The Effect of Temperatures and Hosts on the Life Cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Plants
2.2. Life Table Analysis
3. Results
3.1. Mortality Rate, Developmental Time, Adult Longevity, and Reproduction
3.2. Life Table Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walther, G.R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological responses to recent climate change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.D.; Torchin, M.E.; Hufbauer, R.A.; Lemoine, N.P.; Alba, C.; Blumenthal, D.M.; Bossdorf, O.; Byers, J.E.; Dunn, A.M.; Heckman, R.W.; et al. Do invasive species perform better in their new ranges? Ecology 2013, 94, 985–994. [Google Scholar] [CrossRef] [Green Version]
- Nelson, W.A.; Bjornstad, O.N.; Yamanaka, T. Recurrent insect outbreaks caused by temperature-driven changes in system stability. Science 2013, 341, 796–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, Y.W.; Wang, Y.C.; Feng, C.C.; Wan, P.H.M.; Chang, K.T.T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 2017, 82, 83–92. [Google Scholar] [CrossRef]
- Díaz-Álvarez, E.A.; Martínez-Zavaleta, J.P.; López-Santiz, E.E.; Barrera, E.D.A.; Larsen, J.; Del-Val, E. Climate change can trigger fall armyworm outbreaks: A developmental response experiment with two Mexican maize landraces. Int. J. Pest Manag. 2021, 1–9. [Google Scholar] [CrossRef]
- Desurmont, G.A.; Donoghue, M.J.; Clement, W.L.; Agrawal, A.A. Evolutionary history predicts plant defense against an invasive pest. Proc. Natl. Acad. Sci. USA 2011, 108, 7070–7074. [Google Scholar] [CrossRef] [Green Version]
- Montezano, D.G.; Specht, A.; Sosa-Gómez, D.R.; Roque-Specht, V.F.; Sousa-Silva, J.C.; Paula-Moraes, S.V.; Peterson, J.A.; Hunt, T.E. Host Plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr. Entomol. 2018, 26, 286–300. [Google Scholar] [CrossRef] [Green Version]
- Maino, J.L.; Schouten, R.; Overton, K.; Day, R.; Ekesi, S.; Bett, B.; Barton, M.; Gregg, P.C.; Umina, P.A.; Reynolds, O.L. Regional and seasonal activity predictions for fall armyworm in Australia. Curr. Res. Insect Sci. 2021, 1, 100010. [Google Scholar] [CrossRef]
- Wan, J.; Huang, C.; Li, C.Y.; Zhou, H.X.; Ren, Y.L.; Li, Z.Y.; Xing, L.S.; Zhang, B.; Qiao, X.; Liu, B.; et al. Biology, invasion and management of the agricultural invader: Fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Integr. Agric. 2021, 20, 646–663. [Google Scholar] [CrossRef]
- Day, R.; Abrahams, P.; Bateman, M.; Bateman, M.; Beale, T.; Clottey, V.; Cock, M.J.W.; Colmenarez, Y.; Corniani, N.; Early, R.; et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Pashley, D.P. Host-associated genetic differentiation in fall armyworm (Lepidoptera: Noctuidae): A sibling species complex? Ann. Entomol. Soc. Am. 2013, 79, 898–904. [Google Scholar] [CrossRef]
- Dumas, P.; Legeai, F.; Lemaitre, C.; Scaon, E.; Orsucci, M.; Labadie, K.; Gimenez, S.; Clamens, A.L.; Henri, H.; Vavre, F.; et al. Spodoptera frugiperda (Lepidoptera: Noctuidae) host-plant variants: Two host strains or two distinct species? Genetica 2015, 143, 305–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, D.P.; Guo, J.F.; Jiang, Y.M.; Zhao, J.Z.; Sethi, A.; He, K.L.; Wang, Z.Y. Initial detections and spread of invasive Spodoptera frugiperda in China and comparisons with other noctuid larvae in cornfields using molecular techniques. Insect Sci. 2020, 27, 780–790. [Google Scholar] [CrossRef]
- Tang, Y.L.; Gu, R.C.; Wu, Y.Y.; Zou, X.M.; Zhang, Z.; Niu, X.H.; Wang, Z.L.; Chen, J.; Li, T.; Li, C.F.; et al. Biotype identification of the population of Spodoptera frugiperda that migrated to Chongqing area. J. Southwest Univ. 2019, 41, 1–7. [Google Scholar]
