Resin Use by Stingless Bees: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. What Is Resin?
3. Resin Use by Stingless Bees
3.1. Nest Construction
3.2. Defense
3.2.1. Structural Defenses
3.2.2. Direct Defenses
3.3. Resin Foraging
3.4. Resin Handling
3.5. Resin Shapes the Cuticular Chemical Profile of Some Stingless Bees
3.6. Microbiota Associated with Stingless Bees
4. Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grüter, C. Stingless Bees: Their Behavior, Ecology and Evolution; Springer Nature Switzerland AG: Cham, Switzerland, 2020; Volume s4-V, ISBN 9783030600891. [Google Scholar]
- Schwarz, H.F. Stingless bees of the western hemisphere. Bull. Am. Mus. Nat. Hist. 1948, 90, 1–546. [Google Scholar]
- Suryanarayanan, S.; Beilin, K. Milpa-Melipona-Maya: Mayan interspecies alliances facing agribiotechnology in Yucatan. ACME 2020, 19, 469–500. [Google Scholar]
- Cortopassi-Laurino, M.; Imperatriz-Fonseca, V.L.; Roubik, D.W.; Dollin, A.; Heard, T.; Aguilar, I.; Venturieri, G.C.; Eardley, C.; Nogueira-Neto, P. Global meliponiculture: Challenges and opportunities. Apidologie 2006, 37, 275–292. [Google Scholar] [CrossRef] [Green Version]
- Reyes-González, A.; Camou-Guerrero, A.; del-Val, E.; Ramírez, M.I.; Porter-Bolland, L. Biocultural diversity loss: The decline of native stingless bees (Apidae: Meliponini) and local ecological knowledge in Michoacán, Western México. Hum. Ecol. 2020, 48, 411–422. [Google Scholar] [CrossRef]
- Chan, M.G.A.; Vera, C.G.; Aldasoro, M.E.M.; Sotelo, S.L.E. Retomando saberes contemporáneos: Un análisis del panorma actual de la meliponicultura en Tabasco. Estud. Cult. Maya 2019, LIII, 289–326. [Google Scholar] [CrossRef]
- Cano-Contreras, E.J.; Martínez Martínez, C.; Balboa Aguilar, C.C. La “abeja de monte” (Insecta: Apidae, Meliponini) de los Choles de Tacotalpa, Tabasco: Conocimiento local, presente y futuro. Etnobiología 2013, 11, 47–57. [Google Scholar]
- Arnold, N.; Zepeda, R.; Vásquez, M.; Aldasoro, M. Las Abejas Sin Aguijón y su Cultivo en Oaxaca, México: Con Catálogo de Especies; El Colegio de la Frontera Sur: San Cristóbal de Las Casas, México, 2018; ISBN 9786078429530. [Google Scholar]
- Popova, M.; Trusheva, B.; Bankova, V. Propolis of stingless bees: A phytochemist’s guide through the jungle of tropical biodiversity. Phytomedicine 2021, 86, 153098. [Google Scholar] [CrossRef] [PubMed]
- Roubik, D.W. Stingless bee nesting biology. Apidologie 2006, 37, 124–143. [Google Scholar] [CrossRef] [Green Version]
- Halcroft, M.; Spooner-Hart, R.; Neumann, P. Behavioral defense strategies of the stingless bee, Austroplebeia australis, against the small hive beetle, Aethina tumida. Insectes Soc. 2011, 58, 245–253. [Google Scholar] [CrossRef]
- Nunes, T.M.; Von Zuben, L.G.; Costa, L.; Venturieri, G.C. Defensive repertoire of the stingless bee Melipona flavolineata Friese (Hymenoptera: Apidae). Sociobiology 2014, 61, 541–546. [Google Scholar] [CrossRef] [Green Version]
- Greco, M.K.; Hoffmann, D.; Dollin, A.; Duncan, M.; Spooner-Hart, R.; Neumann, P. The alternative Pharaoh approach: Stingless bees mummify beetle parasites alive. Naturwissenschaften 2010, 97, 319–323. [Google Scholar] [CrossRef] [Green Version]
- Duangphakdee, O.; Koeniger, N.; Deowanish, S.; Hepburn, H.R.; Wongsiri, S. Ant repellent resins of honeybees and stingless bees. Insectes Soc. 2009, 56, 333–339. [Google Scholar] [CrossRef]
- Drescher, N.; Wallace, H.M.; Katouli, M.; Massaro, C.F.; Leonhardt, S.D. Diversity matters: How bees benefit from different resin sources. Oecologia 2014, 176, 943–953. [Google Scholar] [CrossRef]
