Effect of Irradiation on Reproduction of Female Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae) in Relation to the Inherited Sterility Technique
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Culture and Maintenance of Spodoptera litura
2.2. Irradiation Treatment
2.3. Behavioral Study
2.4. GC-MS Analysis
2.5. Sampling, RNA Isolation and cDNA Synthesis
2.6. Measurement of Gene Expression through qPCR
2.7. Statistical Analyses
3. Results
3.1. Radiation Effects on Mating Behavior and Reproduction
3.2. GC-MS Analysis of Pheromone Profiles
3.3. Irradiation Effects on Reproductive Genes
3.3.1. PBAN Expression Levels
3.3.2. PBAN-R Expression Levels
3.3.3. Vg Expression Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bernays, E.A. Evolution of feeding behaviour in insect herbivores. Bioscience 1998, 48, 35–44. [Google Scholar] [CrossRef]
- Bragard, C.; Dehnen-Schmutz, K.; Di Serio, F.; Gonthier, P.; Jacques, M.A.; Jaques Miret, J.A.; Justesen, A.F.; Magnusson, C.S.; Milonas, P.; Navas-Cortes, J.A.; et al. EFSA Panel on Plant Health (PLH) Pest categorisation of Spodoptera litura. EFSA J. 2019, 17, e05765. [Google Scholar] [PubMed]
- Armes, N.J.; Wightman, J.A.; Jadhav, D.R.; Ranga Rao, G.V. Status of insecticide resistance in Spodoptera litura in Andhra Pradesh, India. Pestic. Sci. 1997, 50, 240–248. [Google Scholar] [CrossRef]
- Shi, L.; Shi, Y.; Zhang, Y.; Liao, X. A systemic study of indoxacarb resistance in Spodoptera litura revealed complex expression profiles and regulatory mechanism. Sci. Rep. 2019, 9, 14997. [Google Scholar] [CrossRef]
- Dyck, V.A.; Hendrichs, J.; Robinson, A.S. Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management; Taylor & Francis: Abingdon, UK, 2021; p. 1216. [Google Scholar]
- Marec, F.; Vreysen, M.J. Advances and challenges of using the sterile insect technique for the management of pest Lepidoptera. Insects 2019, 10, 371. [Google Scholar] [CrossRef]
- LaChance, L.E. Genetic Methods for the Control of Lepidopteran Species: Status and Potential; United States Department of Agriculture, Agricultural Research Service: Washington, DC, USA, 1985; Volume ARS-28, p. 44.
- LaChance, L.E. Dominant lethal mutations in insects with holokinetic chromosomes. 2. Irradiation of sperm of cabbage looper. Ann. Entomol. Soc. Am. 1974, 67, 35–39. [Google Scholar] [CrossRef]
- Marec, F.; Tothová, A.; Sahara, K.; Traut, W. Meiotic pairing of sex chromosome fragments and its relation to atypical transmission of a sex-linked marker in Ephestia kuehniella (Insecta: Lepidoptera). Heredity 2001, 87, 659–671. [Google Scholar] [CrossRef] [PubMed]
- LaChance, L.E.; Graham, C.K. Insect radiosensitivity: Dose curves and dose-fractionation studies of dominant lethal mutations in the mature sperm of 4 insect species. Mutat. Res. 1984, 127, 49–59. [Google Scholar] [CrossRef]
- Carpenter, J.E.; Bloem, S.; Marec, F. Inherited sterility in insects. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management; Dyck, V.A., Hendrichs, J., Robinson, A.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 115–146. [Google Scholar]
- Vreysen, M.J.; Hendrichs, J.; Enkerlin, W.R. The sterile insect technique as a component of sustainable area-wide integrated pest management of selected horticultural insect pests. J. Fruit Ornam. Plant Res. 2006, 14, 107. [Google Scholar]