- He, L.M.; Wu, Q.L.; Gao, X.W.; Wu, K.M. Population life tables for the invasive fall armyworm, Spodoptera frugiperda fed on major oil crops planted in China. J. Integr. Agric. 2020, 20, 745–754. [Google Scholar] [CrossRef]
- He, L.M.; Wang, T.L.; Chen, Y.C.; Ge, S.S.; Wyckhuys, K.A.G.; Wu, K.M. Larval diet affects development and reproduction of East Asian strain of the fall armyworm, Spodoptera frugiperda. J. Integr. Agric. 2021, 20, 736–744. [Google Scholar] [CrossRef]
- Lu, Q.S.; Zou, J.Q.; Zhu, K.; Zhang, Z.P. Discussion on the developmental of sorghum industry in China–On the national sorghum production advantage area. Rainfed Crop 2009, 29, 78–80. [Google Scholar]
- Zou, C.H.; Yang, J.J. Spodoptera frugiperda damages coix seed. China Plant Prot. 2019, 39, 47. [Google Scholar]
- Ziska, L.H.; Blumenthal, M.D.; Runion, C.B.; Hunt, E.R., Jr.; Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Chang. 2011, 105, 13–42. [Google Scholar] [CrossRef]
- Forrest, J.R.K. Complex responses of insect phenology to climate change. Curr. Opin. Insect Sci. 2016, 17, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Johnson, S.J. Migration and the life history strategy of the fall armyworm, Spodoptera frugiperda in the western hemisphere. Int. J. Trop Insect Sci. 1987, 8, 543–549. [Google Scholar] [CrossRef]
- Meagher, R.L. Nagoshi RN, Population dynamics and occurrence of Spodoptera frugiperda host strains in southern Florida. Ecol. Entomol. 2004, 29, 614–620. [Google Scholar] [CrossRef]
- Yang, X.M.; Song, Y.F.; Sun, X.X.; Shen, X.J.; Wu, Q.L.; Zhang, H.W.; Zhang, D.D.; Zhao, S.Y.; Liang, G.M.; Wu, K.M. Population occurrence of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), in the winter season of China. J. Integr. Agric. 2021, 20, 772–782. [Google Scholar] [CrossRef]
- Combs, R.L.; Valerio, J.R. Biology of the fall armyworm on four varieties of bermudagrass when held at constant temperatures. Environ. Entomol. 1980, 9, 393–396. [Google Scholar] [CrossRef]
- Barfield, C.S.; Ashley, T.R. Effects of corn phenology and temperature on the life cycle of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla. Entomol. 1987, 70, 110–116. [Google Scholar] [CrossRef]
- Barros, E.M.; Torres, J.B.; Ruberson, J.R.; Oliveira, M.D. Development of Spodoptera frugiperda on different hosts and damage to reproductive structures in cotton. Entomol. Exp. Appl. 2010, 137, 237–245. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, J.F.; Gao, Z.P.; He, K.; Bai, S.X.; Zhang, T.T.; Wang, Z.Y. Performance of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on six host plants: Potential risks to mid-high latitude crops in China. J. Agric. Sci. 2020, 12, 16. [Google Scholar] [CrossRef]
- Wu, L.H.; Zhou, C.; Long, G.Y.; Yang, X.B.; Wei, Z.Y.; Liao, Y.J.; Yang, H.; Hu, C.X. Fitness of fall armyworm, Spodoptera frugiperda to three solanaceous vegetables. J. Integr. Agric. 2021, 20, 755–763. [Google Scholar] [CrossRef]
- Tian, T.A.; Yu, L.C.; Sun, G.J.; Yu, X.F.; Li, L.T.; Wu, C.X.; Chen, Y.C.; Yang, M.F.; Liu, J.F. Biological control efficiency of an ectoparasitic mite Pyemotes zhonghuajia on oriental armyworm Mythimna separata. Syst. Appl. Acarol. 2020, 25, 1683–1692. [Google Scholar]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull Inst. Zool Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, TWOSEX-MSChart: A Computer Program for the Age–Stage, Two-Sex Life Table Analysis. 2021. Available online: http://140.120.197.173/Ecology/prod02.htm (accessed on 1 December 2021).