- Leonhardt, S.D. Chemical ecology of stingless bees. J. Chem. Ecol. 2017, 43, 385–402. [Google Scholar] [CrossRef]
- Paludo, C.R.; Menezes, C.; Silva-Junior, E.A.; Vollet-Neto, A.; Andrade-Dominguez, A.; Pishchany, G.; Khadempour, L.; Do Nascimento, F.S.; Currie, C.R.; Kolter, R.; et al. Stingless bee larvae require fungal steroid to pupate. Sci. Rep. 2018, 8, 1122. [Google Scholar] [CrossRef]
- Menezes, C.; Vollet-Neto, A.; Marsaioli, A.J.; Zampieri, D.; Fontoura, I.C.; Luchessi, A.D.; Imperatriz-Fonseca, V.L. A Brazilian social bee must cultivate fungus to survive. Curr. Biol. 2015, 25, 2851–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalenberg, H.; Maes, P.; Mott, B.; Anderson, K.E.; Spivak, M. Propolis envelope promotes beneficial bacteria in the honey bee (Apis mellifera) mouthpart microbiome. Insects 2020, 11, 453. [Google Scholar] [CrossRef] [PubMed]
- Saelao, P.; Borba, R.S.; Ricigliano, V.; Spivak, M.; Simone-Finstrom, M. Honeybee microbiome is stabilized in the presence of propolis. Biol. Lett. 2020, 16, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, V.H.; Amith, J.D.; Stein, T.J. Nesting ecology and the cultural importance of stingless bees to speakers of Yoloxóchitl Mixtec, an endangered language in Guerrero, Mexico. Apidologie 2018, 49, 625–636. [Google Scholar] [CrossRef] [Green Version]
- Langenheim, J.H. Plant Resins: Chemistry, Evolution, Ecology, and Ethnobotany; Timber Press: Portland, OR, USA, 2003. [Google Scholar]
- Leonhardt, S.D.; Baumann, A.M.; Wallace, H.M.; Brooks, P.; Schmitt, T. The chemistry of an unusual seed dispersal mutualism: Bees use a complex set of olfactory cues to find their partner. Anim. Behav. 2014, 98, 41–51. [Google Scholar] [CrossRef]
- Wallace, H.M.; Lee, D.J. Resin-foraging by colonies of Trigona sapiens and T. hockingsi (Hymenoptera: Apidae, Meliponini) and consequent seed dispersal of Corymbia torelliana (Myrtaceae). Apidologie 2010, 41, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Armbruster, W.S. The role of resin in angiosperm pollination: Ecological and chemical considerations. Am. J. Bot. 1984, 71, 1149–1160. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Zeilhofer, S.; Blüthgen, N.; Schmitt, T. Stingless bees use terpenes as olfactory cues to find resin sources. Chem. Senses 2010, 35, 603–611. [Google Scholar] [CrossRef] [Green Version]
- Gompper, M.E.; Hoylman, A.M. Grooming with Trattinnickia resin: Possible pharmaceutical plant use by coatis in Panama. J. Trop. Ecol. 1993, 9, 533–540. [Google Scholar] [CrossRef]
- Simone, M.; Evans, J.D.; Spivak, M. Resin collection and social immunity in honey bees. Evolution 2009, 63, 3016–3022. [Google Scholar] [CrossRef] [PubMed]
- Roubik, D.W. Ecology and Natural History of Tropical Bees; Cambridge University Press: New York, NY, USA, 1989. [Google Scholar]
- Martins, A.C.; Melo, G.A.R.; Renner, S.S. The corbiculate bees arose from New World oil-collecting bees: Implications for the origin of pollen baskets. Mol. Phylogenet. Evol. 2014, 80, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Simone-Finstrom, M.; Spivak, M. Propolis and bee health: The natural history and significance of resin use by honey bees. Apidologie 2010, 41, 295–311. [Google Scholar] [CrossRef] [Green Version]
