Five Surfaces Treated with d-Tetramethrin plus Acetamiprid for the Management of Tenebrio molitor and Alphitobius diaperinus: Which Is the Best?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Food
2.2. Insecticide
2.3. Bioassays
2.4. Data Analysis
3. Results
3.1. Immediate Mortality of Tenebrio molitor
3.2. Immediate Mortality of Alphitobius diaperinus
3.3. Delayed Mortality of Tenebrio molitor
3.4. Delayed Mortality of Alphitobius diaperinus
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rees, D. Insects of Stored Products; Manson Publishing: London, UK, 2004. [Google Scholar]
- Plata-Rueda, A.; Martínez, L.; Santos, M.; Dos Santos, M.H.; Fernandes, F.L.; Wilcken, C.F.; Soares, M.A.; Serrão, J.E.; Zanuncio, J.C. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Sci. Rep. 2017, 7, 46406. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, D.I.; Gallagher, J.S.; Bernstein, I.L. Mealworm asthma: Clinical and immunologic studies. J. Allergy Clin. Immunol. 1983, 72, 475–480. [Google Scholar] [CrossRef] [PubMed]
- Schroeckenstein, M.D.D.C.; Meier-Davis, D.V.M.S.; Bush, M.D.R.K. Occupational sensitivity to Tenebrio molitor Linnaeus (yellow mealworm). J. Allergy Clin. Immunol. 1990, 86, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, P.; Courtois, J.; Van der Brempt, X.; Tollenaere, S. Food-induced anaphylaxis to Tenebrio molitor and allergens implicated. Rev. Fr. Allergol. 2019, 59, 389–393. [Google Scholar] [CrossRef]
- Nebbia, S.; Lamberti, C.; Giorgis, V.; Giuffrida, M.G.; Manfredi, M.; Marengo, E.; Pessione, E.; Schiavone, A.; Boita, M.; Brussino, L.; et al. The cockroach allergen-like protein is involved in primary respiratory and food allergy to yellow mealworm (Tenebrio molitor). Clin. Exp. Allergy 2019, 49, 1379–1382. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Sousa-Pinto, B.; Fonseca, J.; Caldas Fonseca, S.; Cunha, L.M. Edible insects and food safety: Allergy. J. Insects Food Feed 2021, 7, 833–847. [Google Scholar] [CrossRef]
- Premrov Bajuk, B.; Zrimšek, P.; Kotnik, T.; Leonardi, A.; Križaj, I.; Jakovac Strajn, B. Insect protein-based diet as potential risk of allergy in dogs. Animals 2021, 11, 1942. [Google Scholar] [CrossRef]
- Bußler, S.; Rumpold, B.A.; Jander, E.; Rawel, H.M.; Schlüter, O.K. Recovery and techno-functionality of flours and proteins from two edible insect species: Mealworm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon 2016, 2, e00218. [Google Scholar] [CrossRef]
- Azzollini, D.; Derossi, A.; Fogliano, V.; Lakemond, C.M.M.; Severini, C. Effects of formulation and process conditions on microstructure, texture and digestibility of extruded insect-riched snacks. Innov. Food Sci. Emerg. Technol. 2018, 45, 344–353. [Google Scholar] [CrossRef]
- Costa, S.; Pedro, S.; Lourenço, H.; Batista, I.; Teixeira, B.; Bandarra, N.M.; Murta, D.; Nunes, R.; Pires, C. Evaluation of Tenebrio molitor larvae as an alternative food source. NFS J. 2020, 21, 57–64. [Google Scholar] [CrossRef]
- Cho, S.Y.; Ryu, G.H. Effects of mealworm larva composition and selected process parameters on the physicochemical properties of extruded meat analog. Food Sci. Nutr. 2021, 9, 4408–4419. [Google Scholar] [PubMed]
- Peng, B.Y.; Chen, Z.; Chen, J.; Zhou, X.; Wu, W.M.; Zhang, Y. Biodegradation of polylactic acid by yellow mealworms (larvae of Tenebrio molitor) via resource recovery: A sustainable approach for waste management. J. Hazard. Mater. 2021, 416, 125803. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.S.; Brandon, A.M.; Flanagan, J.C.A.; Yang, J.; Ning, D.; Cai, S.Y.; Fan, H.Q.; Wang, Z.Y.; Ren, J.; Benbow, E.; et al. Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere 2018, 191, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.S.; Ding, M.Q.; Zhang, Z.R.; Ding, J.; Bai, S.W.; Cao, G.L.; Zhao, L.; Pang, J.W.; Xing, D.F.; Ren, N.Q.; et al. Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Sci. Total Environ. 2021, 789, 147915. [Google Scholar] [CrossRef]
- Djouadi, A.; Sales, J.R.; Carvalho, M.O.; Raymundo, A. Development of healthy protein-rich crackers using Tenebrio molitor flour. Foods 2022, 11, 702. [Google Scholar] [CrossRef]
- Espinoza Pinchi, J.; Ordonez Galvez, J.; Castaneda-Olivera, C.A.; Benites Alfaro, E.G. Environmental biotechnology: Biodegradation of microplastics with larvae of Tenebrio molitor and Galleria mellonella. Chem. Eng. Trans. 2022, 93, 187–192. [Google Scholar]
- Sriprablom, J.; Kitthawee, S.; Suphantharika, M. Functional and physicochemical properties of cookies enriched with edible insect (Tenebrio molitor and Zophobas atratus) powders. Food Meas. 2022, 16, 2181–2190. [Google Scholar] [CrossRef]
- Sugumar, P.; Sha, D.S.M.; Gowda, S.; Vijay, T.; Keerthana, S. An assessment on the potential of Tenebrio molitor used for biodepolymerization of plastics and polystyrene: Influencing factors, various feeding cases and gut microbiota. IOP Conf. Ser. Earth Environ. Sci. 2022, 1074, 012029. [Google Scholar] [CrossRef]
