threat in protected areas: The need for adaptive management to protect the Critically Endangered Crau plain grasshopper Prionotropis rhodanica. Oryx 2019, 53, 239–246. [Google Scholar] [CrossRef]
- Ozment, K.A.; Welti, E.A.; Shaffer, M.; Kaspari, M. Tracking nutrients in space and time: Interactions between grazing lawns and drought drive abundances of tallgrass prairie grasshoppers. Ecol. Evol. 2021, 11, 5413–5423. [Google Scholar] [CrossRef]
- Ortego, J.; Aguirre, M.P.; Noguerales, V.; Cordero, P.J. Consequences of extensive habitat fragmentation in landscape-level patterns of genetic diversity and structure in the Mediterranean esparto grasshopper. Evol. Appl. 2015, 8, 621–632. [Google Scholar] [CrossRef]
- Lu, H.; Han, J.G.; Zhang, L.D. Applications of Spectral Analysis Technique to Monitoring Grasshoppers. Spectrosc. Spect. Anal. 2008, 28, 2808–2811. (In Chinese) [Google Scholar]
- Zhang, F.; Geng, M.; Wu, Q.; Liang, Y. Study on the spatial-temporal variation in evapotranspiration in China from 1948 to 2018. Sci. Rep. 2020, 10, 17139. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Ceccato, P.; Vancutsem, C.; Cressman, K.; Vanbogaert, E.; Defourny, P. Development and application of multi-temporal colorimetric transformation to monitor vegetation in the desert locust habitat. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 318–326. [Google Scholar] [CrossRef]
- Theron, K.J.; Pryke, J.S.; Samways, M.J. Identifying managerial legacies within conservation corridors using remote sensing and grasshoppers as bioindicators. Ecol. Appl. 2022, 32, e02496. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hao, S.; Kang, L. Effects of Soil Temperature and Moisture on the Development and Survival of Grasshopper Eggs in Inner Mongolian Grasslands. Front. Ecol. Evol. 2021, 9, 727911. [Google Scholar] [CrossRef]
- Bryceson, K.P. Digitally processed satellite data as a tool in detecting potential Australian plague locust outbreak areas. J. Environ. Manag. 1990, 30, 191–207. [Google Scholar] [CrossRef]
- Zhu, G.P.; Liu, G.Q.; Bu, W.J.; Gao, Y.B. Ecological niche modeling and its applications in biodiversity conservation. Biodivers. Sci. 2013, 21, 90–98. (In Chinese) [Google Scholar]
- Farashi, A.; Kaboli, M.; Karami, M. Predicting range expansion of invasive raccoons in northern Iran using ENFA model at two different scales. Ecol. Inform. 2013, 15, 96–102. [Google Scholar] [CrossRef]
- Jia, D.; Xu, C.Q.; Liu, Y.H.; Hu, J.; Li, N.; Ma, R.Y. Potential distribution prediction of apple-grass aphid Rhopalosiphum oxyacanthae in China based on MaxEnt model. J. Plant. Prot. 2020, 47, 528–536. (In Chinese) [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 2006, 190, 231–259. [Google Scholar] [CrossRef]
- Zhao, Z.Y.; Xiao, N.W.; Liu, G.H.; Li, J.S. Prediction of the potential geographical distribution of five species of Scutiger in the south of Hengduan Mountains Biodiversity Conservation Priority Zone. Acta Ecol. Sin. 2022, 42, 2636–2647. (In Chinese) [Google Scholar]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Krall, S.; Peveling, R.; Diallo, B. New Strategies in Locust Control; Birkhäuser: Basel, Switzerland, 2012. [Google Scholar]