- Vreysen, M.J.B.; Klassen, W.; Carpenter, J.E. Overview of technological advances toward greater efficiency and efficacy in sterile insect-inherited sterility programs against moth pests. Fla. Entomol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Traut, W. A study of recombination, formation of chiasmata and synaptonemal complexes in female and male meiosis of Ephestia kuehniella (Lepidoptera). Genetica 1977, 47, 135–142. [Google Scholar] [CrossRef]
- Marec, F.; Kollárová, I.; Pavelka, J. Radiation-induced inherited sterility combined with a genetic sexing system in Ephestia kuehniella (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 1999, 92, 250–259. [Google Scholar] [CrossRef]
- Seth, R.K.; Sehgal, S.S. Partial sterilizing radiation dose effect on the F1 progeny of Spodoptera litura (Fabr.). In Management of Insect Pests: Nuclear and Related Molecular and Genatic Technique, Proceedings of the Symposium Held in Vienna, Vienna, Austria, 19–23 October 1992; IAEA: Vienna, Austria, 1993; pp. 19–23. [Google Scholar]
- Seth, R.K.; Sharma, V.P. Inherited sterility by substerilizing radiation in Spodoptera litura (Lepidoptera: Noctuidae): Bioefficacy and potential for pest suppression. Fla. Entomol. 2001, 84, 183–193. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, L.Y.; Liu, F.T.; Wang, X.F.; Chen, P.; Xu, J.; Deng, J.Y.; Ye, H. Sex pheromone titer in the glands of Spodoptera litura females: Circadian rhythm and the effects of age and mating. Physiol. Entomol. 2017, 42, 156–162. [Google Scholar] [CrossRef]
- Lu, Q.; Huang, L.Y.; Chen, P.; Yu, J.F.; Xu, J.; Deng, J.Y.; Ye, H. Identification and RNA interference of the pheromone biosynthesis activating neuropeptide (PBAN) in the common cutworm moth Spodoptera litura (Lepidoptera: Noctuidae). J. Econ. Entomol. 2015, 108, 1344–1353. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Luo, L.; Jiang, X.; Zhang, L.; Niu, C. Expression of pheromone biosynthesis activating neuropeptide and its receptor (PBANR) mRNA in adult female Spodoptera exigua (Lepidoptera: Noctuidae). Arch. Insect Biochem. Physiol. 2010, 75, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Zhou, J.; Tang, W.; Lu, K.; Zhou, Q.; Zhang, G. Molecular characterization and expression pattern of Spodoptera litura (Lepidoptera: Noctuidae) vitellogenin, and its response to lead stress. J. Insect Physiol. 2009, 55, 608–616. [Google Scholar] [CrossRef] [PubMed]
- Rio, D.C.; Ares, M.; Hannon, G.J.; Nilsen, T.W. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb. Protoc. 2010, 6, pdb-prot5439. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Löfstedt, C.; Herrebout, W.M.; Du, J.W. Evolution of the ermine moth pheromone tetradecyl acetate. Nature 1986, 323, 621–623. [Google Scholar] [CrossRef]
- Booth, Y.K.; Kitching, W.; De Voss, J.J. Biosynthesis of insect spiroacetals. Nat. Prod. Rep. 2009, 26, 490–525. [Google Scholar] [CrossRef] [PubMed]
- Jurenka, R.A. Biosynthetic pathway for producing the sex pheromone component (Z, E)-9, 12-tetradecadienyl acetate in moths involves a Δ 12 desaturase. Cell. Mol. Life Sci. 1997, 53, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Cocchiararo-Bastias, L.M.; Mijailovsky, S.J.; Calderon-Fernández, G.M.; Lorenzo Figueiras, A.N.; Juárez, M.P. Epicuticle lipids mediate mate recognition in Triatoma infestans. J. Chem. Ecol. 2011, 37, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Aviles, A.; Cordeiro, A.; Maria, A.; Bozzolan, F.; Boulogne, I.; Dacher, M.; Goutte, A.; Alliot, F.; Maïbèche, M.; Massot, M.; et al. Effects of DEHP on the ecdysteroid pathway, sexual behavior and offspring of the moth Spodoptera littoralis. Horm. Behav. 2020, 125, 104808. [Google Scholar] [CrossRef]