- Hill, D.S. Pests of Stored Foodstuffs and Their Control; Kluwer Academic Publishers: New York, NY, USA, 2003. [Google Scholar]
- Mazlum, Y.; Turan, F.; Yildirim, Y.B. Evaluation of mealworms (Tenebrio molitor) meal as an alternative protein source for narrow-clawed crayfish (Pontastacus leptodactylus) juveniles. Aquat. Res. 2021, 52, 4145–4153. [Google Scholar] [CrossRef]
- Shafique, L.; Abdel-Latif, H.M.R.; Hassan, F.-u.; Alagawany, M.; Naiel, M.A.E.; Dawood, M.A.O.; Yilmaz, S.; Liu, Q. The feasibility of using yellow mealworms (Tenebrio molitor): Towards a sustainable aquafeed industry. Animals 2021, 11, 811. [Google Scholar] [CrossRef]
- Shaviklo, A.R.; Alizadeh-Ghamsari, A.H.; Hosseini, S.A. Sensory attributes and meat quality of broiler chickens fed with mealworm (Tenebrio molitor). J. Food Sci. Technol. 2021, 58, 4587–4597. [Google Scholar] [CrossRef] [PubMed]
- Mouadi, J.; Pafilis, P.; Elbahi, A.; Okba, Z.; Elouizgani, H.; Mouden, E.H.E.; Aourir, M. The effect of weight and prey species on gut passage time in an endemic gecko Quedenfeldtia moerens (Chabanaud, 1916) from Morocco. Acta Herpetol. 2022, 17, 21–26. [Google Scholar] [CrossRef]
- Chen, F.; Jiang, H.; Gan, Y.; Chen, W.; Huang, G. Optimization of hydrolysis conditions for obtaining antithrombotic peptides from Tenebrio molitor larvae. Am. J. Biochem. Biotechnol. 2019, 15, 52–60. [Google Scholar]
- Song, D.H.; Kim, M.; Jin, E.S.; Sim, D.W.; Won, H.S.; Kim, E.K.; Jang, S.; Choi, Y.S.; Chung, K.H.; An, J.H. Cryoprotective effect of an antifreeze protein purified from Tenebrio molitor larvae on vegetable. Food Hydrocoll. 2019, 94, 585–591. [Google Scholar] [CrossRef]
- Ding, Q.; Wu, R.A.; Shi, T.; Yu, Y.; Yan, Y.; Sun, N.; Sheikh, A.R.; Luo, L.; He, R.; Ma, H. Antiproliferative effects of mealworm larvae (Tenebrio molitor) aqueous extract on human colorectal adenocarcinoma (Caco-2) and hepatocellular carcinoma (HepG2) cancer cell lines. Food Biochem. 2021, 45, e13778. [Google Scholar] [CrossRef]
- Hwang, D.; Lee, S.H.; Goo, T.-W.; Yun, E.-Y. Potential of antimicrobial peptide-overexpressed Tenebrio molitor larvae extract as a natural preservative for Korean traditional sauces. Insects 2022, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Klost, M.; Ramirez-Huerta, M.I.; Drusch, S. Heat-induced gelation of protein from mealworm (Tenebrio molitor): Influence of pH and zinc concentration. Food Hydrocoll. Health 2022, 2, 100105. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Klejdysz, T.; Subramanyam, B.; Nawrot, J. Atlas of Stored-Product Insects and Mites; AACC International: St. Paul, MN, USA, 2013. [Google Scholar]
- Donoso, A.; Paredes, N.; Retamal, P. Detection of antimicrobial resistant Salmonella enterica strains in larval and adult forms of lesser mealworm (Alphitobius diaperinus) from industrial poultry farms. Front. Vet. Sci. 2020, 7, 577848. [Google Scholar] [CrossRef]
- Smith, R.; Hauck, R.; Macklin, K.; Price, S.; Dormitorio, T.; Wang, C. A review of the lesser mealworm beetle (Alphitobius diaperinus) as a reservoir for poultry bacterial pathogens and antimicrobial resistance. Worlds Poult. Sci. J. 2021, 78, 197–214. [Google Scholar] [CrossRef]
- Chernaki, A.M.; Almeida, L.M. Exigências térmicas, período de desenvolvimento e sobrevivência de imaturos de Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Neotrop. Entomol. 2001, 30, 365–368. [Google Scholar] [CrossRef]
- Agabou, A.; Alloui, N. Importance of Alphitobius diaperinus (Panzer) as a reservoir for pathogenic bacteria in Algerian broiler houses. Vet. World 2010, 3, 71–73. [Google Scholar]
- Dinev, I. The darkling beetle (Alphitobius diazecines)—A health hazard for broiler chicken production. Trakia J. Sci. 2013, 11, 1. [Google Scholar]
- Li, Z.; Huang, S.; Huand, W.F.; Geng, H.; Zhao, Y.; Li, M.; Chen, Y.; Su, S. A scientific note on detection of honeybee viruses in the darkling beetle (Alphitobius diaperinus, Coleoptera: Tenebrionidae), a new pest in Apis cerana cerana colonies. Apidologie 2016, 47, 759–761. [Google Scholar] [CrossRef]
- Wynants, E.; Crauwels, S.; Verreth, C.; Gianotten, N.; Lievens, B.; Claes, J.; Van Campenhout, L. Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiol. 2018, 70, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, W.L. Beetles (Coleoptera). In Medical and Veterinary Entomology; Mullen, G.R., Durden, L.A., Eds.; Academic Press: London, UK, 2019; pp. 129–143. [Google Scholar]
- Zbrun, M.V.; Rossler, E.; Olivero, C.R.; Soto, L.P.; Zimmermann, J.A.; Frizzo, L.S.; Signorini, M.L. Possible reservoirs of thermotolerant Campylobacter at the farm between rearing periods and after the use of enrofloxacin as a therapeutic treatment. Int. J. Food Microbiol. 2021, 340, 109046. [Google Scholar] [CrossRef] [PubMed]
- Jertborn, M.; Haglind, P.; Iwarson, S.; Svennerholm, A.M. Estimation of symptomatic and asymptomatic Salmonella infections. Scand. J. Infect. Dis. 1990, 22, 451–455. [Google Scholar] [CrossRef]