- Matenaar, D.; Bazelet, C.S.; Hochkirch, A. Simple tools for the evaluation of protected areas for the conservation of grasshoppers. Biol. Conserv. 2015, 192, 192–199. [Google Scholar] [CrossRef]
- Word, M.L.; Hall, S.J.; Robinson, B.E.; Manneh, B.; Beye, A.; Cease, A.J. Soil-targeted interventions could alleviate locust and grasshopper pest pressure in West Africa. Sci. Total Environ. 2019, 663, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-X.; Hao, S.-G.; Kang, L. Variations in the embryonic stages of overwintering eggs of eight grasshopper species (Orthoptera: Acrididae) in Inner Mongolian grasslands. Zool. Stud. 2005, 44, 536. [Google Scholar]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Flory, A.R.; Kumar, S.; Stohlgren, T.J.; Cryan, P.M. Environmental conditions associated with bat white-nose syndrome mortality in the north-eastern United States. J. Appl. Ecol. 2012, 49, 680–689. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, Y.; Huang, W.; Ren, B.; Deng, Q.; Shi, Y.; Bai, J.; Ren, Y.; Geng, Y.; Ma, H. Overwintering distribution of fall armyworm (Spodoptera frugiperda) in Yunnan, China, and influencing environmental factors. Insects 2020, 11, 805. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Du, B.; Wei, J.; Lin, K.; Lu, L.; Ding, X.; Ye, H.; Huang, W.; Wang, N. Spatial and Temporal Variability of Grassland Grasshopper Habitat Suitability and Its Main Influencing Factors. Remote Sens. 2022, 14, 3910. [Google Scholar] [CrossRef]
- Liu, C.; Newell, G.; White, M. On the selection of thresholds for predicting species occurrence with presence-only data. Ecol. Evol. 2016, 6, 337–348. [Google Scholar] [CrossRef]
- Sun, Z.; Ye, H.; Huang, W.; Qimuge, E.; Bai, H.; Nie, C.; Lu, L.; Qian, B.; Wu, B. Assessment on Potential Suitable Habitats of the Grasshopper Oedaleus decorus asiaticus in North China based on MaxEnt Modeling and Remote Sensing Data. Insects 2023, 14, 138. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Hielkema, J.; Roffey, J.; Tucker, C. Assessment of ecological conditions associated with the 1980/81 desert locust plague upsurge in West Africa using environmental satellite data. Int. J. Remote Sens. 1986, 7, 1609–1622. [Google Scholar] [CrossRef]
AGB | VC | ST | LST | GT | AP | Altitude | Slope | |
---|---|---|---|---|---|---|---|---|
AGB | 1.000 | 0.995 | 0.042 | 0.904 | −0.029 | 0.232 | 0.695 | 0.026 |
VC | 0.995 | 1.000 | −0.017 | 0.911 | 0.000 | 0.241 | 0.714 | 0.009 |
ST | 0.042 | −0.017 | 1.000 | −0.020 | −0.235 | −0.028 | −0.094 | −0.058 |
LST | 0.904 | 0.911 | −0.020 | 1.000 | 0.002 | 0.241 | 0.718 | 0.003 |
GT | −0.029 | 0.000 | −0.235 | 0.002 | 1.000 | −0.017 | 0.099 | −0.126 |
AP | 0.232 | 0.241 | −0.028 | 0.241 | −0.017 | 1.000 | 0.117 | 0.045 |
Altitude | 0.695 | 0.714 | −0.094 | 0.718 | 0.099 | 0.117 | 1.000 | −0.426 |
Slope | 0.026 | 0.009 | −0.058 | 0.003 | −0.126 | 0.045 | −0.426 | 1.000 |
Category | Environmental Variables | Spatial Resolution | Data Content and Source |
---|---|---|---|
Topography | Altitude | 1 km | Geospatial Data Cloud (https://e4ftl01.cr.usgs.gov/MEASURES/NASADEM_HGT.001/, accessed on 20 November 2022) |
Slope | 1 km | ||
Meteorology | Land surface temperature (LST) | 1 km | Mean LST: Incubation period (January–December 2017–2021, 2000, 2010, and 2020) Sources: MOD11 A2 |
