A Review of Commercial Metarhizium- and Beauveria-Based Biopesticides for the Biological Control of Ticks in the USA
Abstract
:Simple Summary
Abstract
1. Introduction
2. Metarhizium-Based Formulations
3. Beauveria-Based Formulations
4. Factors to Consider
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sonenshine, D.E.; Roe, R.M. Overview: Ticks, people, and animals. In Biology of Ticks; Sonenshine, D.E., Roe, R.M., Eds.; Oxford University Press: New York, NY, USA, 2014; Volume 1, pp. 3–16. [Google Scholar]
- Beys-da-Silva, W.O.; Rosa, R.L.; Berger, M.; Coutinho-Rodrigues, C.J.B.; Vainstein, M.H.; Schrank, A.; Bittencourt, V.R.E.P.; Santi, L. Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp. Parasitol. 2002, 208, 107812. [Google Scholar] [CrossRef] [PubMed]
- Mac, S.; da Silva, S.R.; Sander, B. The economic burden of Lyme disease and the cost-effectiveness of Lyme disease interventions: A scoping review. PLoS ONE 2019, 14, e0210280. [Google Scholar] [CrossRef] [PubMed]
- Eisen, L.; Stafford, K.C. Barriers to effective tick management and tick-bite prevention in the United States (Acari: Ixodidae). J. Med. Entomol. 2021, 58, 588–1600. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Díaz, M.A.; Fernández-Salas, A. Entomopathogenic fungi for tick control in cattle livestock from Mexico. Front. Fungal Biol. 2021, 2, 657694. [Google Scholar] [CrossRef]
- Burtis, J.C.; Poggi, J.D.; Payne, B.; Campbell, S.R.; Harrington, L.C. Susceptibility of Ixodes scapularis (Acari: Ixodidae) to permethrin under a long-term 4-poster deer treatment area on Shelter Island, NY. J. Med. Entomol. 2021, 58, 1966–1969. [Google Scholar] [CrossRef]
- Eisen, L.; Dolan, M.C. Evidence for personal protective measures to reduce human contact with blacklegged ticks and for environmentally based control methods to suppress host-seeking blacklegged ticks and reduce infection with Lyme disease spirochetes in tick vectors and rodent reservoirs. J. Med. Entomol. 2016, 53, 1063–1092. [Google Scholar] [CrossRef] [Green Version]
- Ginsberg, H.S.; Bargar, T.A.; Hladik, M.L.; Lubelczyk, C. Management of arthropod pathogen vectors in North America: Minimizing adverse effects on pollinators. J. Med. Entomol. 2017, 54, 1463–1475. [Google Scholar] [CrossRef] [Green Version]
- Jordan, R.; Schulze, T. Availability and nature of commercial tick control services in three lyme disease endemic states. J. Med. Entomol. 2020, 57, 807–814. [Google Scholar] [CrossRef]
- Samish, M.; Ginsberg, H.; Glazer, I. Anti-tick biological control agents: Assessment and future perspectives. In Ticks: Biology, Disease and Control; Bowman, A., Nuttall, P., Eds.; Cambridge University Press: Cambridge, UK, 2008; pp. 447–469. [Google Scholar] [CrossRef]
- Fernandes, É.K.K.; Bittencourt, V.R.E.P.; Roberts, D.W. Perspectives on the potential of entomopathogenic fungi in biological control of ticks. Exp. Parasitol. 2012, 130, 300–305. [Google Scholar] [CrossRef]
- Ostfeld, R.S.; Price, A.; Hornbostel, V.L.; Benjamin, M.A.; Keesing, F. Controlling ticks and tick-borne zoonoses with biological and chemical agents. BioScience 2006, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Samish, M.; Ginsberg, H.; Glazer, I. Biological control of ticks. Parasitology 2004, 129, 389–403. [Google Scholar] [CrossRef] [PubMed]
- Faria, M.R.; Wraight, S.P. Mycoinsecticides and mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biol. Control. 2007, 43, 237–256. [Google Scholar] [CrossRef]
- Fischhoff, I.R.; Keesing, F.; Pendleton, J.; DePietro, D.; Teator, M.; Duerr, S.T.K.; Mowry, S.; Pfister, A.; LaDeau, S.L.; Ostfeld, R.S. Assessing effectiveness of recommended residential yard management measures against ticks. J. Med. Entomol. 2019, 56, 1420–1427. [Google Scholar] [CrossRef] [PubMed]