- Blaser, M.J. Epidemiologic and clinical features of Campylobacter jejuni infections. J. Infect. Dis. 1997, 176, S103–S105. [Google Scholar] [CrossRef]
- Litrup, E.; Torpdahl, M.; Malorny, B.; Huehn, S.; Helms, M.; Christensen, H.; Nielsen, E.M. DNA microarray analysis of Salmonella serotype Typhimurium strains causing different symptoms of disease. BMC Microbiol. 2010, 10, 96. [Google Scholar] [CrossRef]
- Wirtz, R.A. Allergic and toxic reactions to non-stinging arthropods. Annu. Rev. Entomol. 1984, 29, 47–69. [Google Scholar] [CrossRef]
- Schroeckenstein, D.C. Occupational sensitivity to Alphitobius diaperinus (lesser mealworm). J. Allergy Clin. Immunol. 1988, 82, 1081–1088. [Google Scholar] [CrossRef]
- Van Broekhoven, S.; Bastiaan-Net, S.; de Jong, N.W.; Witchers, H.J. Influence of processing and in vitro digestion on the allergic cross-reactivity of three mealworm species. Food Chem. 2016, 196, 1075–1083. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, P.E.; Burgess, M.; Rutz, D.A. Population dynamics of manure inhabiting arthropods under an integrated pest management (IPM) program in New York poultry facilities-3 case studies. J. Appl. Poult. Res. 2002, 11, 90–103. [Google Scholar] [CrossRef]
- Tomberlin, J.K.; Richman, D.; Myers, H.M. Susceptibility of Alphitobius diaperinus (Coleoptera: Tenebrionidae) from broiler facilities in Texas to four insecticides. J. Econ. Entomol. 2008, 101, 480–483. [Google Scholar] [PubMed]
- Athanassiou, C.G.; Kavallieratos, N.G.; Boukouvala, M.C.; Mavroforos, M.E.; Kontodimas, D.C. Efficacy of alpha-cypermethrin and thiamethoxan against Trogoderma granarium Everts (Coleoptera: Dermestidae) and Tenebrio molitor L. J. Stored Prod. Res. 2015, 62, 101–107. [Google Scholar] [CrossRef]
- Lyon, B.N.; Crippen, T.L.; Zheng, L.; Teel, P.D.; Swiger, S.L.; Tomberlin, J.K. Susceptibility of Alphitobius diaperinus in Texas to permethrin and β-cyfluthrin treated surfaces. Pest Manag. Sci. 2017, 73, 562–567. [Google Scholar]
- Plata-Rueda, A.; Zanuncio, J.C.; Serrão, J.E.; Martínez, L.C. Origanum vulgare essential oil against Tenebrio molitor (Coleoptera: Tenebrionidae): Composition, insecticidal activity, and behavioral response. Plants 2021, 10, 2513. [Google Scholar] [CrossRef] [PubMed]
- Arena, J.S.; Omarini, A.B.; Zunino, A.P.; Peschiutta, M.L.; Defagó, M.T.; Zygadlo, J.A. Essential oils from Dysphania ambrosioides and Tagetes minuta enhance the toxicity of a conventional insecticide against Alphitobius diaperinus. Ind. Crops Prod. 2018, 122, 190–194. [Google Scholar] [CrossRef]
- Hickmann, F.; De Morais, A.F.; Bronzatto, E.S.; Giacomelli, T.; Guedes, J.V.C.; Bernardi, O. Susceptibility of the lesser mealworm, Alphitobius diaperinus (Coleoptera: Tenebrionidae), from broiler farms of Southern Brazil to insecticides. J. Econ. Entomol. 2018, 111, 980–985. [Google Scholar]
- Kavallieratos, N.G.; Michail, E.J.; Boukouvala, M.C.; Nika, E.P.; Skourti, A. Efficacy of pirimiphos-methyl, deltamethrin, spinosad and silicoSec against adults and larvae of Tenebrio molitor L. on wheat, barley and maize. J. Stored Prod. Res. 2019, 83, 161–167. [Google Scholar]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Ntalli, N.; Boukouvala, M.C.; Ntalaka, C.T.; Maggi, F.; Rakotosaona, R.; Cespi, M.; Perinelli, D.R.; et al. Developing a Hazomalania voyronii essential oil nanoemulsion for the eco-friendly management of Tribolium confusum, Tribolium castaneum and Tenebrio molitor larvae and adults on stored wheat. Molecules 2021, 26, 1812. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Filintas, C.S.; Goumenou, T.D. Short and long-term mortalities of small and large larvae of Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) on concrete surfaces treated with three insecticides: Impact of food. Insects 2022, 13, 366. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Goumenou, T.D.; Filintas, C.S. Immediate and delayed mortality of different Alphitobius diaperinus developmental stages on chlorfenapyr-treated concrete. J. Stored Prod. Res. 2022, 98, 101998. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Virvidaki, A.J.V. Deltamethrin residual mission against Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae) on concrete for six weeks. J. Stored Prod. Res. 2022, 99, 102036. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Nika, E.P.; Skourti, A.; Spinozzi, E.; Ferrati, M.; Petrelli, R.; Benelli, G. Carlina acaulis essential oil: A candidate product for agrochemical industry due to its pesticidal capacity. Ind. Crops Prod. 2022, 188, 115572. [Google Scholar] [CrossRef]
- Di Blasi, G. A Review of the chemistry of piperonyl butoxide. In Piperonyl Butoxide. The Insecticide Synergist; Jones, D.G., Ed.; Academic Press: London, UK, 1999; pp. 55–70. [Google Scholar]
- EPA (Environmental Protection Agency). Registration Eligibility Decision (RED) Document for Tetramethrin; EPA: Washington, DC, USA, 2008; pp. 1–50.