- Chi, H.; Su, H.Y. Age-stage, Two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environ. Entomol. 2006, 35, 10–21. [Google Scholar] [CrossRef]
- Akca, I.; Ayvaz, T.; Yazici, E.; Smith, C.L.; Chi, H. Demography and population projection of aphis fabae (Hemiptera: Aphididae): With additional comments on life table research criteria. J. Econ. Entomol. 2015, 108, 1466–1478. [Google Scholar] [CrossRef] [PubMed]
- Plessis, H.D.; Schlemmer, M.L.; Berg, J.V.D. The effect of temperature on the development of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2020, 11, 228. [Google Scholar] [CrossRef] [Green Version]
- Garcia, A.G.; Godoy, W.A.C.; Thomas, J.M.G.; Nagoshi, R.N.; Meagher, R.L. Delimiting strategic zones for the development of fall armyworm (Lepidoptera: Noctuidae) on corn in the state of Florida. J. Econ. Entomol. 2017, 111, 120–126. [Google Scholar] [CrossRef]
- Huang, L.L.; Xue, F.S.; Chen, C.; Guo, X.; Tang, J.J.; Zhong, L.; He, H.M. Effects of temperature on life-history traits of the newly invasive fall armyworm, Spodoptera frugiperda in Southeast China. Ecol. Evol. 2021, 11, 5255–5264. [Google Scholar] [CrossRef]
- Guo, J.F.; Zhang, M.D.; Gao, Z.P.; Wang, D.; He, K. Comparison of larval performance and oviposition preference of Spodoptera frugiperda among three host plants: Potential risks to potato and tobacco crops. Insect Sci. 2020, 28, 602–614. [Google Scholar] [CrossRef]
- Mello, D.M.D.; Bueno, A.D.F.; Andrade, K.; Stecca, C.D.S.; Oliveira, M.C.N.D. Biology and nutrition of Spodoptera frugiperda (Lepidoptera: Noctuidae) fed on different food source. Sci. Agric. 2017, 74, 18–31. [Google Scholar]
- Aregbesola, O.Z.; Legg, J.P.; Lund, O.S.; Sigsgaard, L.; Sporleder, M.; Carhuapoma, P.; Rapisarda, C. Life history and temperature-dependence of cassava-colonising populations of Bemisia tabaci. J. Pest Sci. 2020, 93, 1225–1241. [Google Scholar] [CrossRef]
- Wang, W.W.; He, P.Y.; Zhang, Y.Y.; Liu, T.X.; Jing, X.F.; Zhang, S.Z. The population growth of Spodoptera frugiperda on six cash crop species and implications for its occurrence and damage potential in China. Insects 2020, 11, 639. [Google Scholar] [CrossRef] [PubMed]
- Winder, M.; Jassby, A.D.; Mac-Nally, R. Synergies between climate anomalies and hydrological modifications facilitate estuarine biotic invasions. Ecol. Lett. 2011, 14, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Keosentse, O.; Mutamiswa, R.; Plessis, H.D.; Nyamukondiwa, C. Developmental stage variation in Spodoptera frugiperda (Lepidoptera: Noctuidae) low temperature tolerance: Implications for overwintering. Austral Entomol. 2021, 60, 400–410. [Google Scholar] [CrossRef]