- Mascarin, G.M.; Jaronski, S.T. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 2016, 32, 177. [Google Scholar] [CrossRef] [PubMed]
- Stafford, K.C., III; Williams, S.C.; Molaei, G. Integrated pest management in controlling ticks and tick-associated diseases. J. Integr. Pest Manag. 2017, 8, 28. [Google Scholar] [CrossRef] [Green Version]
- Butt, T.M.; Jackson, C.W.; Magan, N. Fungi as Biocontrol Agents: Progress, Problems and Potential; CAB International: Wallingford, UK, 2001. [Google Scholar]
- Dara, S.K.; Montalva, C.; Barta, M. Microbial control of invasive forest pests with entomopathogenic fungi: A review of the current situation. Insects 2019, 10, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lord, J.C. From Metchnikoff to Monsanto and beyond: The path of microbial control. J. Invertebr. Pathol. 2005, 89, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Maina, U.M.; Galadima, I.B.; Gambo, F.M.; Zakaria, D. A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J. Entomol. Zool. Stud. 2018, 6, 27–32. [Google Scholar]
- Skinner, M.; Parker, B.; Kim, J.S. The role of entomopathogenic fungi in integrated pest management. In Integrated Pest Management: Current Concepts and Ecological Perspective; Abrol, D.P., Ed.; Academic Press: San Diego, CA, USA, 2014; pp. 169–197. [Google Scholar]
- Arthurs, S.; Dara, S.K. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef]
- Samish, M.; Rehacek, J. Pathogens and predators of ticks and their potential in biological control. Annu. Rev. Entomol. 1999, 44, 159–182. [Google Scholar] [CrossRef]
- Benjamin, M.A.; Zhioua, E.; Ostfeld, R.S. Laboratory and field evaluation of the entomopathogenic fungus Metarhizium anisopliae (Deuteromycetes) for controlling questing adult Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2022, 39, 723–728. [Google Scholar] [CrossRef] [PubMed]
- Hornbostel, V.L.; Ostfeld, R.S.; Zhioua, E.; Benjamin, M.A. Sublethal effects of Metarhizium anisopliae (Deuteromycetes) on engorged larval, nymphal, and adult Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2004, 41, 922–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisen, R.J.; Eisen, L. The blacklegged tick, Ixodes scapularis: An increasing public health concern. Trends Parasitol. 2018, 34, 295–309. [Google Scholar] [CrossRef] [PubMed]
- White, A.; Gaff, H. Review: Application of tick control technologies for blacklegged, lone star and American dog ticks. J. Integr. Pest Manag. 2018, 12, 12. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority). Peer review of the pesticide risk assessment of the active substance Metarhizium brunneum BIPESCO 5/F52. EFSA J. 2010, 18, 6274. [Google Scholar] [CrossRef]
- Fischhoff, I.R.; Keesing, F.; Ostfeld, R.S. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods. PLoS ONE 2017, 12, e0187675. [Google Scholar] [CrossRef] [Green Version]
- USEPA (United State Environmental Protection Agency). Biopesticides Registration Action Document Metarhizium anisopliae Strain F52. Washington, DC, USA. 2003. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/decision_PC-029056_18-Jun-03.pdf (accessed on 5 January 2022).
- Zimmerman, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci. Technol. 2007, 17, 879–920. [Google Scholar] [CrossRef]
- Stafford, K.C., III. Tick Management Handbook: An Integrated Guide for Homeowners, Pest Control Operators, and Public Health Officials for the Prevention of Tick-Associated Disease, Revised ed.; The Connecticut Agricultural Experiment Station: New Haven, CT, USA, 2007. Available online: https://portal.ct.gov/-/media/CAES/DOCUMENTS/Publications/Bulletins/b1010pdf.pdf (accessed on 10 January 2022).