- Ghanim, M.; Ishaaya, I. Insecticides with novel modes of action: Mechanism and resistance management. In Insecticides with Novel Modes of Action: Mechanism and Application; Ishaaya, I., Degheele, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 385–407. [Google Scholar]
- FAO, Food and Agriculture Organization of the United Nations. Poultry Development Review. 2013. Available online: https://www.fao.org/publications/card/en/c/90c86c8d-96e8-5db6-914f-2bd9fa24e421/ (accessed on 31 March 2023).
- Rice, S.J.; Lambkin, T.A. A new culture method for lesser mealworm, Alphitobius diaperinus. J. Appl. Entomol. 2009, 133, 67–72. [Google Scholar] [CrossRef]
- Sagheer, M.; Aman, Y.; Mansoor-ul-Hasan; Ahmed, F.; Ranjha, M.H.; Ali, Q.; Ali, K.; Sidra-tul-Muntaha. Fumigant bioactivity of extracts of Citrulus colocynthes, Moringa oleifera and Azadirachta indica against Tribolium castaneum and Alphitobius diaperinus under laboratory conditions. In Proceedings of the 10th International Conference on Controlled Atmosphere and Fumigation in Stored Products, New Delhi, India, 6–11 November 2016; Navarro, S., Jayas, D.S., Alagusundaram, K., Eds.; CAF Permanent Committee Secretariat: Winnipeg, MB, Canada, 2016; pp. 459–464. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Pearson Education Limited: Essex, UK, 2014. [Google Scholar]
- Scheff, D.S.; Arthur, F.H. Fecundity of Tribolium castaneum and Tribolium confusum adults after exposure to deltamethrin packaging. J. Pest Sci. 2018, 91, 717–725. [Google Scholar] [CrossRef]
- Sall, J.; Lehman, A.; Creighton, L. JMP start statistics. In A Guide to Statistics and Data Analysis Using JMP and JMP in Software; Duxbury Press: Belmont, ON, Canada, 2001. [Google Scholar]
- Sokal, R.R.; Rohlf, F.J. Biometry; Freeman & Company: New York, NY, USA, 1995. [Google Scholar]
- SAS Institute Inc. Using JMP 16.2; SAS Institute Inc.: Cary, NC, USA, 2021. [Google Scholar]
- Arthur, F.H. Aerosols and contact insecticides as alternatives to methyl bromide in flour mills, food production facilities, and food warehouses. J. Pest Sci. 2012, 85, 323–329. [Google Scholar] [CrossRef]
- Arthur, F.H.; Liu, S.; Zhao, B.; Phillips, T.W. Residual efficacy of pyriproxyfen and hydroprene applied to wood, metal and concrete for control of stored-product insects. Pest Manag. Sci. 2009, 65, 791–797. [Google Scholar] [CrossRef]
- Vojoudi, S.; Saber, M.; Mahdavi, V.; Golshan, H.; Abedi, Z. Efficacy of some insecticides against red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) adults exposed on glass, ceramic tile, plastic and paper disc surfaces. J. Life Sci. 2012, 6, 405–410. [Google Scholar]
- Arthur, F.H. Residual efficacy of cyfluthrin emulsifiable concentrate and wettable powder formulations on porous concrete and on concrete sealed with commercial products prior to insecticide application. J. Stored Prod. Res. 1994, 30, 79–86. [Google Scholar] [CrossRef]
- Arthur, F.H. Differential effectiveness of deltamethrin dust on plywood, concrete, and tile surfaces against three stored-product beetles. J. Stored Prod. Res. 1997, 33, 167–173. [Google Scholar] [CrossRef]
- Arthur, F.H.; Ghimire, M.N.; Myers, S.W.; Phillips, T.W. Evaluation of pyrethroid insecticides and insect growth regulators applied to different surfaces for control of Trogoderma granarium (Coleoptera: Dermestidae) the khapra beetle. J. Econ. Entomol. 2018, 111, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Kavallieratos, N.G.; Skourti, A.; Nika, E.P.; Ntalaka, C.T.; Boukouvala, M.C.; Bonacucina, G.; Cespi, M.; Petrelli, R.; Cappellacci, L.; Maggi, F.; et al. Isofuranodiene-based nanoemulsion: Larvicidal and adulticidal activity against tenebrionid beetles attacking stored wheat. J. Stored Prod. Res. 2021, 93, 101859. [Google Scholar] [CrossRef]
- Peterson, A. Larvae of Insects. Part I Lepidoptera and Hymenoptera; Edwards Bothers Inc.: Ann Arbor, MI, USA, 1948. [Google Scholar]
- Peterson, A. Larvae of Insects. Part II Coleoptera, Diptera, Neuroptera, Siphonaptera, Mecoptera, Trichoptera; Edwards Bothers Inc.: Ann Arbor, MI, USA, 1951. [Google Scholar]
- Gast, R.T. The relationship of weight of lepidopterous larvae to effectiveness of topically applied insecticides. J. Econ. Entomol. 1959, 52, 1115–1117. [Google Scholar] [CrossRef]
