Elevational Pattern of Leaf Mine Diversity on Quercus variabilis Blume at Baotianman, Henan, China
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Sampling of Leaves with Mines
2.3. Leaf Mine Classification
2.4. Leaf Mine Area Measurement
2.5. Data Analysis
2.5.1. Taxonomic Hill Diversity of Leaf Mines
2.5.2. Phylogenetic Hill Diversity of Leaf Mines
2.5.3. Functional Hill Diversity of Leaf Mines
2.5.4. Elevational Diversity Pattern
2.5.5. Spatial Autocorrelation Analysis
2.5.6. Community Similarity Analysis
3. Results
3.1. Number of Leaf Mine Types at Different Transects
3.2. Elevational Pattern of Mine Numbers
3.3. Elevational Pattern of Taxonomic Hill Diversity
3.4. Elevational Pattern of Phylogenetic Hill Diversity
3.5. Elevational Pattern of Functional Hill Diversity
3.6. Relationship between Leaf Mine Community Similarity and Elevation Difference
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McCain, C.M. Global analysis of bird elevational diversity. Glob. Ecol. Biogeogr. 2009, 18, 346–360. [Google Scholar] [CrossRef]
- Hodkinson, I.D. Terrestrial insects along elevation gradients: Species and community responses to altitude. Biol. Rev. Camb. Philos. Soc. 2005, 80, 489–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.-Y.; Tang, Z.-Y. A review on the elevational patterns of plant species diversity. Biodivers. Sci. 2004, 12, 20–28. [Google Scholar] [CrossRef]
- Nor, S.M.D. Elevational diversity patterns of small mammals on Mount Kinabalu, Sabah, Malaysia. Glob. Ecol. Biogeogr. 2001, 10, 41–62. [Google Scholar] [CrossRef]
- Gaston, K.J. Global patterns in biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef]
- Coince, A.; Cordier, T.; Lengelle, J.; Defossez, E.; Vacher, C.; Robin, C.; Buee, M.; Marcais, B. Leaf and root-associated fungal assemblages do not follow similar elevational diversity patterns. PLoS ONE 2014, 9, e100668. [Google Scholar] [CrossRef]
- Blanche, K.R.; Ludwig, J.A. Species richness of gall-inducing insects and host plants along an altitudinal gradient in Big Bend National Park, Texas. Am. Midl. Nat. 2001, 145, 219–232. [Google Scholar] [CrossRef]
- Nakadai, R.; Murakami, M.; Hirao, T. Effects of phylogeny, leaf traits, and the altitudinal distribution of host plants on herbivore assemblages on congeneric Acer species. Oecologia 2014, 175, 1237–1245. [Google Scholar] [CrossRef]
- Moreira, X.; Petry, W.K.; Mooney, K.A.; Rasmann, S.; Abdala-Roberts, L. Elevational gradients in plant defences and insect herbivory: Recent advances in the field and prospects for future research. Ecography 2018, 41, 1485–1496. [Google Scholar] [CrossRef] [Green Version]
- Lawton, J.H.; MacGarvin, M.; Heads, P.A. Effects of altitude on the abundance and species richness of insect herbivores on bracken. J. Anim. Ecol. 1987, 56, 147–160. [Google Scholar] [CrossRef]
- Rahbek, C. The role of spatial scale and the perception of large-scale species-richness patterns. Ecol. Lett. 2004, 8, 224–239. [Google Scholar] [CrossRef]
- Sanders, N.J.; Rahbek, C. The patterns and causes of elevational diversity gradients. Ecography 2012, 35, 1–3. [Google Scholar] [CrossRef]
- Brehm, G.; Süssenbach, D.; Fiedler, K. Unique elevational diversity patterns of geometrid moths in an Andean montane rainforest. Ecography 2003, 26, 456–466. [Google Scholar] [CrossRef] [Green Version]