- Hornbostel, V.L.; Zhioua, E.; Benjamin, M.A.; Ginsberg, H.; Ostfeld, R.S. Pathogenicity of Metarhizium anisopliae (Deuteromycetes) and permethrin to Ixodes scapularis (Acari: Ixodidae) nymphs. Exp. Appl. Acarol. 2005, 35, 301–316. [Google Scholar] [CrossRef]
- Debow, J.; Blouin, J.; Rosenblatt, E.; Alexander, C.; Gieder, K.; Cottrell, W.; Murdoch, J.; Donovan, T. Effects of winter ticks and internal parasites on moose survival in Vermont, USA. J. Wildl. Manag. 2021, 85, 1423–1439. [Google Scholar] [CrossRef]
- Hays, S.R.; Teel, P.D.; Heath, D.; Starns, N.G.; Moen, R.; Tolleson, D.R. Tick burden observed on cattle and sheep during winter season on the Edwards Plateau of Texas. J. Anim. Sci. 2019, 97, 53–54. [Google Scholar] [CrossRef]
- Sundstrom, K.D.; Lineberry, M.W.; Grant, A.N.; Duncan, K.T.; Ientile, M.M.; Little, S.E. Equine attachment site preferences and seasonality of common North American ticks: Amblyomma americanum, Dermacentor albipictus, and Ixodes scapularis. Parasit. Vectors. 2021, 14, 404. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.F.; Parker, B.L.; Davari, A.; Lee, M.R.; Kim, J.S.; Skinner, M. Pathogenicity of Metarhizium anisopliae and Metarhizium brunneum isolates and efficacy of Met52G against winter tick larvae, 2019. Arthropod Manag. Tests 2020, 45, tsaa100. [Google Scholar] [CrossRef]
- Hornbostel, V.L.; Ostfeld, R.S.; Benjamin, M.A. Effectiveness of Metarhizium anisopliae (Deuteromycetes) against Ixodes scapularis (Acari: Ixodidae) engorging on Peromnyscus leucopus. J. Vector Ecol. 2005, 30, 91–101. [Google Scholar]
- Bharadwaj, A.; Stafford, K.C., III. Susceptibility of Ixodes scapularis (Acari: Ixodidae) to Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) using three exposure assays in the laboratory. J. Med. Entomol. 2012, 105, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Dyer, M.C.; Requintina, M.D.; Berger, K.A.; Puggioni, G.; Mather, T.N. Evaluating the effects of minimal risk natural products for control of the tick, Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2021, 58, 390–397. [Google Scholar] [CrossRef]
- Schulze, T.L.; Jordan, R.A. Synthetic pyrethroid, natural product and entomopathogenic fungal acaricide product formulations for sustained early season suppression of host-seeking Ixodes scapularis (Acari: Ixodidae) and Amblyomma americanum nymphs. J. Med. Entomol. 2021, 58, 814–820. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, A.; Stafford, K.C., III. Evaluation of Metarhizium anisopliae strain F52 (Hypocreales: Clavicipitaceae) for control of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2010, 47, 862–867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stafford, K.C., III; Allan, S.A. Field applications of entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae F52 (Hypocreales: Clavicipitaceae) for the control of Ixodes scapularis (Acari: Ixodidae). J. Med. Entomol. 2010, 47, 1107–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, E.A.H.; Williams, S.C.; Stafford, K.C., III; Linske, M.A.; Molaei, G. Evaluating the effectiveness of an integrated tick management approach on multiple pathogen infection in Ixodes scapularis questing nymphs and larvae parasitizing white-footed mice. Exp. Appl. Acarol. 2020, 80, 127–136. [Google Scholar] [CrossRef]
- Williams, S.C.; Stafford, K.C., III; Molaei, G.; Linske, M.A. Integrated control of nymphal Ixodes scapularis: Effectiveness of white-tailed deer reduction, the entomopathogenic fungus Metarhizium anisopliae, and fipronil-based rodent bait boxes. Vector Borne Zoonotic Dis. 2018, 18, 55–64. [Google Scholar] [CrossRef]
- Williams, S.C.; Little, E.A.H.; Stafford, K.C., III; Molaei, G.; Linske, M.A. Integrated control of juvenile Ixodes scapularis parasitizing Peromyscus leucopus in residential settings in Connecticut, United States. Ticks Tick-Borne Dis. 2018, 9, 1310–1316. [Google Scholar] [CrossRef] [PubMed]
- Bharadwaj, A.; Stafford, K.C., III; Behle, R.W. Efficacy and environmental persistence of nootkatone for the control of the blacklegged tick (Acari: Ixodidae) in residential landscapes. J. Med. Entomol. 2012, 49, 1035–1044. [Google Scholar] [CrossRef] [PubMed]