- Armold, M.T.; Blomquist, G.J.; Jackson, L.L. Cuticular lipids of insects III. The surface lipids of aquatic and terrestrial life forms of the big stonefly Pteronarcys california (Newport). Comp. Biochem. Physiol. 1969, 31, 685–692. [Google Scholar] [CrossRef]
- Andersen, S.O.; Thompson, P.R.; Hepburn, H.R. Cuticular sclerotization in the honeybee (Apis mellifera adansonii). J. Comp. Physiol. 1981, 145, 17–20. [Google Scholar] [CrossRef]
- Cox, P.D.; Bell, C.H.; Pearson, J.; Beirne, M.A. The effect of diapause on the tolerance of larvae of Ephestia kuehniella to methyl bromide and phosphine. J. Stored Prod. Res. 1984, 20, 215–219. [Google Scholar] [CrossRef]
- Andersen, S.O. Sclerotization and tanning of the cuticle. In Comprehensive Insect Physiology Biochemistry and Pharmacology; Kerkut, G.A., Gilbert, L.I., Eds.; Pergamon Press: Oxford, UK, 1985; pp. 59–74. [Google Scholar]
- Mewis, I.; Ulrichs, C. Action of amorphous diatomaceous earth against different stages of the stored product pests Tribolium confusum, Tenebrio molitor, Sitophilus granarius and Plodia interpunctella. J. Stored Prod. Res. 2001, 37, 153–164. [Google Scholar] [CrossRef]
- Yu, S.J. The Toxicology and Biochemistry of Insecticide; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Andersen, S.O. Insect cuticular sclerotization: A review. Insect Biochem. Mol. Biol. 2010, 40, 166–178. [Google Scholar] [CrossRef]
- Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 2010, 40, 363–375. [Google Scholar] [CrossRef]
- Wink, M. Medicinal plants: A source of anti-parasitic secondary metabolites. Molecules 2012, 17, 12771–12791. [Google Scholar] [CrossRef] [PubMed]
- Gatton, M.L.; Chitnis, N.; Churcher, T.; Donnelly, M.J.; Ghani, A.C.; Godfray, H.C.J.; Gould, F.; Hastings, I.; Marshall, J.; Ranson, H.; et al. The importance of mosquito behavioural adaptations to malaria control in Africa. Evolution 2013, 67, 1218–1230. [Google Scholar] [CrossRef] [PubMed]
- Lilly, D.G.; Latham, S.L.; Webb, C.E.; Doggett, S.L. Cuticle thickening in a pyrethroid-resistant strain of the common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae). PLoS ONE 2016, 11, e0153302. [Google Scholar] [CrossRef] [PubMed]
- Panini, M.; Manicardi, G.C.; Moores, G.D.; Mazzoni, E. An overview of the main pathways of metabolic resistance in insects. Invertebr. Surviv. J. 2016, 13, 326–335. [Google Scholar]
- Giordano, G.; Carbone, M.; Ciavatta, M.L.; Silvano, E.; Gavagnin, M.; Garson, M.J.; Cheney, K.L.; Mudianta, I.W.; Russo, G.F.; Villani, G.; et al. Volatile secondary metabolites as aposematic olfactory signals and defensive weapons in aquatic environments. Proc. Natl. Acad. Sci. USA 2017, 114, 3451–3456. [Google Scholar] [CrossRef]
- Pavela, R.; Pavoni, L.; Bonacucina, G.; Cespi, M.; Kavallieratos, N.G.; Cappellacci, L.; Petrelli, R.; Maggi, F.; Benelli, G. Rationale for developing novel mosquito larvicides based on isofuranodiene microemulsions. J. Pest Sci. 2019, 92, 909–921. [Google Scholar] [CrossRef]
- Pavela, R.; Maggi, F.; Petrelli, R.; Cappellacci, L.; Buccioni, M.; Palmieri, A.; Canale, A.; Benelli, G. Outstanding insecticidal activity and sublethal effects of Carlina acaulis root essential oil on the housefly, Musca domestica, with insights on its toxicity on human cells. Food Chem. Toxicol. 2020, 136, 111037. [Google Scholar] [CrossRef]
- Arthur, F.H. Impact of accumulated food on survival of Tribolium castaneum on concrete treated with cyfluthrin wettable powder. J. Stored Prod. Res. 2000, 36, 15–23. [Google Scholar] [CrossRef]
- Arthur, F.H. Residual efficacy of aerosols to control Tribolium castaneum and Tribolium confusum. In Proceedings of the 10th International Working Conference on Stored Product Protection, Estoril, Portugal, 27 June–2 July 2010; Carvalho, M.O., Fields, P.G., Adler, C.S., Arthur, F.H., Athanassiou, C.G., Campbell, J.F., Fleurat-Lessard, F., Flinn, P.W., Hodges, R.J., Isikber, A.A., Eds.; Julius Kühn-Institut: Berlin, Germany, 2010; pp. 789–792. [Google Scholar]
- Toews, M.D.; Campbell, J.F.; Arthur, F.H. The presence of flour affects the efficacy of aerosolized insecticides used to treat the red flour beetle, Tribolium castaneum. J. Insect Sci. 2010, 10, 196. [Google Scholar] [CrossRef]
