First Report on Mitochondrial Gene Rearrangement in Non-Biting Midges, Revealing a Synapomorphy in Stenochironomus Kieffer (Diptera: Chironomidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Taxon Sampling and DNA Extraction
2.2. Sequencing and Mitogenome Assembly
2.3. Genome Annotation and Sequence Analyses
2.4. Phylogenetic Analyses
3. Results and Discussion
3.1. General Features of Stenochironomus Mitogenomes
3.2. Gene Rearrangement
3.3. Phylogenetic Relationships
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, S.L. Insect mitochondrial genomics: Implications for evolution and phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno-Carmona, M.; Cameron, S.L.; Quiroga, C.F.P. How are the mitochondrial genomes reorganized in Hexapoda? Differential evolution and the first report of convergences within Hexapoda. Gene 2021, 791, 145719. [Google Scholar] [CrossRef] [PubMed]
- Brown, W.M. The mitochondrial genome of animals. In Molecular Evolutionary Genetics; Plenum Press: New York, NY, USA, 1985; pp. 95–130. [Google Scholar]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, W.M.; George, M.; Wilson, A.C. Rapid evolution of animal mitochondrial DNA. Proc. Natl. Acad. Sci. USA 1979, 76, 1967–1971. [Google Scholar] [CrossRef] [Green Version]
- Curole, J.P.; Kocher, T.D. Mitogenomics: Digging deeper with complete mitochondrial genomes. Trends Ecol. Evol. 1999, 14, 394–398. [Google Scholar] [CrossRef]
- Du, Z.; Hasegawa, H.; Cooley, J.R.; Simon, C.; Yoshimura, J.; Cai, W.; Sota, T.; Li, H. Mitochondrial genomics reveals shared phylogeographic patterns and demographic history among three periodical cicada species groups. Mol. Biol. Evol. 2019, 36, 1187–1200. [Google Scholar] [CrossRef]
- Kieran, T.J. Mitochondrial, metagenomic, and phylogenetic analysis of the ground beetle Harpalus pensylvanicus (Coleoptera: Carabidae). Gene 2020, 740, 144540. [Google Scholar] [CrossRef]
- Manchola, O.F.S.; Virrueta Herrera, S.; D’Alessio, L.M.; Yoshizawa, K.; Garcia Aldrete, A.N.; Johnson, K.P. Mitochondrial genomes within bark lice (Insecta: Psocodea: Psocomorpha) reveal novel gene rearrangements containing phylogenetic signal. Syst. Entomol. 2021, 46, 938–951. [Google Scholar] [CrossRef]
- Rokas, A.; Holland, P.W. Rare genomic changes as a tool for phylogenetics. Trends Ecol. Evol. 2000, 15, 454–459. [Google Scholar] [CrossRef]
- Zhang, J.; Kan, X.; Miao, G.; Hu, S.; Sun, Q.; Tian, W. qMGR: A new approach for quantifying mitochondrial genome rearrangement. Mitochondrion 2020, 52, 20–23. [Google Scholar] [CrossRef]
- Zheng, B.-Y.; Cao, L.-J.; Tang, P.; van Achterberg, K.; Hoffmann, A.A.; Chen, H.-Y.; Chen, X.-X.; Wei, S.-J. Gene arrangement and sequence of mitochondrial genomes yield insights into the phylogeny and evolution of bees and sphecid wasps (Hymenoptera: Apoidea). Mol. Phylogenet. Evol. 2018, 124, 1–9. [Google Scholar] [CrossRef]
- Sweet, A.D.; Johnson, K.P.; Cao, Y.; de Moya, R.S.; Skinner, R.K.; Tan, M.; Herrera, S.V.; Cameron, S.L. Structure, gene order, and nucleotide composition of mitochondrial genomes in parasitic lice from Amblycera. Gene 2021, 768, 145312. [Google Scholar] [CrossRef]