- Thomas, D.B.; Tidwell, J.P.; Pérez de León, A.A. In vitro efficacy testing of a commercial formulation of the acaropathogenic fungus Metarhizium brunneum Petch (Hypocreales: Clavicipitaceae) strain F52 against the southern cattle fever tick Boophilus microplus Canestrini (Acari: Ixodidae). Subtrop. Agric. Environ. 2017, 68, 1–6. [Google Scholar]
- Yoder, J.A.; Krieger, M.; Oakley, M.; Trotter, J.; Schmelzer, P.; Niksic, A.; Rodell, B.M.; Klever, L.A. Growth characteristics and pathogenic consequences of predominant entomopathogenic Yukon soil fungi Mortierella alpina and Penicillium expansum, and effectiveness of Met52®, against larvae of the winter tick, Dermacentor albipictus. Stud. Fungi 2019, 4, 94–103. [Google Scholar] [CrossRef]
- Yoder, J.A.; Rodell, B.M.; Klever, L.A.; Dobrotka, C.J.; Pekins, P.J. Vertical transmission of the entomopathogenic soil fungus Scopulariopsis brevicaulis as a contaminant of eggs in the winter tick, Dermacentor albipictus, collected from calf moose (New Hampshire, USA). Mycology 2019, 10, 174–181. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, C.F.; Parker, B.L.; Davari, A.; Lee, M.R.; Kim, J.S.; Skinner, M. Evaluation of spray applications of Metarhizium anisopliae, Metarhizium brunneum and Beauveria bassiana against larval winter ticks, Dermacentor albipictus. Exp. Appl. Acarol. 2020, 82, 559–570. [Google Scholar] [CrossRef]
- Szczepańska, A.; Dorota, K.; Plewa-Tutaj, K.; Dagmara, D.; Guz-Regner, K. Sensitivity of Ixodes ricinus (L., 1758) and Dermacentor reticulatus (Fabr., 1794) ticks to entomopathogenic fungi isolates: Preliminary study. Parasitol. Res. 2020, 119, 3857–3861. [Google Scholar] [CrossRef]
- Weeks, E.N.I.; Allan, S.A.; Gezan, S.A.; Kaufman, P.E. Auto-dissemination of commercially available fungal pathogens in a laboratory assay for management of the brown dog tick Rhipicephalus sanguineus. Med. Vet. Entomol. 2020, 34, 184–191. [Google Scholar] [CrossRef]
- Keesing, F.; Ostfeld, O. The tick project: Testing environmental methods of preventing tick-borne diseases. Trends Parasitol. 2018, 34, 447–450. [Google Scholar] [CrossRef]
- Linske, M.A.; Williams, S.C.; Stafford, K.C., III; Li, A.Y. Integrated tick management in Guilford, CT: Fipronil-based rodent-targeted bait box deployment configuration and Peromyscus leucopus (Rodentia: Cricetidae) abundance drive reduction in tick burdens. J. Med. Entomol. 2021, tjab200. [Google Scholar] [CrossRef]
- Samish, M.; Rot, A.; Ment, D.; Barel, S.; Glazer, I.; Gindin, G. Efficacy of the entomopathogenic fungus Metarhizium brunneum in controlling the tick Rhipicephalus annulatus under field conditions. Vet. Parasitol. 2014, 206, 258–266. [Google Scholar] [CrossRef] [PubMed]
- Marciano, A.F.; Mascarin, G.M.; Franco, R.F.F.; Golo, P.S.; Jaronski, S.T.; Fernandes, É.K.K.; Bittencourt, V.R.E.P. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Sci. Rep. 2021, 11, 4972. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, S.C.; Humbert, P.; Patel, A.V. Chitin increases drying survival of encapsulated Metarhizium pemphigi blastospores for Ixodes ricinus control. Ticks Tick-Borne Dis. 2021, 11, 101537. [Google Scholar] [CrossRef] [PubMed]
- Santos, T.R.; da Paixão, F.R.S.; Catão, A.M.L.; Muniz, E.R.; Ribeiro-Silva, C.S.; Taveira, S.F.; Luz, C.; Mascarin, G.M.; Fernandes, É.K.K.; Marreto, R.N. Inorganic pellets containing microsclerotia of Metarhizium anisopliae: A new technological platform for the biological control of the cattle tick Rhipicephalus microplus. Appl. Microbiol. Biotechnol. 2021, 105, 5001–5012. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, C.F.; Parker, B.L.; Kim, J.S.; Skinner, M. Effectiveness of granular formulations of Metarhizium anisopliae and Metarhizium brunneum (Hypocreales: Clavicipitaceae) on off-host larvae of Dermacentor albipictus (Acari: Ixodidae). Biocontrol Sci. Technol. 2021, 31, 113–1127. [Google Scholar] [CrossRef]