- Athanassiou, C.G.; Arthur, F.H.; Kavallieratos, N.G.; Throne, J.E. Efficacy of pyriproxyfen for control of stored-product psocids (Psocoptera) on concrete surfaces. J. Econ. Entomol. 2011, 104, 1765–1769. [Google Scholar] [CrossRef]
- Arthur, F.H. Food source effect and residual efficacy of chlorfenapyr as a surface treatment on sealed and unsealed concrete. J. Stored Prod. Res. 2015, 64, 65–71. [Google Scholar] [CrossRef]
- Wijayaratne, L.K.; Fields, P.G.; Arthur, F.H. Residual efficacy of methoprene for control of Tribolium castaneum (Coleoptera: Tenebrionidae) larvae at different temperatures on varnished wood, concrete, and wheat. J. Econ. Entomol. 2012, 105, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Velki, M.; Plavšin, I.; Dragojević, J.; Hackenberger, B.K. Toxicity and repellency of dimethoate, pirimiphos-methyl and deltamethrin against Tribolium castaneum (Herbst) using different exposure methods. J. Stored Prod. Res. 2014, 59, 36–41. [Google Scholar] [CrossRef]
- Arthur, F.H.; Domingue, M.J.; Scheff, D.S.; Myers, S.W. Bioassays and methodologies for insecticide tests with larvae of Trogoderma granarium (Everts), the khapra beetle. Insects 2019, 10, 145. [Google Scholar] [CrossRef]
- Boukouvala, M.C.; Kavallieratos, N.G. Effect of six insecticides on egg hatching and larval mortality of Trogoderma granarium Everts (Coleoptera: Dermestidae). Insects 2020, 11, 263. [Google Scholar] [CrossRef]
- Lorini, I.; Filho, A.F. Integrated pest management strategies used in stored grain in Brazil to manage phosphine resistance. In Proceedings of the 7th International Conference on Controlled Atmosphere and Fumigation in Stored Products, Gold-Coast, Australia, 8–13 August 2004; Donahaye, E.J., Navarro, S., Bell, C., Jayas, D., Noyes, R., Phillips, T.W., Eds.; FTIC Ltd. Publishing: Israel, 2007; pp. 293–300. [Google Scholar]
- Kharel, K.; Arthur, F.H.; Campbell, J.F.; Zhu, K.Y.; Subramanyam, B. Susceptibility of different life stages of Tribolium confusum to pyrethrin aerosol: Effects of flour source on insecticidal efficacy. J. Pest Sci. 2014, 87, 295–300. [Google Scholar] [CrossRef]
- Kavallieratos, N.G.; Boukouvala, M.C. Efficacy of d-tetramethrin and acetamiprid for control of Trogoderma granarium Everts (Coleoptera: Dermestidae) adults and larvae on concrete. J. Stored Prod. Res. 2019, 80, 79–84. [Google Scholar] [CrossRef]
- Farnham, A.W. The mode of action of piperonyl butoxide with reference to studying pesticide resistance. In Piperonyl Butoxide. The Insecticide Synergist; Jones, D.G., Ed.; Academic Press: London, UK, 1999; pp. 199–213. [Google Scholar]
- Carter, S.W.; Chadwick, P.R.; Wickham, J.C. Comparative observations on the activity of pyrethroids against some susceptible and resistant stored products beetles. J. Stored Prod. Res. 1975, 11, 135–142. [Google Scholar] [CrossRef]
- Noack, V.S.; Schmidt, H.U. Effects of repellents and insecticides using for impregnation of packing material on stored-product pests. Z. Angew. Entomol. 1981, 92, 202–212. [Google Scholar] [CrossRef]
- Khan, V.M.A. Effectiveness of insecticides and repellents on stored product insect pests. Anz. Schaedlingskd. Pflanzenschutz Umweltschutz 1983, 56, 25–29. [Google Scholar] [CrossRef]
- Mongkalangoon, P.; Grieco, J.P.; Achee, N.L.; Suwonkerd, W.; Chareonviriyaphap, T. Irritability and repellency of synthetic pyrethroids on an Aedes aegypti population from Thailand. J. Vector Ecol. 2009, 34, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, H.; Sembo, S.; Ishiwatari, T.; Miyaguchi, J. Insecticidal activity of 8 household and hygiene insecticides against bedbug (Cimex lectularius). Med. Entomol. Zool. 2010, 61, 245–250. [Google Scholar] [CrossRef]
- Lambkin, T.A.; Furlong, M.J. Metabolic mechanisms only partially explain resistance to pyrethroids in Australian broiler house populations of lesser mealworm (Coleoptera: Tenebrionidae). J. Econ. Entomol. 2011, 104, 629–635. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Lin, Y.Y.; Jin, Q.A.; Wen, H.B.; Peng, Z.Q. Sublethal effect of avermectin and acetamiprid on the mortality of different life stages of Brontispa longissima (Gestro) (Coleoptera: Hispidae) and its larvae parasitoid Asecodes hispinarum Bouček (Hymenoptera: Eulophidae). Crop Prot. 2014, 58, 55–60. [Google Scholar] [CrossRef]