- Nogues-Bravo, D.; Araujo, M.B.; Romdal, T.; Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 2008, 453, 216–219. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, G.W.; Lara, A.C.F. Diversity of Indonesian gall-forming herbivores along altitudinal gradients. Biodivers. Lett. 1993, 1, 186–192. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Price, P.W. Biogeographical gradients in galling species richness: Tests of hypotheses. Oecologia 1988, 76, 161–167. [Google Scholar] [CrossRef]
- Needham, J.G.; Frost, S.W.; Tothill, B.H. Leaf-Mining Insects; Williams & Wilkins: Baltimore, MD, USA, 1928. [Google Scholar]
- Hering, E.M. Biology of the Leaf Miners; Springer: Berlin/Heidelberg, Germany, 1951. [Google Scholar]
- Kang, L. The Ecology and Continuous Control of Liriomyza Sativae; Science Press: Beijing, China, 1996. [Google Scholar]
- Sinclair, R.J.; Hughes, L. Leaf miners: The hidden herbivores. Austral Ecol. 2010, 35, 300–313. [Google Scholar] [CrossRef]
- Csóka, G. Leaf Mines and Leaf Miners; Hungarian Forest Research Institute: Budapest, Hungary, 2003. [Google Scholar]
- Liu, W.H.; Dai, X.H.; Xu, J.S. Influences of leaf-mining insects on their host plants: A review. Collect. Bot. 2015, 34, 1440–1449. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, K. Leaf mines as visual defensive signals to herbivores. Oikos 2010, 119, 796–801. [Google Scholar] [CrossRef]
- Wilf, P.; Labandeira, C.C.; Johnson, K.R.; Ellis, B. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 2006, 313, 1112–1115. [Google Scholar] [CrossRef]
- Labandeira, C.C.; Dilcher, D.L.; Davis, D.R.; Wagner, D.L. Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proc. Natl. Acad. Sci. USA 1994, 91, 12278–12282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Vaamonde, C.; Wikstrom, N.; Labandeira, C.; Godfray, H.C.; Goodman, S.J.; Cook, J.M. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J. Evol. Biol. 2006, 19, 1314–1326. [Google Scholar] [CrossRef] [PubMed]
- Krassilov, V. Mine and gall predation as top down regulation in the plant–insect systems from the Cretaceous of Negev, Israel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2008, 261, 261–269. [Google Scholar] [CrossRef]
- Hespenheide, H.A. Bionomics of leaf-mining insects. Annu. Rev. Entomol. 1991, 36, 535–560. [Google Scholar] [CrossRef]
- Novotny, V.; Basset, Y. Host specificity of insect herbivores in tropical forests. Proc. Biol. Sci. 2005, 272, 1083–1090. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, S. Associations of leaf miners and leaf gallers with island plants of different residency histories. J. Biogeogr. 2010, 37, 237–244. [Google Scholar] [CrossRef]
- Kang, L.; Chen, B.; Wei, J.N.; Liu, T.X. Roles of thermal adaptation and chemical ecology in Liriomyza distribution and control. Annu. Rev. Entomol. 2009, 54, 127–145. [Google Scholar] [CrossRef]
- Kollár, J.; Hrubík, P. The mining species on woody plants of urban environments in the West Slovak area. Acta Entomol. Serbica 2009, 14, 83–91. [Google Scholar]
- Connor, E.F.; Taverner, M.P. The evolution and adaptive significance of the leaf-mining habit. Oikos 1997, 79, 6–25. [Google Scholar] [CrossRef] [Green Version]
- Poggetti, L.; Raranciuc, S.; Chiaba, C.; Vischi, M.; Zandigiacomo, P. Altitude affects the distribution and abundance of two non-native insect pests of the common walnut. J. Appl. Entomol. 2019, 143, 527–534. [Google Scholar] [CrossRef]
- Paudel, S.; Kandel, P.; Bhatta, D.; Pandit, V.; Felton, G.W.; Rajotte, E.G. Insect herbivore populations and plant damage increase at higher elevations. Insects 2021, 12, 1129. [Google Scholar] [CrossRef]
- Tuelher, E.D.S.; de Oliveira, E.E.; Guedes, R.N.C.; Magalhaes, L.C. Occurrence of coffee leaf-miner (Leucoptera coffeella) influenced by season and altitude. Acta Sci.-Agron. 2003, 25, 119–124. [Google Scholar]