- Jackson, M.A.; Jaronski, S.T. Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol. Res. 2009, 113, 842–850. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.A.; Dunlap, C.A.; Jaronski, S.T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 2010, 55, 129–145. [Google Scholar] [CrossRef]
- Behle, R.W.; Jackson, M.A.; Flor-weiler, L.B. Efficacy of a granular formulation containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) microsclerotia against nymphs of Ixodes scapularis (Acari: Ixoididae). J. Econ. Entomol. 2013, 106, 57–63. [Google Scholar] [CrossRef]
- Zimmerman, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci. Technol. 2007, 17, 553–596. [Google Scholar] [CrossRef]
- Cradock, K.R.; Needham, G.R. Physiological effects upon Amblyomma americanum (Acari: Ixodidae) infected with Beauveria bassiana (Ascomycota: Hypocreales). Exp. Appl. Acarol. 2011, 53, 361–369. [Google Scholar] [CrossRef]
- Cradock, K.R.; Needham, G.R. Beauveria bassiana (Ascomycota: Hypocreales) as a management agent for free-living Amblyomma americanum (Acari: Ixodidae) in Ohio. Exp. Appl. Acarol. 2011, 53, 57–62. [Google Scholar] [CrossRef] [PubMed]
- González, J.; Valcárce, F.; Pérez-Sánchez, J.L.; Tercero-Jaime, J.M.; Cutuli, M.T.; Olmeda, A.S. Control of Hyalomma lusitanicum (Acari: Ixodidade) ticks infesting Oryctolagus cuniculus (Lagomorpha: Leporidae) using the entomopathogenic fungus Beauveria bassiana (Hyocreales: Clavicipitaceae) in field conditions. J. Med. Entomol. 2016, 53, 1396–1402. [Google Scholar] [CrossRef] [PubMed]
- Eiden, A.L.; Kaufman, P.E.; Ol, F.M.; Allan, S.A.; Miller, R.J. Detection of permethrin resistance and fipronil tolerance in Rhipicephalus sanguineus (Acari: Ixodidae) in the United States. J. Med. Entomol. 2015, 52, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Ginsberg, H.S. Tick control. In Biology of Ticks; Sonenshine, D.E., Roe, R.M., Eds.; Oxford University Press: New York, NY, USA, 2014; Volume 2, pp. 409–444. [Google Scholar]
- Jaronski, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl 2010, 55, 159–185. [Google Scholar] [CrossRef]
- Wu, S.; Toews, M.D.; Oliveira-Hofman, C.; Behle, R.W.; Simmons, A.M.; Shapiro-Ilan, D.I. Environmental tolerance of entomopathogenic fungi: A new strain of Cordyceps javanica isolated from a whitefly epizootic versus commercial fungal strains. Insects 2020, 11, 711. [Google Scholar] [CrossRef]
- Schulze, T.L.; Jordan, R.A. Early season applications of bifenthrin suppress host-seeking Ixodes scapularis and Amblyomma americanum (Acari: Ixodidae) nymphs. J. Med. Entomol. 2020, 57, 797–800. [Google Scholar] [CrossRef]
- Dubie, T.R.; Turner, J.; Noden, B.H. Questing behavior and analysis of tick-borne bacteria in Ixodes scapularis (Acari: Ixodidae) in Oklahoma. J. Med. Entomol. 2018, 55, 1569–1574. [Google Scholar] [CrossRef] [Green Version]
- Gaff, H.D.; White, A.; Leas, K.; Kelman, P.; Squire, J.C.; Livingston, D.L.; Sullivan, G.A.; Baker, E.W.; Sonenshine, D.E. TickBot: A novel robotic device for controlling tick populations in the natural environment. Ticks Tick Borne Dis. 2015, 6, 146–151. [Google Scholar] [CrossRef]
- Maranga, R.O.; Hassanali, A.; Kaaya, G.P.; Mueke, J.M. Performance of a prototype baited-trap in attracting and infecting the tick Amblyomma variegatum (Acari: Ixodidae) in field experiments. Exp. Appl. Acarol. 2006, 38, 211–218. [Google Scholar] [CrossRef]
- Ginsberg, H.S. Integrated pest management and allocation of control efforts for vector-borne diseases. J. Vector Ecol. 2001, 26, 32–38. [Google Scholar]
- Anderson, J.F.; Magnarelli, L.A. The biology of ticks. Infect. Dis. Clin. Am. 2008, 22, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Gould, L.H.; Nelson, R.S.; Griffith, K.S.; Hayes, E.B.; Piesman, J.; Mead, P.S.; Cartter, M.L. Knowledge, attitudes, and behaviors regarding Lyme disease prevention among Connecticut residents, 1999–2004. Vector Borne Zoonotic Dis. 2008, 8, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Niesobecki, S.; Rutz, H.; Niccolai, L.; Hook, S.; Feldman, K.; Hinckley, A. Willingness to pay for select tick-borne disease prevention measures in endemic areas. J. Public Health Manag. Pract. 2022, 28, E37–E42. [Google Scholar] [CrossRef] [PubMed]