Accumulated precipitation (AP) | 11 km (resampled to 1 km) | Mean accumulated precipitation: period (January–December 2017–2021, 2000, 2010, and 2020) Sources: ERA5-Land | |
Vegetation | Aboveground biomass (AGB) | 1 km | Mean aboveground biomass: period (May–August 2017–2021, 2000, 2010, and 2020) Sources: MOD13 A2 |
Vegetation coverage (VC) | 1 km | Mean vegetation coverage: period (May–August 2017–2021, 2000, 2010, and 2020) Sources: MOD13 A2 | |
Soil | Soil type (ST) | 250 m (resampled to 1 km) | Sources: USDA (https://www.usda.gov, accessed on 20 November 2022) |
Grassland | Grass type (GT) | 1 km | Classification map of grassland in Eurasia (2009) Sources: National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, accessed on 20 November 2022) |
Suitability Grade | Inhabitability Index (IH) | Description of Area |
---|---|---|
Level 1 (high) | IH ≥ 2.5 | Highly suitable for grasshopper growth and development; high risk of experiencing damage from grasshoppers |
Level 2 (middle) | 1.5 ≤ IH < 2.5 | Suitable for grasshopper growth and development; medium risk of experiencing damage from grasshoppers |
Level 3 (low) | 1.0 ≤ IH < 1.5 | Low suitability for grasshoppers; low risk of experiencing damage from grasshoppers |
Environmental Variables | Percentage Contribution | Permutation Importance |
---|---|---|
GT | 49.0% | 4.3% |
AP | 23.8% | 58.3% |
Altitude | 12.4% | 16.2% |
VC | 6.3% | 2.4% |
LST | 4.0% | 13.4% |
ST | 3.2% | 1.9% |
Slope | 1.2% | 1.6% |
AGB | 0.1% | 1.9% |
Total | 100% | 100% |
Environmental Variables | Percentage Contribution |
---|---|
GT | 51.3% |
AP | 24.9% |
Altitude | 13.0% |
VC | 6.6% |
LST | 4.2% |
Total | 100% |
Environmental Variables | Low | Moderate | High |
---|---|---|---|
GT | 1, 3, 5 | 2, 4, 9 | 6, 7, 8 |
AP (mm) | <369 mm, >533 mm | 369–404 mm, 489–533 mm | 404–489 mm |
Altitude (m) | <664 m, >1480 m | 664–1131 m, 1404–1480 m | 1131–1404 m |
VC | >0.75 | 0.59–0.75 | <0.59 |
LST (°C) | <1.56, >9.19 | 1.56–5.38, 8.17–9.19 | 5.38–8.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, F.; Lu, L.; Nie, C.; Sun, Z.; Liu, R.; Huang, W.; Ye, H. Analysis of Spatiotemporal Variation in Habitat Suitability for Oedaleus decorus asiaticus Bei-Bienko on the Mongolian Plateau Using Maxent and Multi-Source Remote Sensing Data. Insects 2023, 14, 492. https://doi.org/10.3390/insects14060492
Wen F, Lu L, Nie C, Sun Z, Liu R, Huang W, Ye H. Analysis of Spatiotemporal Variation in Habitat Suitability for Oedaleus decorus asiaticus Bei-Bienko on the Mongolian Plateau Using Maxent and Multi-Source Remote Sensing Data. Insects. 2023; 14(6):492. https://doi.org/10.3390/insects14060492
Chicago/Turabian StyleWen, Fu, Longhui Lu, Chaojia Nie, Zhongxiang Sun, Ronghao Liu, Wenjiang Huang, and Huichun Ye. 2023. "Analysis of Spatiotemporal Variation in Habitat Suitability for Oedaleus decorus asiaticus Bei-Bienko on the Mongolian Plateau Using Maxent and Multi-Source Remote Sensing Data" Insects 14, no. 6: 492. https://doi.org/10.3390/insects14060492
APA StyleWen, F., Lu, L., Nie, C., Sun, Z., Liu, R., Huang, W., & Ye, H. (2023). Analysis of Spatiotemporal Variation in Habitat Suitability for Oedaleus decorus asiaticus Bei-Bienko on the Mongolian Plateau Using Maxent and Multi-Source Remote Sensing Data. Insects, 14(6), 492. https://doi.org/10.3390/insects14060492