- Maunsell, S.C.; Burwell, C.J.; Morris, R.J.; McDonald, W.J.F.; Edwards, E.D.; Oberprieler, R.G.; Kitching, R.L. Elevational turnover in the composition of leaf miners and their interactions with host plants in Australian subtropical rainforest. Austral Ecol. 2016, 41, 238–247. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Castro, F.M.C.; Faria, M.L.; Marques, E.S.A.; Greco, M.K.B. Effects of hygrothermal stress, plant richness, and architecture on mining insect diversity. Biotropica 2004, 36, 240–247. [Google Scholar] [CrossRef]
- Foba, C.N.; Salifu, D.; Lagat, Z.O.; Gitonga, L.M.; Akutse, K.S.; Fiaboe, K.K. Species composition, distribution, and seasonal abundance of Liriomyza leafminers (Diptera: Agromyzidae) under different vegetable production systems and agroecological zones in Kenya. Environ. Entomol. 2015, 44, 223–232. [Google Scholar] [CrossRef]
- Rose, M.; Barekye, A.; Joseph, E.; Gerald, K.; Innocent, U.; Sarah, K. Management of potato leaf miner in Uganda. Afr. J. Agric. Res. 2019, 14, 813–818. [Google Scholar] [CrossRef]
- Bairstow, K.A.; Clarke, K.L.; McGeoch, M.A.; Andrew, N.R. Leaf miner and plant galler species richness on Acacia: Relative importance of plant traits and climate. Oecologia 2010, 163, 437–448. [Google Scholar] [CrossRef]
- Nestel, D.; Dickschen, F.; Altieri, M.A. Seasonal and spatial population loads of a tropical insect: The case of the coffee leaf-miner in Mexico. Ecol. Entomol. 1994, 19, 159–167. [Google Scholar] [CrossRef]
- Gaston, K.J.; Genney, D.R.; Thurlow, M.; Hartley, S.E. The geographical range structure of the holly leaf-miner. IV. Effects of variation in host-plant quality. J. Anim. Ecol. 2004, 73, 911–924. [Google Scholar] [CrossRef]
- Kinyanjui, G.; Khamis, F.M.; Ombura, F.L.O.; Kenya, E.U.; Ekesi, S.; Mohamed, S.A. Distribution, abundance and natural enemies of the invasive tomato leafminer, Tuta absoluta (Meyrick) in Kenya. Bull. Entomol. Res. 2021, 111, 658–673. [Google Scholar] [CrossRef]
- Kozlov, M.V.; van Nieukerken, E.J.; Zverev, V.; Zvereva, E.L. Abundance and diversity of birch-feeding leafminers along latitudinal gradients in northern Europe. Ecography 2013, 36, 1138–1149. [Google Scholar] [CrossRef]
- Garibaldi, L.A.; Kitzberger, T.; Chaneton, E.J. Environmental and genetic control of insect abundance and herbivory along a forest elevational gradient. Oecologia 2011, 167, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Kessler, M.; Hofmann, S.; Kromer, T.; Cicuzza, D.; Kluge, J. The impact of sterile populations on the perception of elevational richness patterns in ferns. Ecography 2011, 34, 123–131. [Google Scholar] [CrossRef]
- Machac, A.; Janda, M.; Dunn, R.R.; Sanders, N.J. Elevational gradients in phylogenetic structure of ant communities reveal the interplay of biotic and abiotic constraints on diversity. Ecography 2011, 34, 364–371. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Bartholomew, B. Fagaceae. In Flora of China; Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China, 1999; pp. 314–400. [Google Scholar]
- Zhou, Z. Fossils of the Fagaceae and their implications in systematics and biogeography. Acta Phytotaxon Sin. 1999, 37, 369–385. [Google Scholar]
- Dai, X.; Long, C.; Xu, J.; Guo, Q.; Zhang, W.; Zhang, Z.; Bater. Are dominant plant species more susceptible to leaf-mining insects? A case study at Saihanwula Nature Reserve, China. Ecol. Evol. 2018, 8, 7633–7648. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.; Zhang, W.; Xu, J.; Duffy, K.J.; Guo, Q. Global pattern of plant utilization across different organisms: Does plant apparency or plant phylogeny matter? Ecol. Evol. 2017, 7, 2535–2545. [Google Scholar] [CrossRef]