- Zhang, D.D.; Zhao, S.Y.; Wu, Q.L.; Li, Y.Y.; Wu, K.M. Cold hardiness of the invasive fall armyworm, Spodoptera frugiperda in China. J. Integr. Agric. 2021, 20, 764–771. [Google Scholar] [CrossRef]
- Morey, A.C.; Venette, R.C.; Nystrom, E.C.N.; Mosca, L.A.; Hutchison, W.D. Host-mediated shift in the cold tolerance of an invasive insect. Ecol. Evol. 2016, 6, 8267–8275. [Google Scholar] [CrossRef]
- Pelini, S.L.; Keppel, J.A.; Kelley, A.E.; Hellmann, J.J. Adaptation to host plants may prevent rapid insect responses to climate change. Glob. Chang. Biol. 2010, 16, 2923–2929. [Google Scholar] [CrossRef]
- McCalla, K.A.; Keçeci, M.; Milosavljević, I.; Ratkowsky, D.A.; Hoddle, M.S. The influence of temperature variation on life history parameters and thermal performance curves of Tamarixia radiata (Hymenoptera: Eulophidae), a parasitoid of the Asian citrus psyllid (Hemiptera: Liviidae). J. Econ. Entomol. 2019, 112, 1560–1572. [Google Scholar] [CrossRef]
- Milosavljević, I.; McCalla, K.A.; Ratkowsky, D.A.; Hoddle, M.S. Effects of constant and fluctuating temperatures on development rates and longevity of Diaphorencyrtus Aligarhensis (Hymenoptera: Encyrtidae). J. Econ.Entomol. 2019, 112, 1062–1072. [Google Scholar] [CrossRef]
Mortality Rate | ||||||
---|---|---|---|---|---|---|
Temperature (°C) | Egg | 1st instar Larva | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 0.29 ± 0.045 aA | 0.35 ± 0.048 aA | 0.42 ± 0.049 aA | 0 ± 0 aA | 0 ± 0 aA | 0 ± 0 aA |
25 | 0.27 ± 0.044 aA | 0.37 ± 0.05 aA | 0.35 ± 0.048 aAB | 0 ± 0 aA | 0 ± 0 aA | 0 ± 0 aA |
30 | 0.21 ± 0.041 aA | 0.29 ± 0.046 aA | 0.28 ± 0.045 aB | 0 ± 0 aA | 0 ± 0 aA | 0 ± 0 aA |
Temperature (°C) | 2nd instar larva | 3rd instar larva | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 0.03 ± 0.017 aA | 0.06 ± 0.024 aA | 0.03 ± 0.017 aA | 0.03 ± 0.017 aA | 0.04 ± 0.02 aA | 0.03 ± 0.017 aA |
25 | 0.02 ± 0.014 aA | 0.05 ± 0.022 aA | 0.07 ± 0.026 aA | 0.01 ± 0.009 abA | 0 ± 0 bB | 0.04 ± 0.02 aA |
30 | 0.02 ± 0.014 aA | 0.05 ± 0.022 aA | 0.05 ± 0.022 aA | 0 ± 0 aA | 0.03 ± 0.017 aAB | 0.02 ± 0.014 aA |
Temperature (°C) | 4th instar larva | 5th instar larva | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 0.04 ± 0.02 bA | 0 ± 0 aB | 0 ± 0 aA | 0.02 ± 0.014 aAB | 0.04 ± 0.02 aA | 0.04 ± 0.02 aA |