- Jaronski, S.T.; Mascarin, G.M. Mass production of fungal entomopathogens. In Microbial Control of Insect and Mite Pests: From Theory to Practice; Lacey, L.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 141–154. [Google Scholar]
- de la Cruz Quiroz, R.; Cruz Maldonado, J.J.; Alanis, M.R.; Torres, J.A.; Saldivar, R.P. Fungi-based biopesticides: Shelf-life preservation technologies used in commercial products. J. Pest Sci. 2019, 92, 1003–1015. [Google Scholar] [CrossRef]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Dantas-Torres, F. Climate change, biodiversity, ticks and tick-borne diseases: The butterfly effect. Int. J. Parasitol. Parasites. Wildl. 2015, 28, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Eisen, L. Stemming the rising tide of human-biting ticks and tickborne diseases, United States. Emerg. Infect. Dis. 2020, 26, 641–647. [Google Scholar] [CrossRef]
- Hofmeister, E.; Hemert, C.V. The effects of climate change on disease spread in wildlife. In Miller-Fowler’s Zoo and Wild Animal Medicine Current Therapy, 1st ed.; Miller, E., Lamberski, N., Calle, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; Volume 9, pp. 247–254. [Google Scholar] [CrossRef]
- Ogden, N.H.; Beard, C.B.; Ginsberg, H.S.; Tsao, J.I. Possible effects of climate change on ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Entomol. 2021, 58, 1536–1545. [Google Scholar] [CrossRef]
- Frederiks, C.; Wesseler, J.H. A comparison of the EU and US regulatory frameworks for the active substance registration of microbial biological control agents. Pest Manag. Sci. 2019, 75, 87–103. [Google Scholar] [CrossRef] [Green Version]
- Ravensberg, W.J. A Roadmap to the Successful Development and Commercialization of Microbial Pest Control Products for Control of Arthropods; Springer: Heidelberg, Germany; Zoetermeer, The Netherlands, 2011. [Google Scholar]
- Zaki, O.; Weekers, F.; Thonart, P.; Tesch, E.; Kuenemann, P.; Jacques, P. Limiting factors of mycopesticide development. Biol. Control 2020, 144, 104220. [Google Scholar] [CrossRef]
Product/Strain | Life a Stage | Method | Exposure Rate and Time b | Experiment Duration | Treatment Effect c | Reference |
---|---|---|---|---|---|---|
Bio-Blast Biological Termiticide™ (strain ESC1) | A (u) | Spray | 4 × 106–9 c/mL | 4 weeks | 96% mortality at 109 conidia/mL, LC50 = 4 × 107 conidia/mL | [25] |
N (u) | Spray | 106–9 c/mL; 2.8 mL | 4 weeks | 70% mortality at 109 conidia/mL, LC50 = 107 conidia/mL | [34] | |
N (u) | Topical with chemical pesticide | Permethrin (Bonide®) (0.1–1 ppm) at 2 µL then 107–9 c/mL at 10 µL 1 min later | 23 days | Mortality up to ~80% when ticks treated with 0.05 ppm permethrin and fungi at 108 c/mL | [34] | |
L, N | Treated cotton batting (nesting material) | 108 c/mL | 72 h | Mortality of ticks dropped from P. leucopus was 75% in treated nest treatment | [39] | |
Tick-Ex® EC (strain F52) | A (u) | Spray | 2.6 × 102–6 c/cm2 (3, 30, or 300 min) | 4 weeks | 8.3–100% mortality (3 and 30 min exposures); 0–100% (300 min exposure) | [40] |
N (u) | Spray | 2.6 × 103–5 c/cm2 (3 or 30 min) | 4 weeks | 10–14.2% mortality (3 min exposure); 6.1–70.8% mortality (30 min exposure) | [40] | |
A (u) | Immersion | 7.4 × 105–9 c/mL (30 s) | 4 weeks | 8.3–100% mortality | [40] | |
A (u) | Treated surface | 2.6 × 105–8 c/cm2 (3, 30, or 300 min) | 4 weeks | 8.3–100% mortality (3 min exposure); 0–100% (30 min exposure); 16.7–100% (300 min exposure) | [40] | |
N (u) | Treated surface | 2.6 × 103–6 c/cm2 (3 or 30 min) | 4 weeks | 9.2–100% mortality (3 min exposure); 0–100% (30 min exposure) | [40] | |
Tick-Ex®G (strain F52) | A (u) | Broadcast | 2.6 × 105–7 c/cm2 (3, 30, or 300 min) | 4 weeks | 27.8–81.9% mortality | [40] |
N (u) | Broadcast | 2.6 × 105–7 c/cm2 (3, 30, or 300 min) | 4 weeks | 30.2–81.5% mortality | [40] |
Product/Strain | Life a Stage | Method | Exposure Rate b | Experiment Duration | Treatment Effect c | Reference |
---|---|---|---|---|---|---|