- Dietrich, C.; Brune, A. The complete mitogenomes of six higher termite species reconstructed from metagenomic datasets (Cornitermes sp., Cubitermes ugandensis, Microcerotermes parvus, Nasutitermes corniger, Neocapritermes taracua, and Termes hospes). Mitochondrial DNA Part. A 2016, 27, 3903–3904. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, C.; Gai, Y.; Song, D.; Zhou, K. The complete mitochondrial genome of Parafronurus youi (Insecta: Ephemeroptera) and phylogenetic position of the Ephemeroptera. Gene 2008, 424, 18–24. [Google Scholar] [CrossRef]
- Zhang, W.; Li, R.; Zhou, C. Complete mitochondrial genomes of Epeorus carinatus and E. dayongensis (Ephemeroptera: Heptageniidae): Genomic comparison and phylogenetic inference. Gene 2021, 777, 145467. [Google Scholar] [CrossRef]
- Shi, A.; Li, H.; Bai, X.; Dai, X.; Chang, J.; Guilbert, E.; Cai, W. The complete mitochondrial genome of the flat bug Aradacanthia heissi (Hemiptera: Aradidae). Zootaxa 2012, 3238, 23–38. [Google Scholar] [CrossRef]
- Li, H.; Leavengood Jr, J.M.; Chapman, E.G.; Burkhardt, D.; Song, F.; Jiang, P.; Liu, J.; Zhou, X.; Cai, W. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171223. [Google Scholar] [CrossRef]
- Cheng, Y.; Yan, Y.; Wei, M.; Niu, G. Characterization of mitochondrial genomes of three new species: Leptocimbex praiaformis, L. clavicornis, and L. yanniae (Hymenoptera: Cimbicidae). Entomol. Res. 2021, 51, 287–304. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, D.; Hao, J.; Huang, D.; Cameron, S.; Zhu, C. The complete mitochondrial genome of the yellow coaster, Acraea issoria (Lepidoptera: Nymphalidae: Heliconiinae: Acraeini): Sequence, gene organization and a unique tRNA translocation event. Mol. Biol. Rep. 2010, 37, 3431–3438. [Google Scholar] [CrossRef]
- Ye, F.; Lan, X.-E.; Zhu, W.-B.; You, P. Mitochondrial genomes of praying mantises (Dictyoptera, Mantodea): Rearrangement, duplication, and reassignment of tRNA genes. Sci. Rep. 2016, 6, 25634. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.-P.; Cai, Y.-Y.; Yu, D.-N.; Storey, K.B.; Zhang, J.-Y. Gene characteristics of the complete mitochondrial genomes of Paratoxodera polyacantha and Toxodera hauseri (Mantodea: Toxoderidae). Peer J. 2018, 6, e4595. [Google Scholar] [CrossRef] [Green Version]
- Fenn, J.D.; Song, H.; Cameron, S.L.; Whiting, M.F. A preliminary mitochondrial genome phylogeny of Orthoptera (Insecta) and approaches to maximizing phylogenetic signal found within mitochondrial genome data. Mol. Phylogenet. Evol. 2008, 49, 59–68. [Google Scholar] [CrossRef]
- Leavitt, J.R.; Hiatt, K.D.; Whiting, M.F.; Song, H. Searching for the optimal data partitioning strategy in mitochondrial phylogenomics: A phylogeny of Acridoidea (Insecta: Orthoptera: Caelifera) as a case study. Mol. Phylogenet. Evol. 2013, 67, 494–508. [Google Scholar] [CrossRef]
- Cameron, S.L.; Johnson, K.P.; Whiting, M.F. The mitochondrial genome of the screamer louse Bothriometopus (Phthiraptera: Ischnocera): Effects of extensive gene rearrangements on the evolution of the genome. J. Mol. Evol. 2007, 65, 589–604. [Google Scholar] [CrossRef]