- Maluta, N.K.P.; Lopes, J.R.S.; Fiallo-Olivé, E.; Navas-Castillo, J.; Lourenção, A.L. Foliar spraying of tomato plants with systemic insecticides: Effects on feeding behavior, mortality and oviposition of Bemisia tabaci (Hemiptera: Aleyrodidae) and inoculation efficiency of tomato chlorosis virus. Insects 2020, 11, 559. [Google Scholar] [CrossRef]
Effect | Tenebrio molitor | Alphitobius diaperinus | |||
---|---|---|---|---|---|
Between exposure intervals | |||||
Source | DF | F | p | F | p |
Intercept | 1 | 23,297.2 | <0.01 | 18,841.7 | <0.01 |
Dose | 1 | 18.5 | <0.01 | 64.9 | <0.01 |
Food | 1 | 38.6 | <0.01 | 28.4 | <0.01 |
Surface | 4 | 57.0 | <0.01 | 78.2 | <0.01 |
Dose × food | 1 | 0.48 | 0.49 | 0.1 | 0.72 |
Dose × surface | 4 | 1.0 | 0.43 | 3.6 | 0.01 |
Food × surface | 4 | 2.7 | 0.04 | 1.1 | 0.37 |
Dose × food × surface | 4 | 2.1 | 0.09 | 1.1 | 0.37 |
Within exposure intervals | |||||
Exposure | 3 | 616.5 | <0.01 | 790.7 | <0.01 |
Exposure × dose | 3 | 12.3 | <0.01 | 11.1 | <0.01 |
Exposure × food | 3 | 13.7 | <0.01 | 6.8 | <0.01 |
Exposure × surface | 12 | 25.1 | <0.01 | 26.6 | <0.01 |
Exposure × dose × food | 3 | 0.4 | 0.74 | 1.9 | 0.14 |
Exposure × dose × surface | 12 | 1.6 | 0.09 | 1.8 | 0.05 |
Exposure × food × surface | 12 | 2.1 | 0.02 | 0.5 | 0.89 |
Exposure × dose × food × surface | 12 | 2.4 | 0.01 | 2.4 | 0.01 |
Surfaces | 1 Day | 3 Days | 5 Days | 7 Days | F | p |
---|---|---|---|---|---|---|
Min/Food | ||||||
Plastic | 3.3 ± 1.7 Cabc | 28.9 ± 3.1 Bab | 76.7 ± 4.4 Ab | 96.7 ± 1.7 Aa | 65.8 | <0.01 |
Glass | 8.9 ± 2.0 Ba | 54.4 ± 4.4 Aa | 95.6 ± 2.4 Aa | 100.0 ± 0.0 Aa | 43.6 | <0.01 |
Metal | 0.0 ± 0.0 Cc | 26.7 ± 4.1 Bb | 94.4 ± 2.4 Aa | 100.0 ± 0.0 Aa | 798.0 | <0.01 |
Wood | 1.1 ± 1.1 Cbc | 14.4 ± 2.4 Bc | 64.4 ± 4.1 Ab | 87.8 ± 4.0 Ab | 80.7 | <0.01 |
Ceramic | 6.7 ± 2.4 Bab | 47.8 ± 4.0 Aab | 94.4 ± 1.8 Aa | 100.0 ± 0.0 Aa | 43.6 | <0.01 |
F | 5.6 | 11.0 | 17.6 | 7.1 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | ||
Min/No food | ||||||
Plastic | 17.8 ± 4.7 Cab | 47.8 ± 4.9 Bab | 96.7 ± 1.7 Aa | 100.0 ± 0.0 Aa | 25.0 | <0.01 |
Glass | 37.8 ± 5.2 Ca | 67.8 ± 4.3 Ba | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 41.6 | <0.01 |
Metal | 1.1 ± 1.1 Cc | 41.1 ± 3.9 Bb | 95.6 ± 2.4 Aa | 100.0 ± 0.0 Aa | 213.6 | <0.01 |
Wood | 3.3 ± 2.4 Cc | 18.9 ± 3.1 Bc | 66.7 ± 5.0 Ab | 92.2 ± 2.2 Ab | 65.0 | <0.01 |
Ceramic | 7.8 ± 2.8 Bbc | 65.6 ± 5.8 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 39.3 | <0.01 |
F | 15.5 | 25.5 | 26.6 | 11.7 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | ||
Max/Food | ||||||
Plastic | 13.3 ± 3.3 Ba | 64.4 ± 4.1 Aa | 96.7 ± 1.7 Aa | 97.8 ± 1.5 Aab | 27.1 | <0.01 |
Glass | 10.0 ± 2.9 Bab | 56.7 ± 2.9 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 32.7 | <0.01 |
Metal | 2.2 ± 1.5 Cb | 43.3 ± 3.7 Ba | 96.7 ± 1.7 Aa | 100.0 ± 0.0 Aa | 111.0 | <0.01 |
Wood | 2.2 ± 1.5 Cb | 18.9 ± 3.9 Bb | 73.3 ± 3.3 Ab | 94.4 ± 2.4 Ab | 52.2 | <0.01 |
Ceramic | 7.8 ± 2.2 Bab | 56.7 ± 3.7 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 Aa | 43.0 | <0.01 |
F | 3.6 | 12.0 | 34.0 | 3.6 | ||
p | 0.01 | <0.01 | <0.01 | 0.01 | ||
Max/No food | ||||||
Plastic | 18.9 ± 4.2 Bab | 66.7 ± 3.7 Aa | 97.8 ± 1.5 Aa | 100.0 ± 0.0 A | 17.8 | <0.01 |
Glass | 47.8 ± 2.8 Ca | 81.1 ± 3.5 Ba | 100.0 ± 0.0 Aa | 100.0 ± 0.0 A | 99.7 | <0.01 |
Metal | 2.2 ± 1.5 Cc | 45.6 ± 5.0 Bb | 98.9 ± 1.1 Aa | 100.0 ± 0.0 A | 110.7 | <0.01 |
Wood | 3.3 ± 1.7 Cc | 33.3 ± 3.3 Bb | 90.0 ± 3.3 Ab | 100.0 ± 0.0 A | 73.5 | <0.01 |
Ceramic | 13.3 ± 2.4 Bb | 71.1 ± 3.1 Aa | 100.0 ± 0.0 Aa | 100.0 ± 0.0 A | 42.3 | <0.01 |
F | 15.2 | 24.7 | 5.8 | - | ||
p | <0.01 | <0.01 | <0.01 | - |
Surfaces | 1 Day | 3 Days | 5 Days | 7 Days | F | p |
---|---|---|---|---|---|---|
Min/Food | ||||||
Plastic | 5.6 ± 2.4 Bb | 32.2 ± 5.2 Ab | 51.1 ± 8.6 Abc | 70.0 ± 5.5 Ab | 27.8 | <0.01 |
Glass | 17.8 ± 2.2 Ca | 73.3 ± 2.9 Ba | 91.1 ± 2.6 ABa | 97.8 ± 1.5 Aa | 142.8 | <0.01 |
Metal | 0.0 ± 0.0 Dc | 32.2 ± 2.2 Cab | 58.9 ± 5.6 Bab | 77.8 ± 4.7 Aab | 798.1 | <0.01 |