Bio-Blast Biological Termiticide™ (strain ESC1) | A (u) | Spray | 4 × 109 c/mL; 1–1.5 L/100 m2 | 6 weeks | 53% mortality among ticks collected from treated plots | [25] |
A (u) | Spray | 108 c/mL; 1–1.5 L/100 m2 (2×) | 3 weeks | 52% mortality among adults collected from field, 36% control in the field | [26] | |
N | Spray | 109 c/mL; 1–1.5 L/100 m2 | 4 weeks | 6–36% control in the field; 20–36% mortality in lab from field collected ticks post treatment | [34] | |
L | Treated cotton batting (nesting material) | 10 mL of 108 c/mL (×10) at density of 9 boxes/ha | 5 months-1 year | No significance difference in nymphal densities between areas with treated nest boxes and control; no effect on proportion of nymphs infected with B. burgdorferi | [39] | |
Met52®EC (strain F52) | N (u) | Spray | 0.96 mL/m2 (year 1) 1.02 mL/ m2 (year 2) per arena | 1 month; 2 years | 10% knockdown control; 0% residual control (year 1), 41.3% and 29.8%, control respectively (year 2) | [41] |
N | Spray | 10.6 mL/100 m2 (×3) | 2.5 months | Target 90% suppression threshold inconsistently met | [42] | |
Tick-Ex® EC (strain F52) | N | Spray | 3.2 × 105 and 1.3 × 106 c/cm2 (×2) | 3 and 5 weeks | 87.1 and 96.1% fewer ticks collected from low- and high-rate sites, respectively, after 3 weeks, 53.2 and 73.8% reduction after 5 weeks, 36.4% nymphs collected infected with fungus | [43] |
Product/Strain | Life a Stage | Method | Exposure Rate b | Experiment Duration c | Treatment Effect d | Reference |
---|---|---|---|---|---|---|
Beauveria bassiana | ||||||
BotaniGard® ES (strain GHA) | N | Spray + wood chip barrier + lawn perimeter debris removal | 9.9 × 1011 c/100 m2 (×2) | 3 months; 2 years | Without wood chip barrier: 74.5% (year 1) and 55.2% (year 2) tick reduction; with barrier: 88.9% (year 1) 55.1% (year 2) tick reduction | [44] |
Naturalis® T&O (strain ATCC 74040) | N | Spray + wood chip barrier + lawn perimeter debris removal | 2.2 × 109 c/100 m2 (×2) | 3 months; 2 years | Without wood chip barrier: 83% (year 1) and 38% (year 2) tick reduction; with barrier: 90% (year 1) 56% (year 2) tick reduction | [44] |
Metarhizium brunneum | ||||||
Met52®EC (strain F52) | L, N | Spray + deer reduction + fipronil bait box | 5.5 × 109 cfu/g 0.63–0.96 mL/m2 (×2) | 3 months; 2 years | 53% reduction in the potential to encounter a questing nymph infected with a pathogen in fungus/bait box treatment; 90% reduction in immature ticks parasitizing P. leucopus in the three combined treatments, 93% reduction in fungus/bait box treatment | [45] |
N | Spray + deer reduction + fipronil bait box | 5.5 × 109 cfu/g 0.63–0.96 mL/m2 (×2) | 3 months; 4 years | 78–95% reduction in questing nymphs in fungus/bait box treatment each year; 66% reduction in the potential to encounter a pathogen-infected questing nymph observed in one year | [46] | |
L | Spray + deer reduction + fipronil bait box | 5.5 × 109 cfu/g 0.63–0.96 mL/m2 (×2) | 3 months; 3 years | 94% reduction in pathogen-infected larvae parasitizing P. leucopus in fungus/bait box treatment; 85% reduction in the three combined treatments | [47] | |
Tick-Ex® EC (strain F52) | N | Spray with botanical pesticide | 2.8 × 109 c/m2 with 0.05% nootkatone | 3 months; 3 years | 50% control for one week and no control for the remainder of the season | [48] |
N | Spray + lawn perimeter debris removal | 2.5 × 1011 c/100 m2 (×2) | 3 months; 1 year | 55.6% tick reduction from lawn perimeter treatment; 84.6% reduction from woodland treatment | [44] |
Tick Species | Material a | Life b Stage | Method | Exposure Rate and Time c | Experiment Duration | Treatment Effect d | Reference |
---|---|---|---|---|---|---|---|
Amblyomma Americanum (Lone star tick) | P-EC | A, N | Spray (woodlands) | 10.6 mL/100 m2 (3×) | 2.5 months | Target 90% suppression threshold inconsistently met for nymphs, low suppression for adults | [42] |
Boophilus microplus (Cattle tick) | P-EC | A (f) | Immersion | 1 × 106–8 cfu/mL (30 s) | 12 days | 100% mortality; egg mass weight reduced by ~80% | [49] |