- Feeny, P. Plant Apparency and Chemical Defense; Springer: New York, NY, USA, 1976. [Google Scholar]
- Claridge, M.F.; Wilson, M.R. Insect herbivore guilds and species-area relationships: Leafminers on British trees. Ecol. Entomol. 1982, 7, 19–30. [Google Scholar] [CrossRef]
- Sato, H. Differential resource utilization and co-occurrence of leaf miners on oak (Quercus dentata). Ecol. Entomol. 1991, 16, 105–114. [Google Scholar] [CrossRef]
- Nakamura, T.; Hattori, K.; Ishida, T.A.; Sato, H.; Kimura, M.T. Population dynamics of leafminers on a deciduous oak Quercus dentata. Acta Oecologica 2008, 34, 259–265. [Google Scholar] [CrossRef] [Green Version]
- Ishida, T.A.; Hattori, K.; Kimura, M.T. Abundance of leafminers and leaf area loss by chewing herbivores in hybrids between Quercus crispula and Quercus dentata. Can. J. Res. 2004, 34, 2501–2507. [Google Scholar] [CrossRef]
- Opler, P.A.; Davis, D.R. The Leaf Mining Moths of the Genus Cameraria Associated with Fagaceae in California (Lepidoptera: Gracillariidae); Smithsonian Institution Press: Washington, DC, USA, 1981. [Google Scholar]
- Chen, D.; Zhang, X.; Kang, H.; Sun, X.; Yin, S.; Du, H.; Yamanaka, N.; Gapare, W.; Wu, H.X.; Liu, C. Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: Multiple glacial refugia and Mainland-migrated island populations. PLoS ONE 2012, 7, e47268. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.; Zhang, W.; Huang, Y. Chinese Cork Oak; China Forestry Publishing House: Beijing, China, 2009. [Google Scholar]
- Wang, X.F.; Liu, J.F.; Gao, W.Q.; Deng, Y.P.; Ni, Y.Y.; Xiao, Y.H.; Kang, F.F.; Wang, Q.; Lei, J.P.; Jiang, Z.P. Defense pattern of Chinese cork oak across latitudinal gradients: Influences of ontogeny, herbivory, climate and soil nutrients. Sci. Rep. 2016, 6, 27269. [Google Scholar] [CrossRef]
- Wu, L.; Knag, H.; Zhuang, h.; Liu, C. Variations of Quercus variabilis leaf traits in relation to climatic factors at regional scale. Chin. J. Ecol. 2010, 29, 2309–2316. [Google Scholar] [CrossRef]
- Xu, J.; Dai, X.; Liao, C.; DiSkus, A.; Stonis, J.R. Discovery of Ulmaceae-feeding Tischeriidae (Lepidoptera, Tischerioidea), Tischeria ulmella sp. nov., and the first report of the Quercus-feeding T. naraensis Sato in China. Zootaxa 2018, 4399, 361–370. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Peng, C.; Yang, B.; Song, H.; Li, Q.; Jiang, L.; Wei, G.; Wang, K.; Wang, H.; Liu, S.; et al. Contrasting soil bacterial community, diversity, and function in two forests in China. Front. Microbiol. 2018, 9, 1693. [Google Scholar] [CrossRef]
- Shi, Z.; Liu, S.; Wang, Z. The charcteristics of flora of seed plants in Baotianman. Acta Bot. Boreali-Occident. Sin. 1996, 16, 329–335. [Google Scholar]
- Du, B.; Ji, H.; Peng, C.; Liu, X.; Liu, C. Altitudinal patterns of leaf stoichiometry and nutrient resorption in Quercus variabilis in the Baotianman Mountains, China. Plant Soil 2016, 413, 193–202. [Google Scholar] [CrossRef]
- Zhang, J.L.; Liu, S.R.; Liu, C.J.; Wang, H.; Luan, J.W.; Liu, X.J.; Guo, X.W.; Niu, B.L. Soil bacterial and fungal richness and network exhibit different responses to long-term throughfall reduction in a warm-temperate oak forest. Forests 2021, 12, 165. [Google Scholar] [CrossRef]