- Dickey, A.M.; Kumar, V.; Morgan, J.K.; Jara-Cavieres, A.; Shatters, R.G.; McKenzie, C.L.; Osborne, L.S. A novel mitochondrial genome architecture in thrips (Insecta: Thysanoptera): Extreme size asymmetry among chromosomes and possible recent control region duplication. BMC Genom. 2015, 16, 439. [Google Scholar] [CrossRef] [Green Version]
- Nelson, L.A.; Lambkin, C.L.; Batterham, P.; Wallman, J.F.; Dowton, M.; Whiting, M.F.; Yeates, D.K.; Cameron, S.L. Beyond barcoding: A mitochondrial genomics approach to molecular phylogenetics and diagnostics of blowflies (Diptera: Calliphoridae). Gene 2012, 511, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Beckenbach, A.T.; Joy, J.B. Evolution of the mitochondrial genomes of gall midges (Diptera: Cecidomyiidae): Rearrangement and severe truncation of tRNA genes. Genome Biol. Evol. 2009, 1, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Huang, J.; Wu, H. Mitogenomes provide insights into the phylogeny of Mycetophilidae (Diptera: Sciaroidea). Gene 2021, 783, 145564. [Google Scholar] [CrossRef]
- Beckenbach, A.T. Mitochondrial genome sequences of Nematocera (lower Diptera): Evidence of rearrangement following a complete genome duplication in a winter crane fly. Genome Biol. Evol. 2012, 4, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Deviatiiarov, R.; Kikawada, T.; Gusev, O. The complete mitochondrial genome of an anhydrobiotic midge Polypedilum vanderplanki (Chironomidae, Diptera). Mitochondrial DNA Part. A 2017, 28, 218–220. [Google Scholar] [CrossRef]
- Lin, X.L.; Zhao, Y.M.; Yan, L.P.; Liu, W.B.; Bu, W.J.; Wang, X.H.; Zheng, C.G. Mitogenomes provide new insights into the evolutionary history of Prodiamesinae (Diptera: Chironomidae). Zool. Scr. 2022, 51, 119–132. [Google Scholar] [CrossRef]
- Zheng, C.-G.; Zhu, X.-X.; Yan, L.-P.; Yao, Y.; Bu, W.-J.; Wang, X.-H.; Lin, X.-L. First complete mitogenomes of Diamesinae, Orthocladiinae, Prodiamesinae, Tanypodinae (Diptera: Chironomidae) and their implication in phylogenetics. Peer J. 2021, 9, e11294. [Google Scholar] [CrossRef]
- Lei, T.; Song, C.; Zhu, X.-D.; Xu, B.-Y.; Qi, X. The complete mitochondrial genome of a non-biting midge Polypedilum unifascium (Tokunaga, 1938) (Diptera: Chironomidae). Mitochondrial DNA Part. B 2021, 6, 2212–2213. [Google Scholar] [CrossRef]
- Kong, F.-Q.; Zhao, Y.-C.; Chen, J.-L.; Lin, X.-L. First report of the complete mitogenome of Microchironomus tabarui Sasa, 1987 (Diptera, Chironomidae) from Hebei Province, China. Mitochondrial DNA Part. B 2021, 6, 2845–2846. [Google Scholar] [CrossRef]
- Hiki, K.; Oka, K.; Nakajima, N.; Yamamoto, H.; Yamagishi, T.; Sugaya, Y. The complete mitochondrial genome of the non-biting midge Chironomus yoshimatsui (Diptera: Chironomidae). Mitochondrial DNA Part. B 2021, 6, 2995–2996. [Google Scholar] [CrossRef]
- Jiang, Y.-W.; Zhao, Y.-M.; Lin, X.-L. First report of the complete mitogenome of Tanypus punctipennis Meigen, 1818 (Diptera, Chironomidae) from Hebei Province, China. Mitochondrial DNA Part. B 2022, 7, 215–216. [Google Scholar] [CrossRef]