25 | 0.03 ± 0.017 aAB | 0 ± 0 aB | 0 ± 0 aA | 0 ± 0 aB | 0 ± 0 aB | 0.02 ± 0.014 aA |
30 | 0 ± 0 bB | 0.06 ± 0.024 aA | 0.02 ± 0.014 bA | 0.05 ± 0.022 aA | 0.01 ± 0.01 bAB | 0.01 ± 0.01 bA |
Temperature (°C) | 6th instar larva | Pre-pupa | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 0 ± 0 aA | 0 ± 0 aA | 0.01 ± 0.01 aA | 0 ± 0 aA | 0.03 ± 0.017 aA | 0.02 ± 0.014 aB |
25 | 0 ± 0 bA | 0.03 ± 0.017 aA | 0.03 ± 0.017 aA | 0.01 ± 0.01 aA | 0.01 ± 0.01 aA | 0 ± 0 aB |
30 | 0 ± 0 aA | 0 ± 0 aA | 0 ± 0 aA | 0 ± 0 bA | 0.02 ± 0.014 bA | 0.07 ± 0.026 aA |
Temperature (°C) | Pupa | Pre-adult | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 0.03 ± 0.017 aA | 0 ± 0 aA | 0 ± 0 aB | 0.44 ± 0.05 aA | 0.52 ± 0.05 aA | 0.55 ± 0.05 aA |
25 | 0.01 ± 0.01 bA | 0.02 ± 0.014 bA | 0.08 ± 0.027 aA | 0.35 ± 0.048 bAB | 0.48 ± 0.05 bA | 0.59 ± 0.05 aA |
30 | 0 ± 0 aA | 0.02 ± 0.014 aA | 0.02 ± 0.014 aB | 0.28 ± 0.045 bB | 0.48 ± 0.05 aA | 0.47 ± 0.05 aA |
Developmental Time (d) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature (°C) | Egg | 1st instar larva | ||||||||||
N | Maize | N | Sorghum | N | Coix seed | N | Maize | N | Sorghum | N | Coix seed | |
20 | 71 | 5.11 ± 0.02 aA | 65 | 5.15 ± 0.03 aA | 58 | 5.2 ± 0.03 aA | 71 | 3.97 ± 0.05 aA | 65 | 3.96 ± 0.06 aA | 58 | 3.92 ± 0.06 aA |
25 | 73 | 3.41 ± 0.04 aB | 63 | 3.30 ± 0.04 aB | 65 | 3.32 ± 0.04 aB | 73 | 2.01 ± 0.05 bB | 63 | 2.06 ± 0.04 bB | 65 | 2.53 ± 0.05 aB |
30 | 79 | 1.61 ± 0.02 aC | 71 | 1.62 ± 0.03 aC | 72 | 1.57 ± 0.02 aC | 79 | 1.61 ± 0.02 aC | 71 | 1.62 ± 0.03 aC | 72 | 1.57 ± 0.02 aC |
Temperature (°C) | 2nd instar larva | 3rd instar larva | ||||||||||
N | Maize | N | Sorghum | N | Coix seed | N | Maize | N | Sorghum | N | Coix seed | |
20 | 68 | 3.29 ± 0.04 aA | 59 | 3.21 ± 0.03 aA | 55 | 3.21 ± 0.03 aA | 65 | 3.58 ± 0.05 aA | 55 | 3.7 ± 0.06 aA | 52 | 3.71 ± 0.06 aA |
25 | 71 | 1.98 ± 0.04 aB | 58 | 1.91 ± 0.05abB | 58 | 2.01 ± 0.03 bB | 70 | 1.14 ± 0.03 bB | 58 | 2.63 ± 0.05 aB | 54 | 2.64 ± 0.05 aB |
30 | 77 | 1.23 ± 0.03 cC | 66 | 1.33 ± 0.03 bC | 67 | 1.46 ± 0.05 aC | 77 | 1.32 ± 0.03 bC | 63 | 1.24 ± 0.03 bC | 65 | 1.45 ± 0.04 aC |
Temperature (°C) | 4th instar larva | 5th instar larva | ||||||||||
N | Maize | N | Sorghum | N | Coix seed | N | Maize | N | Sorghum | N | Coix seed | |
20 | 61 | 3.32 ± 0.04 aA | 55 | 3.38 ± 0.05 aA | 52 | 3.38 ± 0.05 aA | 59 | 3.54 ± 0.04 aA | 51 | 3.54 ± 0.06 aA | 48 | 3.46 ± 0.06 aA |