- Jia, H.R.; Chen, Y.; Wang, X.Y.; Li, P.K.; Yuan, Z.L.; Ye, Y.Z. The relationships among topographically-driven habitats, dominant species and vertical layers in temperate forest in China. Russ. J. Ecol. 2019, 50, 172–186. [Google Scholar] [CrossRef]
- Wei, H.; Peng, C.H.; Liu, S.R.; Liu, X.J.; Li, P.; Song, H.X.; Yuan, M.S.; Wang, M. Variation in soil methane fluxes and comparison between two forests in China. Forests 2018, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Shi, Z. Plant community diversity in Baotianman National Reserve, Henan Province. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, 1998. [Google Scholar]
- Zhu, X.; Zhang, M.; Duan, W.; Pan, Y. Study on space characteristics of biodiversity in Baotianman Natural Reserve, Neixiang County. J. Henan For. Sci. Technol. 1999, 19, 10–12+14. [Google Scholar]
- Wu, M.; Liu, Y.; Yang, Y.; Li, Z. Study on niche of main population of Quercus variabilis (Fagaceae) forest in Henan province. Acta Bot. Boreali-Occident. Sin. 1999, 19, 511–518. [Google Scholar]
- Duan, R.; Xiao, W. Community characteristics of Quercus variabilis forest and species diversity in Baotianman, Henan Province. J. Plant Resour. Environ. 1998, 7, 8–13. [Google Scholar]
- QGIS.org. QGIS Geographic Information System; QGIS Association: Beaverton, OR, USA, 2022. [Google Scholar]
- Spencer, K.A.; Steyskal, G.C. Manual of the Agromyzidae (Diptera) of the United States; CABI: Wallingford, UK, 1986. [Google Scholar]
- Dai, X.H.; Xu, J.S.; Ding, X.L. Circular distribution pattern of plant modulars and endophagous herbivory within tree crowns: The impact of roadside light conditions. J. Insect Sci. 2013, 13, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, M.W.; Welter, S.C.; Toscano, N.C.; Ting, P.; Trumble, J.T. Reduction of tomato leaflet photosynthesis rates by mining activity of Liriomyza sativae (Diptera: Agromyzidae). J. Econ. Entomol. 1983, 76, 1061–1063. [Google Scholar] [CrossRef]
- Parrella, M.P.; Jones, V.P.; Youngman, R.R.; Lebeck, L.M. Effect of leaf mining and leaf stippling of Liriomyza spp. on photosynthetic rates of Chrysanthemum. Ann. Entomol. Soc. Am. 1985, 78, 90–93. [Google Scholar] [CrossRef]
- Raimondo, F.; Trifilo, P.; Gullo, M.A. Does citrus leaf miner impair hydraulics and fitness of citrus host plants? Tree Physiol. 2013, 33, 1319–1327. [Google Scholar] [CrossRef]
- Li, D. hillR: Taxonomic, functional, and phylogenetic diversity and similarity through Hill Numbers. J. Open Source Softw. 2018, 3, 1041. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef] [Green Version]
- Dai, X.H.; Chen, C.F.; Li, Z.Y.; Wang, X.X. Taxonomic, phylogenetic, and functional diversity of ferns at three differently disturbed sites in Longnan County, China. Diversity 2020, 12, 135. [Google Scholar] [CrossRef] [Green Version]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 2019, 35, 526–528. [Google Scholar] [CrossRef]
- Chao, A.; Chiu, C.H.; Jost, L. Phylogenetic diversity measures based on Hill numbers. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 3599–3609. [Google Scholar] [CrossRef]
- Faith, D.P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. 1992, 61, 1–10. [Google Scholar] [CrossRef]
- Guiasu, R.C.; Guiasu, S. The weighted Gini-Simpson index: Revitalizing an old index of biodiversity. Int. J. Ecol. 2012, 2012, 478728. [Google Scholar] [CrossRef]
- Laliberté, E.; Legendre, P.; Shipley, B. FD: Measuring Functional Diversity from Multiple Traits, and Other Tools for Functional Ecology. Available online: https://cran.r-project.org/web/packages/FD/index.html (accessed on 1 December 2022).