- Cranston, P.S.; Dillon, M.E.; Pinder, L.C.V.; Reiss, F. The Adult Males of Chironominae (Diptera, Chironomidae) of the Holarctic Region—Keys and Diagnoses. In Chironomidae of the Holarctic region. Keys and diagnoses. Part 3—Adult Males; Wiederholm, T., Ed.; Entomologica Scandinavica: Lund, Sweden, 1989; pp. 353–502, Supplement 34. [Google Scholar]
- Wantzen, K.M.; Wagner, R. Detritus processing by invertebrate shredders: A neotropical–temperate comparison. J. North. Am. Benthol. Soc. 2006, 25, 216–232. [Google Scholar] [CrossRef]
- Valente-Neto, F.; Koroiva, R.; Fonseca-Gessner, A.A.; de Oliveira Roque, F. The effect of riparian deforestation on macroinvertebrates associated with submerged woody debris. Aquat. Ecol. 2015, 49, 115–125. [Google Scholar] [CrossRef]
- Martins, I.; Castro, D.M.; Macedo, D.R.; Hughes, R.M.; Callisto, M. Anthropogenic impacts influence the functional traits of Chironomidae (Diptera) assemblages in a neotropical savanna river basin. Aquat. Ecol. 2021, 55, 1081–1095. [Google Scholar] [CrossRef]
- Park, K.; Kim, W.-S.; Park, J.-W.; Kwak, I.-S. Complete mitochondrial genome of Chironomus flaviplumus (Diptera: Chironomidae) collected in Korea. Mitochondrial DNA Part. B 2021, 6, 2843–2844. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, Y.; Leung, H.C.; Yiu, S.-M.; Chin, F.Y. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Grant, J.R.; Stothard, P. The CGView Server: A comparative genomics tool for circular genomes. Nucleic Acids Res. 2008, 36, 181–184. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Vaidya, G.; Lohman, D.J.; Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 2011, 27, 171–180. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef] [Green Version]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.-T.; Schmidt, H.A.; Von Haeseler, A.; Minh, B.Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 2015, 32, 268–274. [Google Scholar] [CrossRef]
- de Oliveira Aragão, A.; Neto, J.P.N.; Cruz, A.C.R.; Casseb, S.M.M.; Cardoso, J.F.; da Silva, S.P.; Ishikawa, E.A.Y. Description and phylogeny of the mitochondrial genome of Sabethes chloropterus, Sabethes glaucodaemon and Sabethes belisarioi (Diptera: Culicidae). Genomics 2019, 111, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Yan, L.-P.; Pape, T.; Gao, Y.-Y.; Zhang, D. Evolutionary insights into bot flies (Insecta: Diptera: Oestridae) from comparative analysis of the mitochondrial genomes. Int. J. Biol. Macromol. 2020, 149, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, C.; Alves, J.M.; Foster, P.G.; Suesdek, L.; Sallum, M.A.M. Phylogeny and temporal diversification of mosquitoes (Diptera: Culicidae) with an emphasis on the Neotropical fauna. Syst. Entomol. 2021, 46, 798–811. [Google Scholar] [CrossRef]
- Thao, M.L.; Baumann, L.; Baumann, P. Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol. Biol. 2004, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Tan, H.-W.; Liu, G.-H.; Dong, X.; Lin, R.-Q.; Song, H.-Q.; Huang, S.-Y.; Yuan, Z.-G.; Zhao, G.-H.; Zhu, X.-Q. The complete mitochondrial genome of the Asiatic cavity-nesting honeybee Apis cerana (Hymenoptera: Apidae). PLoS ONE 2011, 6, e23008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, P.; Li, H.; Song, F.; Cai, Y.; Wang, J.; Liu, J.; Cai, W. Duplication and remolding of tRNA genes in the mitochondrial genome of Reduvius tenebrosus (Hemiptera: Reduviidae). Int. J. Mol. Sci. 2016, 17, 951. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Li, H.; Song, F.; Zhao, Y.; Wilson, J.J.; Cai, W. Higher-level phylogeny and evolutionary history of Pentatomomorpha (Hemiptera: Heteroptera) inferred from mitochondrial genome sequences. Syst. Entomol. 2019, 44, 810–819. [Google Scholar] [CrossRef]