25 | 67 | 1.84 ± 0.03 cB | 58 | 2.17 ± 0.03 bB | 54 | 2.58 ± 0.04 aB | 67 | 2.43 ± 0.06 bB | 58 | 2.78 ± 0.06 aB | 52 | 2.88 ± 0.06 aB |
30 | 77 | 0.96 ± 0.02 bC | 57 | 1.18 ± 0.03 aC | 63 | 1.18 ± 0.03 aC | 72 | 1.08 ± 0.02 bC | 56 | 1.12 ± 0.03 bC | 62 | 1.59 ± 0.03 aC |
Temperature (°C) | 6th instar larva | Pre-pupa | ||||||||||
N | Maize | N | Sorghum | N | Coix seed | N | Maize | N | Sorghum | N | Coix seed | |
20 | 59 | 3.18 ± 0.03 aA | 51 | 3.14 ± 0.05 aA | 47 | 3.2 ± 0.05 aA | 59 | 3.01 ± 0.04 bA | 48 | 3.17 ± 0.05 aA | 45 | 3.2 ± 0.05 aA |
25 | 67 | 2.67 ± 0.05 aB | 55 | 2.81 ± 0.07 aB | 49 | 2.8 ± 0.07 aB | 66 | 2.8 ± 0.06 aB | 54 | 2.96 ± 0.06 aB | 49 | 2.89 ± 0.07 aB |
30 | 72 | 1.34 ± 0.05 bC | 56 | 1.93 ± 0.04 aC | 62 | 1.93 ± 0.02 aC | 72 | 1.76 ± 0.04 bC | 54 | 2.36 ± 0.07 aC | 55 | 2.27 ± 0.07 aC |
Temperature (°C) | Pupa | Pre-adult | ||||||||||
N | Maize | N | Sorghum | N | Coix seed | N | Maize | N | Sorghum | N | Coix seed | |
20 | 56 | 18.36 ± 0.17 bA | 48 | 21.47 ± 0.24 aA | 45 | 21.53 ± 0.23 aA | 56 | 47.34 ± 0.19 bA | 48 | 50.75 ± 0.3 aA | 45 | 50.82 ± 0.28 aA |
25 | 65 | 12.83 ± 0.08 bB | 52 | 13.92 ± 0.13 aB | 41 | 13.56 ± 0.33 aB | 65 | 31.09 ± 0.17 bB | 52 | 34.59 ± 0.2 aB | 41 | 35.02 ± 0.32 aB |
30 | 72 | 7.69 ± 0.11 bC | 52 | 8.87 ± 0.09 aC | 53 | 7.48 ± 0.09 bC | 72 | 18.59 ± 0.15 cC | 52 | 21.3 ± 0.13 aC | 53 | 20.42 ± 0.17 bC |
Temperature (°C) | Adult Longevity/d (Female) | Adult Longevity/d (Male) | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 57.2 ± 0.54 bA | 60.53 ± 0.64 aA | 60.34 ± 0.94 aA | 56.1 ± 0.63 bA | 59.95 ± 0.65 aA | 59.4 ± 0.62 aA |
25 | 39.87 ± 0.33 bB | 43.94 ± 0.5 aB | 43.4 ± 0.46 aB | 39.41 ± 0.37 bB | 41.87 ± 0.41 aB | 42.19 ± 0.62 aB |
30 | 27.18 ± 0.28 cC | 29.48 ± 0.33 aC | 28.34 ± 0.4 bC | 26.1 ± 0.32 cC | 29.05 ± 0.41 aC | 27.89 ± 0.41 bC |
Temperature (°C) | Total pre-oviposition period (TPOP)/d | Adult pre-oviposition period (APOP)/d | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 51.72 ± 0.33 bA | 56 ± 0.26 aA | 55.14 ± 1.14 aA | 5.22 ± 0.15 aA | 5.5 ± 0.34 aA | 5.14 ± 0.14 aA |
25 | 32.62 ± 0.5 bB | 36.35 ± 0.65 aB | 36.67 ± 0.49 aB | 1.83 ± 0.21 aB | 2.3 ± 0.4 aB | 1.67 ± 0.21 aB |
30 | 21.14 ± 0.17 cC | 23.86 ± 0.39 aC | 22.67 ± 0.42 bC | 2.17 ± 0.19 aB | 2.43 ± 0.25 aB | 2.42 ± 0.26 aB |
Temperature (°C) | Oviposition days/Od | Fecundity (no. of eggs) | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 1.78 ± 0.15 aC | 1.83 ± 0.17 aB | 1.86 ± 0.14 aB | 404.56.95 ± 49.16 aB | 426.83 ± 76.68 aA | 415.71 ± 73.41 aB |