- Laliberte, E.; Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 2010, 91, 299–305. [Google Scholar] [CrossRef]
- Chiu, C.H.; Chao, A. Distance-based functional diversity measures and their decomposition: A framework based on Hill numbers. PLoS ONE 2014, 9, e100014. [Google Scholar] [CrossRef]
- Walker, B.; Kinzig, A.; Langridge, J. Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 1999, 2, 95–113. [Google Scholar] [CrossRef]
- Guiasu, R.C.; Guiasu, S. The weighted quadratic index of biodiversity for pairs of species: A generalization of Rao’s index. Nat. Sci. 2011, 3, 795–801. [Google Scholar] [CrossRef] [Green Version]
- Muggeo, V.M. Estimating regression models with unknown break-points. Stat. Med. 2003, 22, 3055–3071. [Google Scholar] [CrossRef]
- Muggeo, V.M.R. Segmented: An R package to fit regression models with boken-line relationships. R. News 2008, 8, 20–25. [Google Scholar]
- Stasinopoulos, D.M.; Rigby, R.A. Detecting break points in generalised linear models. Comput. Stat. Data Anal. 1992, 13, 461–471. [Google Scholar] [CrossRef]
- Muggeo, V.M.R. Testing with a nuisance parameter present only under the alternative: A score-based approach with application to segmented modelling. J. Stat. Comput. Simul. 2016, 86, 3059–3067. [Google Scholar] [CrossRef]
- Muggeo, V.M.R. Interval estimation for the breakpoint in segmented regression: A smoothed score-based approach. Aust. N. Zeal. J. Stat. 2017, 59, 311–322. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Yu, X.D.; Lu, L.; Luo, T.H.; Zhou, H.Z. Elevational gradient in species richness pattern of epigaeic beetles and underlying mechanisms at east slope of Balang Mountain in southwestern China. PLoS ONE 2013, 8, e69177. [Google Scholar] [CrossRef]
- Sanders, N.J.; Lessard, J.-P.; Fitzpatrick, M.C.; Dunn, R.R. Temperature, but not productivity or geometry, predicts elevational diversity gradients in ants across spatial grains. Glob. Ecol. Biogeogr. 2007, 16, 640–649. [Google Scholar] [CrossRef]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef] [Green Version]
- Rangel, T.F.; Diniz-Filho, J.A.F.; Bini, L.M. SAM: A comprehensive application for Spatial Analysis in Macroecology. Ecography 2010, 33, 46–50. [Google Scholar] [CrossRef]
- Schnute, J.T.; Boers, N.; Haigh, R. PBSmapping 2.70.3: User’s Guide Revised from Canadian Technical Report of Fisheries and Aquatic Sciences; Fisheries and Oceans Canada: Nanaimo, BC, Canada, 2017; pp. 1–43. [Google Scholar]
- Vallejos, R.; Osorio, F.; Bevilacqua, M. Spatial Relationships Between Two Georeferenced Variables: With Applications in R; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Clifford, P.; Richardson, S.; Hemon, D. Assessing the significance of the correlation between two spatial processes. Biometrics 1989, 45, 123–134. [Google Scholar] [CrossRef]
- Dutilleul, P. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 1993, 49, 305–314. [Google Scholar] [CrossRef]
- Warnes, G.R.; Bolker, B.; Gorjanc, G.; Grothendieck, G.; Korosec, A.; Lumley, T.; MacQueen, D.; Magnusson, A.; Rogers, J. gdata: Various R Programming Tools for Data Manipulation. Available online: https://cran.r-project.org/web/packages/gdata/index.html (accessed on 1 December 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, Inc.: Boston, MA, USA, 2022. [Google Scholar]
- Montaño-Centellas, F.A.; McCain, C.; Loiselle, B.A.; Grytnes, J.A. Using functional and phylogenetic diversity to infer avian community assembly along elevational gradients. Glob. Ecol. Biogeogr. 2019, 29, 232–245. [Google Scholar] [CrossRef]
- McCain, C.M. Elevational gradients in diversity of small mammals. Ecology 2005, 86, 366–372. [Google Scholar] [CrossRef] [Green Version]