- Böröczky, K.; Wada-Katsumata, A.; Batchelor, D.; Zhukovskaya, M.; Schal, C. Insects groom their antennae to enhance olfactory acuity. Proc. Natl. Acad. Sci. USA 2013, 110, 3615–3620. [Google Scholar] [CrossRef]
- Hoyt, C.P.; Osborne, G.O.; Mulcock, A.P. Production of an insect sex attractant by symbiotic bacteria. Nature 1971, 230, 472–473. [Google Scholar] [CrossRef] [PubMed]
- Böröczky, K.; Crook, D.J.; Jones, T.H.; Kenny, J.C.; Zylstra, K.E.; Mastro, V.C.; Tumlinson, J.H. Monoalkenes as contact sex pheromone components of the woodwasp Sirex noctilio. J. Chem. Ecol. 2009, 35, 1202–1211. [Google Scholar] [CrossRef]
- Caravantes-Villatoro, L.A.; Cruz-Esteban, S.; Rojas, J.C. Cuticular hydrocarbons of Anastrepha obliqua (Diptera: Tephritidae) as influenced by extraction method, natal host, and age. Fla. Entomol. 2021, 104, 289–296. [Google Scholar] [CrossRef]
- Attygalle, A.B.; Cai-Hong, W.U.; Schwarz, J.; Vostrowsky, O.; Hasenfuss, I.; Bestmann, H.J. Sex pheromone of female Myelois cribrella Hübner (Lepidoptera: Pyralidae). J. Chem. Ecol. 1988, 14, 485–494. [Google Scholar] [CrossRef]
- Martinez, T.; Fabrias, G.; Camps, F. Sex pheromone biosynthetic pathway in Spodoptera littoralis and its activation by a neurohormone. J. Biol. Chem. 1990, 265, 1381–1387. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhao, C.H.; Wang, C.Z. Comparative study of sex pheromone composition and biosynthesis in Helicoverpa armigera, H. assulta and their hybrid. Insect Biochem. Mol. Biol. 2005, 35, 575–583. [Google Scholar] [CrossRef] [PubMed]
- Mast, J.D.; De Moraes, C.M.; Alborn, H.T.; Lavis, L.D.; Stern, D.L. Evolved differences in larval social behavior mediated by novel pheromones. Elife 2014, 3, e04205. [Google Scholar] [CrossRef] [PubMed]
- Park, G.W.; Jung, R.; Woon, K. Sex Pheromones as a Tool to Overcome Parnassius bremeri Bremer Shortfall in Conservation Biology. (Lepidoptera: Papilionidae). Proceedings of the Korean Society of Applied Entomology Conference 2016 Regular General Assembly and International Symposium of the Korean Society of Applied Entomology. 2016, p. 93. Available online: https://db.koreascholar.com/article?code=312969 (accessed on 6 September 2022).
- Rouault, J.; Capy, P.; Jallon, J.M. Variations of male cuticular hydrocarbons with geoclimatic variables: An adaptative mechanism in Drosophila melanogaster? Genetica 2000, 110, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Liénard, M.A.; Zhao, C.H.; Wang, C.Z.; Löfstedt, C. Neofunctionalization in an ancestral insect desaturase lineage led to rare Δ6 pheromone signals in the Chinese tussah silkworm. Insect Biochem. Mol. Biol. 2010, 40, 742–751. [Google Scholar] [CrossRef]
- Ananthakrishnan, T.N. Allelochemical synergism and insect behavioural diversity. Curr. Sci. 1997, 72, 628–630. [Google Scholar]
- Charlton, R.E.; Roelofs, W.L. Biosynthesis of a volatile, methly-branched hydrocarbon sex pheromone from leucine by arctiid moths (Holomelina spp.). Arch. Insect Biochem. Physiol. 1991, 18, 81–97. [Google Scholar] [CrossRef]
- Linley, J.R.; Carlson, D.A. A contact mating pheromone in the biting midge, Culicoides melleus. J. Insect Physiol. 1978, 24, 423–427. [Google Scholar] [CrossRef]
- Eom, I.Y.; Risticevic, S.; Pawliszyn, J. Simultaneous sampling and analysis of indoor air infested with Cimex lectularius L. (Hemiptera: Cimicidae) by solid phase microextraction, thin film microextraction and needle trap device. Anal. Chim. Acta 2012, 716, 2–10. [Google Scholar] [CrossRef]