Sample ID | Subfamily | Genus | Species | Sampling Metadata | Life Stage | Accession No | Reference |
---|---|---|---|---|---|---|---|
ZJ497 | Orthocladiinae | Rheocricotopus | Rheocricotopus villiculus | Tianmu Mountain National Nature Reserve, Hangzhou, Zhejiang, China, 30.3222° N, 119.442° E, 22-July-2019, leg. X.-L. Lin | Adult male | MW373526 | [33] |
CNUISI-020005203 | Chironominae | Chironomus | Chironomus flaviplumus | Yeondeung stream, Yeosu, South Korea 34°45′26.0″ N, E 127°42′51.2″ E, May-2020 | Larva | MW770891 | [42] |
JN861749 | Chironominae | Chironomus | Chironomus tepperi | NA | NA | JN861749 | [30] |
XL3993 | Chironominae | Microchironomus | Microchironomus tabarui | Hengshui, Hebei, China, 37.651626° N, 115.650831° E, 1-September-2020 | Adult male | MZ261913 | [35] |
BSZ13 | Chironominae | Polypedilum | Polypedilum unifascium | Lishui, Zhejiang, China, 27°45′16″ N, 119°11′15″ E, August-2020 | Larva | MW677959 | [34] |
KT251040 | Chironominae | Polypedilum | Polypedilum vanderplanki | rock pool, Nigeria, 11.088821° N, 7.734533° E | NA | KT251040 | [31] |
XL690 | Chironominae | Stenochironomus | Stenochironomus gibbus | Trondheim, Norway, 63.4224° N, 10.3451° E, leg. X.-L. Lin | Adult male | OL742440 | Present study |
ZJ761 | Chironominae | Stenochironomus | Stenochironomus okialbus | Xianju, Taizhou, Zhejiang, 28.674° N, 120.600° E, November-2019, leg. X.-L. Lin | Larva | OL753645 | Present study |
MYK13 | Chironominae | Stenochironomus | Stenochironomus sp. 1CZ | Zunyi, Guizhou, China, 27.834° N, 107.569° E, June-2020, leg. P.-P. Li | Adult male | OL753646 | Present study |
NLCH802 | Chironominae | Stenochironomus | Stenochironomus sp. 2CZ | Ganzhou, Jiangxi, China, 24.583° N, 114.446° E, August-2020, leg. X.-L. Lin | Larva | OL742441 | Present study |
XL1244 | Chironominae | Stenochironomus | Stenochironomus sp. 3CZ | Fogong, Nujiang, Yunnan, China, 26.5533° N, 98.9203° E, May-2018, leg. X.-L. Lin | Adult male | OL753647 | Present study |
XL1443 | Chironominae | Stenochironomus | Stenochironomus tobaduodecimus | Ledong, Hainan, China, 18.6927° N, 108.7960° E, March-2016, leg. B.-J. Sun | Adult male | OL753648 | Present study |
DWS114 | Chironominae | Stenochironomus | Stenochironomus zhengi | Pingbian, Honghe, Yunnan, China, 22.913178° N, 103.695553° E, leg. L.-Z. Meng | Adult male | OL753649 | Present study |
Species | Whole Genome | Protein Coding Genes | 1st Codon Position | 2nd Codon Position | 3rd Codon Position | tRNA Genes | 12S rRNA | 16S rRNA | Control Region | |
---|---|---|---|---|---|---|---|---|---|---|
A+T% | Stenochironomus gibbus | 82.6 | 78.0 | 73.0 | 69.5 | 91.5 | 83.8 | 88.1 | 89.3 | 97.6 |
Stenochironomus okialbus | 82.2 | 77.4 | 73.3 | 69.8 | 89.1 | 84.4 | 87.0 | 89.0 | 96.2 | |