- McCain, C.M.; Grytnes, J.A. Elevational Gradients in Species Richness. In Encyclopedia of Life Sciences (ELS); John Wiley & Sons, Ltd.: Chichester, UK, 2010. [Google Scholar]
- McCain, C.M. Global analysis of reptile elevational diversity. Glob. Ecol. Biogeogr. 2010, 19, 541–553. [Google Scholar] [CrossRef]
- Zou, Y.; Sang, W.; Hausmann, A.; Axmacher, J.C. High phylogenetic diversity is preserved in species-poor high-elevation temperate moth assemblages. Sci. Rep. 2016, 6, 23045. [Google Scholar] [CrossRef] [Green Version]
- Beck, J.; Chey, V.K. Explaining the elevational diversity pattern of geometrid moths from Borneo: A test of five hypotheses. J. Biogeogr. 2008, 35, 1452–1464. [Google Scholar] [CrossRef]
- Szewczyk, T.; McCain, C.M. A systematic review of global drivers of ant elevational diversity. PLoS ONE 2016, 11, e0155404. [Google Scholar] [CrossRef] [Green Version]
- Beck, J.; McCain, C.M.; Axmacher, J.C.; Ashton, L.A.; Bärtschi, F.; Brehm, G.; Choi, S.W.; Cizek, O.; Colwell, R.K.; Fiedler, K.; et al. Elevational species richness gradients in a hyperdiverse insect taxon: A global meta-study on geometrid moths. Glob. Ecol. Biogeogr. 2016, 26, 412–424. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Kelt, D.A.; Sun, Z.; Liu, H.; Hu, L.; Ren, H.; Wen, J. Global variation in elevational diversity patterns. Sci. Rep. 2013, 3, 3007. [Google Scholar] [CrossRef] [Green Version]
- He, X.C.; DuBay, S.; Zhangshang, M.; Cheng, Y.W.; Liu, Z.W.; Li, D.R.; Ran, J.H.; Wu, Y.J. Seasonal elevational patterns and the underlying mechanisms of avian diversity and community structure on the eastern slope of Mt. Gongga. Divers. Distrib. 2022, 28, 2459–2474. [Google Scholar] [CrossRef]
- Guariento, E.; Strutzenberger, P.; Truxa, C.; Fiedler, K. The trinity of ecological contrasts: A case study on rich insect assemblages by means of species, functional and phylogenetic diversity measures. BMC Ecol. 2020, 20, 29. [Google Scholar] [CrossRef] [PubMed]
Transect | Elevational Range (m) | Number of Sample Trees | Total Number of Leaf Mine Types | Mean Number of Leaf Mine Types per Tree (M) | Standard Deviation of M |
---|---|---|---|---|---|
Baotianman Scenic Area | 600–1350 | 61 | 9 | 4.5 | 1.1 |
Houyemiao, Qiliping County | 300–600 | 28 | 9 | 4.6 | 1.4 |
Total | 300–1350 | 89 | 10 | 4.6 | 1.2 |
Diversity Category (qD) | q Value | p Value | Break Point (m) |
---|---|---|---|
0 | 0.276 | - | |
Taxonomic Hill numbers | 1 | 0.072 | 875 |
2 | 0.006 | 875 | |
0 | 0.326 | - | |
Phylogenetic Hill numbers | 1 | 0.002 | 875 |
2 | 0.000 | 875 | |
0 | 0.119 | - | |
Functional Hill numbers | 1 | 0.910 | - |
2 | 0.157 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhong, M.; Cui, L.; Xu, J.; Dai, X.; Liu, X. Elevational Pattern of Leaf Mine Diversity on Quercus variabilis Blume at Baotianman, Henan, China. Insects 2023, 14, 7. https://doi.org/10.3390/insects14010007
Chen X, Zhong M, Cui L, Xu J, Dai X, Liu X. Elevational Pattern of Leaf Mine Diversity on Quercus variabilis Blume at Baotianman, Henan, China. Insects. 2023; 14(1):7. https://doi.org/10.3390/insects14010007
Chicago/Turabian StyleChen, Xiaona, Miao Zhong, Lixing Cui, Jiasheng Xu, Xiaohua Dai, and Xiaojing Liu. 2023. "Elevational Pattern of Leaf Mine Diversity on Quercus variabilis Blume at Baotianman, Henan, China" Insects 14, no. 1: 7. https://doi.org/10.3390/insects14010007
APA StyleChen, X., Zhong, M., Cui, L., Xu, J., Dai, X., & Liu, X. (2023). Elevational Pattern of Leaf Mine Diversity on Quercus variabilis Blume at Baotianman, Henan, China. Insects, 14(1), 7. https://doi.org/10.3390/insects14010007