25 | 3.92 ± 0.29 aA | 3.4 ± 0.34 aA | 3.33 ± 0.21aA | 954.92 ± 52.83 aA | 626.87 ± 95.21 bA | 628.17 ± 52.01 bA |
30 | 2.61 ± 0.31 aB | 2.71 ± 0.27 aA | 2.83 ± 0.27 aA | 956.83 ± 93.5 aA | 615 ± 77.97 bA | 558.42 ± 66.22 bAB |
Temperature (°C) | r (d−1) | λ (d−1) | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 0.068 ± 0.007 aC | 0.057 ± 0.009 aC | 0.06 ± 0.009 aC | 1.07 ± 0.008 aC | 1.058 ± 0.009 aC | 1.062 ± 0.009 aC |
25 | 0.137 ± 0.009 aB | 0.108 ± 0.009 bB | 0.094 ± 0.012 bB | 1.146 ± 0.01 aB | 1.114 ± 0.01 bB | 1.099 ± 0.013 bB |
30 | 0.224 ± 0.011 aA | 0.176 ± 0.012 bA | 0.173 ± 0.013 bA | 1.251 ± 0.013 aA | 1.192 ± 0.014 bA | 1.189 ± 0.016 bA |
Temperature (°C) | R0 (offspring) | T (d) | ||||
Maize | Sorghum | Coix seed | Maize | Sorghum | Coix seed | |
20 | 36.41 ± 12.309 aB | 25.61 ± 10.913 aB | 29.1 ± 11.64 aA | 52.843 ± 0.383 bA | 57.38 ± 0.316 aA | 55.743 ± 1.47 aA |
25 | 114.59 ± 31.535 aA | 62.687 ± 20.821 abAB | 37.69 ± 15.065 bA | 34.7 ± 0.496 bB | 38.39 ± 0.599 aB | 38.48 ± 0.494 aB |
30 | 172.23 ± 40.121 aA | 86.1 ± 23.755 abA | 67.01 ± 19.699 bA | 23.017 ± 0.176 bC | 25.338 ± 0.294 aC | 24.353 ± 0.429 aB |
Temperature (°C) | GRR (offspring) | |||||
Maize | Sorghum | Coix seed | ||||
20 | 76.67 ± 25.008 aB | 67.04 ± 27.34 aB | 96.65 ± 38.96 aA | |||
25 | 193.03 ± 51.027 aA | 141.88 ± 46.353 aAB | 100.01 ± 38.056 aA | |||
30 | 265.07 ± 59.009 aA | 179.88 ± 45.955 aA | 161.22 ± 47.385 aA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.-C.; Chen, D.-F.; Yang, M.-F.; Liu, J.-F. The Effect of Temperatures and Hosts on the Life Cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 211. https://doi.org/10.3390/insects13020211
Chen Y-C, Chen D-F, Yang M-F, Liu J-F. The Effect of Temperatures and Hosts on the Life Cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects. 2022; 13(2):211. https://doi.org/10.3390/insects13020211
Chicago/Turabian StyleChen, Yi-Chai, De-Fei Chen, Mao-Fa Yang, and Jian-Feng Liu. 2022. "The Effect of Temperatures and Hosts on the Life Cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae)" Insects 13, no. 2: 211. https://doi.org/10.3390/insects13020211
APA StyleChen, Y.-C., Chen, D.-F., Yang, M.-F., & Liu, J.-F. (2022). The Effect of Temperatures and Hosts on the Life Cycle of Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects, 13(2), 211. https://doi.org/10.3390/insects13020211