- Seenivasagan, T.; Sharma, K.R.; Sekhar, K.; Ganesan, K.; Prakash, S.; Vijayaraghavan, R. Electroantennogram, flight orientation, and oviposition responses of Aedes aegypti to the oviposition pheromone n-heneicosane. Parasitol. Res. 2009, 104, 827–833. [Google Scholar] [CrossRef]
- Grant, G.G.; Frech, D.; MacDonald, L.; Slessor, K.N.; King, G.G.S. Copulation releaser pheromone in body scales of female whitemarked tussock moth, Orgyia leucostigma (Lepidoptera: Lymantriidae): Identification and behavioral role. J. Chem. Ecol. 1987, 13, 345–356. [Google Scholar] [CrossRef]
- Kittayapong, P.; Kaeothaisong, N.O.; Ninphanomchai, S.; Limohpasmanee, W. Combined sterile insect technique and incompatible insect technique: Sex separation and quality of sterile Aedes aegypti male mosquitoes released in a pilot population suppression trial in Thailand. Parasites Vectors 2018, 11, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Vera, M.T.; Cladera, J.L.; Calcagno, G.; Vilardi, J.C.; Mcinnis, D.W. Remating of wild Ceratitis capitata (Diptera: Tephritidae) females in field cages. Ann. Entomol. Soc. Am. 2003, 96, 563–570. [Google Scholar] [CrossRef][Green Version]
- Mudavanhu, P.; Addison, P.; Carpenter, J.E.; Conlong, D.E. Mating compatibility and competitiveness between wild and laboratory strains of Eldana saccharina (Lepidoptera: Pyralidae) after radiation treatment. Fla. Entomol. 2016, 99 (Suppl. 1), 54–65. [Google Scholar] [CrossRef]
- Walton, A.J.; Conlong, D.E. General biology of Eldana saccharina (Lepidoptera: Pyralidae): A target for the sterile insect technique. Fla. Entomol. 2016, 99 (Suppl. 1), 30–35. [Google Scholar] [CrossRef]
- Chakroun, S.; Rempoulakis, P.; Lebdi-Grissa, K.; Vreysen, M.J. Gamma irradiation of the carob or date moth Ectomyelois ceratoniae: Dose–response effects on egg hatch, fecundity, and survival. Entomol. Exp. Appl. 2017, 164, 257–268. [Google Scholar] [CrossRef]
- Bloem, S.; Bloem, K.A.; Carpenter, J.E.; Calkins, C.O. Inherited sterility in codling moth (Lepidoptera: Tortricidae): Effect of substerilizing doses of radiation on insect fecundity, fertility, and control. Ann. Entomol. Soc. Am. 1999, 92, 222–229. [Google Scholar] [CrossRef]
- Kouloussis, N.A.; Gerofotis, C.D.; Ioannou, C.S.; Iliadis, I.V.; Papadopoulos, N.T.; Koveos, D.S. Towards improving sterile insect technique: Exposure to orange oil compounds increases sexual signalling and longevity in Ceratitis capitata males of the Vienna 8 GSS. PLoS ONE 2017, 12, e0188092. [Google Scholar] [CrossRef]
- Abdu, R.M.; Abdel-Kader, M.M.; Hussein, M.A.; Abdel-Rahman, H.A. Biological effects of gamma radiation on stored product insects. 4-radiation effects on sex pheromone production and perception by the rust-red flour beetle. Tribolium castaneum (herbst). Qatar Univ. Sci. Bull. 1985, 5, 286–289. [Google Scholar]
- Sato, Y.; Ikeda, M.; Yamashita, O. Neurosecretory cells expressing the gene for common precursor for diapause hormone and pheromone biosynthesis-activating neuropeptide in the suboesophageal ganglion of the silkworm, Bombyx mori. Gen. Comp. Endocrinol. 1994, 96, 27–36. [Google Scholar] [CrossRef]
- Sengupta, M.; Angmo, N.; Vimal, N.; Seth, R.K. Effect of ionizing radiation on pheromone biosynthesis activating neuropeptide (PBAN) gene expression and its photosensitive rhythm in female Spodoptera litura (F.). Indian J. Entomol. 2022, 85, 1–6. [Google Scholar] [CrossRef]
- Rafaeli, A. Pheromone biosynthesis activating neuropeptide (PBAN): Regulatory role and mode of action. Gen. Comp. Endocrinol. 2009, 162, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Cheek, A.O.; Brouwer, T.H.; Carroll, S.; Manning, S.; McLachlan, J.A.; Brouwer, M. Experimental evaluation of vitellogenin as a predictive biomarker for reproductive disruption. Environ. Health Perspect. 2001, 109, 681–690. [Google Scholar] [CrossRef]