Wood | 0.0 ± 0.0 Cc | 12.2 ± 3.2 Bc | 36.7 ± 4.7 Ac | 53.3 ± 5.8 Ac | 62.3 | <0.01 |
Ceramic | 1.1 ± 1.1 Cbc | 28.9 ± 4.2 Bb | 52.2 ± 4.3 Abc | 74.4 ± 4.1 Aab | 128.0 | <0.01 |
F | 25.4 | 12.7 | 8.9 | 10.5 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | ||
Min/No food | ||||||
Plastic | 8.9 ± 3.5 Bb | 58.9 ± 5.6 Aab | 77.8 ± 3.2 Aab | 93.3 ± 2.4 Aa | 31.4 | <0.01 |
Glass | 18.9 ± 2.0 Ba | 84.4 ± 3.4 Aa | 95.6 ± 1.8 Aa | 98.9 ± 1.1 Aa | 177.4 | <0.01 |
Metal | 0.0 ± 0.0 Cc | 45.6 ± 5.0 Bab | 73.3 ± 4.7 Aab | 84.4 ± 4.8 Aa | 784.8 | <0.01 |
Wood | 2.2 ± 1.5 Cbc | 17.8 ± 3.2 Bc | 37.8 ± 4.0 ABc | 63.3 ± 4.4 Ab | 36.1 | <0.01 |
Ceramic | 2.2 ± 1.5 Cbc | 37.8 ± 4.7 Bb | 67.8 ± 3.6 ABb | 83.3 ± 4.1 Aa | 83.3 | <0.01 |
F | 13.5 | 12.7 | 20.3 | 13.0 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | ||
Max/Food | ||||||
Plastic | 14.4 ± 2.9 Ba | 63.3 ± 5.3 Aa | 85.6 ± 4.4 Aa | 97.8 ± 1.5 Aa | 31.5 | <0.01 |
Glass | 20.0 ± 3.7 Ca | 75.6 ± 2.4 Ba | 92.2 ± 2.2 Aa | 100.0 ± 0.0 Aa | 211.1 | <0.01 |
Metal | 1.1 ± 1.1 Bb | 55.6 ± 5.8 Aa | 74.4 ± 4.8 Aa | 84.4 ± 4.4 Ab | 173.7 | <0.01 |
Wood | 1.1 ± 1.1 Db | 18.9 ± 2.6 Cb | 43.3 ± 3.3 Bb | 80.0 ± 2.9 Ab | 133.5 | <0.01 |
Ceramic | 3.3 ± 1.7 Bb | 53.3 ± 3.7 Aa | 74.4 ± 2.9 Aa | 87.8 ± 3.2 Aab | 72.6 | <0.01 |
F | 17.8 | 32.9 | 27.2 | 8.0 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 | ||
Max/No food | ||||||
Plastic | 15.6 ± 1.8 Cab | 77.8 ± 4.3 Ba | 96.7 ± 1.7A Bab | 100.0 ± 0.0 Aa | 195.1 | <0.01 |
Glass | 23.3 ± 2.4 Ba | 84.4 ± 3.8 Aa | 98.9 ± 1.1 Aa | 100.0 ± 0.0 Aa | 133.4 | <0.01 |
Metal | 7.8 ± 2.8 Bbc | 77.8 ± 3.6 Aa | 92.2 ± 1.5 Aab | 97.8 ± 1.5 Aab | 40.2 | <0.01 |
Wood | 5.6 ± 1.8 Cc | 25.6 ± 4.1 Bb | 63.3 ± 4.4 Ac | 87.8 ± 2.2 Ac | 36.3 | <0.01 |
Ceramic | 5.6 ± 1.8 Bc | 63.3 ± 2.9 Aa | 84.4 ± 3.8 Ab | 92.2 ± 2.2 Abc | 51.5 | <0.01 |
F | 6.3 | 31.3 | 22.1 | 11.6 | ||
p | <0.01 | <0.01 | <0.01 | <0.01 |
Min | Max | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surfaces | Food | No Food | DF | t | p | Food | No Food | DF | t | p |
Plastic | 100.0 ± 0.0 (0) | - | - | - | - | 100.0 ± 0.0 (0) | - | - | - | - |
Wood | 80.6 ± 12.5 (11) | 100.0 ± 0.0 (0) | 11 | 1.5 | 0.16 | 100.0 ± 0.0 (0) | - | - | - | - |
DF | 8 | - | 5 | - | ||||||
t | −1.0 | - | - | - | ||||||
p | 0.33 | - | - | - |
Min | Max | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Surfaces | Food | No Food | DF | t | p | Food | No Food | DF | t | p |
Plastic | 100.0 ± 0.0 (0) | 100.0 ± 0.0 (0) | 12 | - | - | 100.0 ± 0.0 (0) | - | - | - | - |
Glass | 100.0 ± 0.0 (0) | 100.0 ± 0.0 (0) | 2 | - | - | - | - | - | - | - |
Metal | 91.7 ± 4.2 (3) | 81.9 ± 8.7 (3) | 14 | −1.2 | 0.24 | 100.0 ± 0.0 * (0) | 50.0 ± 50.0 (1) | 7 | 2.3 | 0.05 |
Wood | 84.3 ± 6.6 (5) | 91.3 ± 4.5 (3) | 17 | 1.0 | 0.35 | 92.9 ± 7.1 (3) | 100.0 ± 0.0 (0) | 14 | 1.1 | 0.30 |
Ceramic | 84.4 ± 7.8 (4) | 89.3 ± 7.4 (2) | 15 | 0.5 | 0.65 | 92.9 ± 7.1 (1) | 58.3 ± 20.1 (3) | 12 | -1.8 | 0.10 |
DF | 36 | 27 | 22 | 15 | ||||||
F | 1.5 | 0.9 | 0.4 | 2.4 | ||||||
p | 0.24 | 0.47 | 0.75 | 0.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kavallieratos, N.G.; Nika, E.P.; Gounari, P.D. Five Surfaces Treated with d-Tetramethrin plus Acetamiprid for the Management of Tenebrio molitor and Alphitobius diaperinus: Which Is the Best? Insects 2023, 14, 452. https://doi.org/10.3390/insects14050452
Kavallieratos NG, Nika EP, Gounari PD. Five Surfaces Treated with d-Tetramethrin plus Acetamiprid for the Management of Tenebrio molitor and Alphitobius diaperinus: Which Is the Best? Insects. 2023; 14(5):452. https://doi.org/10.3390/insects14050452
Chicago/Turabian StyleKavallieratos, Nickolas G., Erifili P. Nika, and Penelope D. Gounari. 2023. "Five Surfaces Treated with d-Tetramethrin plus Acetamiprid for the Management of Tenebrio molitor and Alphitobius diaperinus: Which Is the Best?" Insects 14, no. 5: 452. https://doi.org/10.3390/insects14050452
APA StyleKavallieratos, N. G., Nika, E. P., & Gounari, P. D. (2023). Five Surfaces Treated with d-Tetramethrin plus Acetamiprid for the Management of Tenebrio molitor and Alphitobius diaperinus: Which Is the Best? Insects, 14(5), 452. https://doi.org/10.3390/insects14050452