Stenochironomus tobaduodecimus | 81.7 | 77.0 | 72.0 | 70.2 | 88.7 | 83.9 | 87.3 | 88.1 | 94.9 | |
Stenochironomus zhengi | 81.8 | 77.8 | 73.0 | 69.8 | 90.7 | 85.1 | 86.1 | 87.2 | 90.6 | |
Stenochironomus sp. 1CZ | 81.7 | 77.5 | 72.6 | 69.9 | 90.0 | 83.4 | 86.1 | 87.5 | 97.0 | |
Stenochironomus sp. 2CZ | 82.7 | 79.4 | 74.7 | 70.6 | 93.0 | 84.3 | 88.2 | 89.0 | 98.2 | |
Stenochironomus sp. 3CZ | 83.6 | 79.0 | 75.1 | 70.3 | 91.7 | 84.4 | 89.7 | 89.4 | 95.2 | |
AT- Skew | Stenochironomus gibbus | 0.01 | −0.18 | −0.05 | −0.41 | −0.11 | 0.05 | −0.03 | 0.00 | −0.08 |
Stenochironomus okialbus | 0.01 | −0.19 | −0.08 | −0.42 | −0.10 | 0.02 | −0.09 | 0.01 | −0.17 | |
Stenochironomus tobaduodecimus | −0.01 | −0.18 | −0.05 | −0.41 | −0.10 | 0.03 | −0.06 | −0.04 | −0.09 | |
Stenochironomus zhengi | −0.02 | −0.21 | −0.08 | −0.41 | −0.15 | 0.02 | −0.08 | 0.00 | 0.06 | |
Stenochironomus sp. 1CZ | 0.01 | −0.19 | −0.07 | −0.41 | −0.10 | 0.03 | −0.08 | 0.01 | −0.02 | |
Stenochironomus sp. 2CZ | 0.01 | −0.18 | −0.08 | −0.41 | −0.09 | 0.05 | −0.06 | 0.01 | −0.11 | |
Stenochironomus sp. 3CZ | 0.02 | −0.18 | −0.08 | −0.41 | −0.09 | 0.06 | −0.05 | 0.01 | −0.09 | |
GC- Skew | Stenochironomus gibbus | −0.24 | 0.00 | 0.18 | −0.11 | −0.18 | −0.15 | −0.33 | −0.46 | −0.33 |
Stenochironomus okialbus | −0.22 | −0.03 | 0.19 | −0.14 | −0.23 | −0.13 | −0.33 | −0.42 | 0.32 | |
Stenochironomus tobaduodecimus | −0.34 | −0.04 | 0.12 | −0.13 | −0.20 | −0.16 | −0.40 | −0.43 | −0.02 | |
Stenochironomus zhengi | −0.27 | −0.04 | 0.13 | −0.13 | −0.23 | −0.15 | −0.25 | −0.45 | −0.55 | |
Stenochironomus sp. 1CZ | −0.29 | −0.01 | 0.18 | −0.14 | −0.16 | −0.16 | −0.38 | −0.46 | −0.50 | |
Stenochironomus sp. 2CZ | −0.21 | 0.02 | 0.22 | −0.13 | −0.07 | −0.12 | −0.27 | −0.45 | 0.00 | |
Stenochironomus sp. 3CZ | −0.24 | −0.01 | 0.20 | −0.13 | −0.18 | −0.14 | −0.22 | −0.36 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, C.-G.; Liu, Z.; Zhao, Y.-M.; Wang, Y.; Bu, W.-J.; Wang, X.-H.; Lin, X.-L. First Report on Mitochondrial Gene Rearrangement in Non-Biting Midges, Revealing a Synapomorphy in Stenochironomus Kieffer (Diptera: Chironomidae). Insects 2022, 13, 115. https://doi.org/10.3390/insects13020115
Zheng C-G, Liu Z, Zhao Y-M, Wang Y, Bu W-J, Wang X-H, Lin X-L. First Report on Mitochondrial Gene Rearrangement in Non-Biting Midges, Revealing a Synapomorphy in Stenochironomus Kieffer (Diptera: Chironomidae). Insects. 2022; 13(2):115. https://doi.org/10.3390/insects13020115
Chicago/Turabian StyleZheng, Chen-Guang, Zheng Liu, Yan-Min Zhao, Yang Wang, Wen-Jun Bu, Xin-Hua Wang, and Xiao-Long Lin. 2022. "First Report on Mitochondrial Gene Rearrangement in Non-Biting Midges, Revealing a Synapomorphy in Stenochironomus Kieffer (Diptera: Chironomidae)" Insects 13, no. 2: 115. https://doi.org/10.3390/insects13020115
APA StyleZheng, C.-G., Liu, Z., Zhao, Y.-M., Wang, Y., Bu, W.-J., Wang, X.-H., & Lin, X.-L. (2022). First Report on Mitochondrial Gene Rearrangement in Non-Biting Midges, Revealing a Synapomorphy in Stenochironomus Kieffer (Diptera: Chironomidae). Insects, 13(2), 115. https://doi.org/10.3390/insects13020115