- Husain, M.; Rasool, K.G.; Tufail, M.; Sutanto, K.D.; Alwaneen, W.S.; Aldawood, A.S. Ultra Violet (UV-B) radiation intrudes Cadra cautella reproductive biology by influencing vitellogenin expression. J. King Saud Univ. Sci. 2022, 34, 102290. [Google Scholar] [CrossRef]
- Hasaballah, A.I. Impact of paternal transmission of gamma radiation on reproduction, oogenesis, and spermatogenesis of the housefly, Musca domestica L. (Diptera: Muscidae). Int. J. Radiat. Biol. 2021, 97, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Seth, R.K.; Khan, Z.; Rao, D.K.; Zarin, M. Flight activity and mating behavior of irradiated Spodoptera litura (Lepidoptera: Noctuidae) males and their F1 progeny for use of inherited sterility in pest management approaches. Fla. Entomol. 2016, 99 (Suppl. 1), 119–130. [Google Scholar] [CrossRef]
S.No. | Gene | Primer Sequences | Accession No. |
---|---|---|---|
1 | EF1 α | F 5′-GACAAACGTACCCATCGAGAAG-3′ R 5′-GATACCAGCCTCGAACTCAC-3′ | XM_022965580.1 |
2 | PBAN | F 5′-CTCGGCAGGACGATGAATTT-3′ R 5′-CTGTTGGTACTCCTGACCATTC-3′ | KP_006328.1 |
3 | PBAN-R | F 5′-GTATTCTTCGTGGTGCCTATGT-3′ R 5′-CGAGAGCTTCTTCACTGGATG-3′ | KM_023791.1 |
4 | Vg | F 5′-GTTGTCTGCCGGTCGAATAA-3′ R 5′-GACTTTCCTGAGTCTGTGTGAG-3′ | EU_095334.1 |
Functional Category | Pheromone Components | Reference |
---|---|---|
Sex attractants | 1-tetradecyl acetate | [24] |
11-oxohexadecanoic acid | [25] | |
(Z,E)-9,12-Tetradecadienyl acetate | [26] | |
1-docosanol acetate | [27] | |
Bis(2-ethylexyl) phthalate | [28] | |
Tetracontane | [29] | |
(E,E,E,E)-squalene | [30] | |
Hexatriacontane | [31] | |
2-methyl octacosane | [32] | |
Tricosyl acetate | [33] | |
Sex pheromone precursor | n-Hexadecanoic acid | [34] |
9,12-octadecadienoic acid | [35] | |
9-octadecanoic-(Z)-methyl ester | [36] | |
n-Eicosane | [37] | |
2-methyl octasane | [38] | |
(9,12)-hexadecadieonoic acetate | [39] | |
(Z)-7-hexadecanal | [40] | |
1-heptadecane carboxylic acid | [41] | |
Orientation pheromone | n-docosane | [42] |
Ovipositor releasor | 1,2-benzenedicarboxylic acid | [43] |
Heneicosane | [44] | |
Copulation releasor/terminator | 2,6,10,15-tetramethyl heptadecane | [45] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sengupta, M.; Vimal, N.; Angmo, N.; Seth, R.K. Effect of Irradiation on Reproduction of Female Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae) in Relation to the Inherited Sterility Technique. Insects 2022, 13, 898. https://doi.org/10.3390/insects13100898
Sengupta M, Vimal N, Angmo N, Seth RK. Effect of Irradiation on Reproduction of Female Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae) in Relation to the Inherited Sterility Technique. Insects. 2022; 13(10):898. https://doi.org/10.3390/insects13100898
Chicago/Turabian StyleSengupta, Madhumita, Neha Vimal, Nilza Angmo, and Rakesh Kumar Seth. 2022. "Effect of Irradiation on Reproduction of Female Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae) in Relation to the Inherited Sterility Technique" Insects 13, no. 10: 898. https://doi.org/10.3390/insects13100898
APA StyleSengupta, M., Vimal, N., Angmo, N., & Seth, R. K. (2022). Effect of Irradiation on Reproduction of Female Spodoptera litura (Fabr.) (Lepidoptera: Noctuidae) in Relation to the Inherited Sterility Technique. Insects, 13(10), 898. https://doi.org/10.3390/insects13100898