P-EC | L (f) | Immersion | 1 × 106–8 cfu/mL (30 s) | 1 week | Nearly 100% at 108 | [49] | |
Dermacentor albipictus (Winter tick) | IS-EC | L (u) | Immersion | 1.6 × 107 c/mL (1 min) | 15 days | LT50 = 3.7; 100% mortality | [50] |
IS-EC | L (u) | Immersion | 1.3 × 107 c/mL (1 min) | 10 days | 83.1% mortality for hatching-age; 86.8% for 14-day-old and 81.1% for 5-months-old | [51] | |
IS-EC | E | Immersion | 1.3 × 107 c/mL (1 min) | 10 days | 71.5% failed to hatch treated at oviposition; 67.4% failed to hatch 14 days after oviposition | [51] | |
P-EC | L (u) | Spray | 1 × 105 and 2 × 105 c/cm2 | 9 days | 94% and 98% mortality | [52] | |
P-EC | L (u) | Spray | 2.4 × 107 c/0.007 m2 | 18 weeks and 3 weeks | ~39% mortality when treated during summer quiescence and ~71%, during fall questing | [38] | |
Dermacentor albipictus (Winter tick) | IS-G | L (u) | Spray | 1 × 106–8 c/mL | 3 weeks | 82–99% mortality | [52] |
IS-G | L (u) | Immersion | 1 × 106–8 c/mL (1 min) | 3 weeks | 46.7%, 100% and 100% mortality | [38] | |
P-G | L (u) | Broadcast | 1–4 × 107 c/0.002 m2 dish | 3 weeks | 72–89.3% mortality | [38] | |
P-G | L (u) | Broadcast | 1 × 108 c/0.007 m2 | 18 weeks and 3 weeks | ~95% mortality when treated during summer quiescence and ~1%, during fall questing | [38] | |
Dermacentor reticulatus (Ornate cow tick) | IS-G | A (u) | Immersion | 102–8 cfu/mL (3 min) | 3 weeks | Up to 100% mortality; LC50 = 2.0 × 106 cfu/mL (females) | [53] |
Ixodes ricinus (Castor bean tick) | IS-G | A (u) | Immersion | 102–8 cfu/mL (3 min) | 3 weeks | Up to 100% mortality; LC50 = 1.6 × 106 cfu/mL (females). | [53] |
Rhipicephalus sanguineus (Brown dog tick) | P-EC | N | Treated surface | 1 × 109 c/mL (1.48 × 107 c/cm2)/pack (60 min) | 4 weeks | >80% mortality; 77.3% of infected ticks sporulated | [54] |
Tick Species | Material a | Life b Stage | Method | Exposure Rate and Time c | Experiment Duration | Treatment Effect d | Reference |
---|---|---|---|---|---|---|---|
Laboratory | |||||||
Amblyomma americanum (Lone star tick) | P-ES | A (u) | Immersion | 108 c/mL (10 s) | 26 days | Treated ticks survived a mean of 7.2 days | [66] |
Dermacentor albipictus (Winter tick) | IS | L (u) | Spray | 1 × 106–8 c/mL | 21 days | 30–41% mortality | [52] |
Dermacentor reticulatus (Ornate cow tick) | IS-WP | A (u) | Immersion | 102–108 cfu/mL (3 min) | 3 weeks | Up to100% mortality; LC50 = 6.8 × 103 cfu/mL | [53] |
Ixodes ricinus (Castor bean tick) | IS-WP | A (u) | Immersion | 102–108 cfu/mL (3 min) | 3 weeks | Up to 100% mortality; LC50 3.3 × 106 cfu/mL for adult females | [53] |
Rhipicephalus sanguineus (Brown dog tick) | P-ES | N | Treated surface | 1 × 109 c/mL (1.48 × 107 c/cm2)/pack (60 min) | 4 weeks | >90% mortality | [54] |
Field | |||||||
Amblyomma americanum (Lone star tick) | P | A (u) | Immersion then placed in arenas | 108 c/mL (1 s) | 2 weeks | Up to 96% mortality | [67] |
Hyalomma lusitanicume | P | All stages | Sprayed host burrows | 2.43 × 108 c/mL (spring) | 30 and 60 days | 78.63% and 63.28% parasitism reduction on rabbits in spring, 35.72% and 29.01% in summer | [68] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sullivan, C.F.; Parker, B.L.; Skinner, M. A Review of Commercial Metarhizium- and Beauveria-Based Biopesticides for the Biological Control of Ticks in the USA. Insects 2022, 13, 260. https://doi.org/10.3390/insects13030260
Sullivan CF, Parker BL, Skinner M. A Review of Commercial Metarhizium- and Beauveria-Based Biopesticides for the Biological Control of Ticks in the USA. Insects. 2022; 13(3):260. https://doi.org/10.3390/insects13030260
Chicago/Turabian StyleSullivan, Cheryl Frank, Bruce L. Parker, and Margaret Skinner. 2022. "A Review of Commercial Metarhizium- and Beauveria-Based Biopesticides for the Biological Control of Ticks in the USA" Insects 13, no. 3: 260. https://doi.org/10.3390/insects13030260
APA StyleSullivan, C. F., Parker, B. L., & Skinner, M. (2022). A Review of Commercial Metarhizium- and Beauveria-Based Biopesticides for the Biological Control of Ticks in the USA. Insects, 13(3), 260. https://doi.org/10.3390/insects13030260