- Simone-Finstrom, M.; Borba, R.S.; Wilson, M.; Spivak, M. Propolis counteracts some threats to honey bee health. Insects 2017, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Mountford-McAuley, R.; Prior, J.; Clavijo McCormick, A. Factors affecting propolis production. J. Apic. Res. 2021. [Google Scholar] [CrossRef]
- Boongird, S.; Michener, C.D. Pollen and propolis collecting by male stingless bees (Hymenoptera: Apidae). J. Kans. Entomol. Soc. 2010, 83, 47–50. [Google Scholar] [CrossRef]
- Rasmussen, C.; Camargo, J.M.F. A molecular phylogeny and the evolution of nest architecture and behavior in Trigona s.s. (Hymenoptera: Apidae: Meliponini). Apidologie 2008, 39, 102–118. [Google Scholar] [CrossRef]
- Berenbaum, M.R.; Calla, B. Honey as a functional food for Apis mellifera. Annu. Rev. Entomol. 2021, 66, 185–208. [Google Scholar] [CrossRef]
- Stow, A.; Briscoe, D.; Gillings, M.; Holley, M.; Smith, S.; Leys, R.; Silberbauer, T.; Turnbull, C.; Beattie, A. Antimicrobial defences increase with sociality in bees. Biol. Lett. 2007, 3, 422–424. [Google Scholar] [CrossRef] [Green Version]
- Baracchi, D.; Tragust, S. Venom as a component of external immune defense in Hymenoptera. In Evolution of Venomous Animals and Their Toxins; Gopalakrishnakone, P., Malhotra, A., Eds.; Springer Nature: Dordrecht, The Netherlands, 2017; pp. 213–233. ISBN 9789400764576. [Google Scholar]
- Baracchi, D.; Francese, S.; Turillazzi, S. Beyond the antipredatory defence: Honey bee venom function as a component of social immunity. Toxicon 2011, 58, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Vasquez, A.; Forsgren, E.; Fries, I.; Paxton, R.J.; Flaberg, E.; Szekely, L.; Olofsson, T.C. Symbionts as major modulators of insect health: Lactic acid bacteria and honeybees. PLoS ONE 2012, 7, e33188. [Google Scholar] [CrossRef]
- Christe, P.; Oppliger, A.; Bancalà, F.; Castella, G.; Chapuisat, M. Evidence for collective medication in ants. Ecol. Lett. 2003, 6, 19–22. [Google Scholar] [CrossRef] [Green Version]
- Litman, J.R.; Danforth, B.N.; Eardley, C.D.; Praz, C.J. Why do leafcutter bees cut leaves? New insights into the early evolution of bees. Proc. R. Soc. B Biol. Sci. 2011, 278, 3593–3600. [Google Scholar] [CrossRef] [Green Version]
- Requier, F.; Leonhardt, S.D. Beyond flowers: Including non-floral resources in bee conservation schemes. J. Insect Conserv. 2020, 24, 5–16. [Google Scholar] [CrossRef]
- Camargo, J.M.F.; Pedro, S.R.M. Mutualistic association between a tiny Amazonian stingless bee and a wax-producing scale insect. Biotropica 2002, 34, 446–451. [Google Scholar] [CrossRef]
- Milborrow, B.V.; Kennedy, J.M.; Dollin, A. Composition of wax made by the Australian stingless bee Trigona australis. Aust. J. Biol. Sci. 1987, 40, 15–26. [Google Scholar] [CrossRef]
- Massaro, F.C.; Brooks, P.R.; Wallace, H.M.; Russell, F.D. Cerumen of Australian stingless bees (Tetragonula carbonaria): Gas chromatography-mass spectrometry fingerprints and potential anti-inflammatory properties. Naturwissenschaften 2011, 98, 329–337. [Google Scholar] [CrossRef]
- Wille, A.; Michener, C.D. The nest architecture of stingless bees with special reference to those of Costa Rica. Rev. Biol. Trop. 1973, 21, 1–274. [Google Scholar]
- Blomquist, G.J.; Roubik, D.W.; Buchmann, S.L. Wax chemistry of two stingless bees of the Trigonisca group (Apididae: Meliponinae). Comp. Biochem. Physiol. 1985, 82B, 137–142. [Google Scholar] [CrossRef]
- dos Santos, C.G.; Megiolaro, F.L.; Serrão, J.E.; Blochtein, B. Morphology of the head salivary and intramandibular glands of the stingless bee Plebeia emerina (Hymenoptera: Meliponini) workers associated with propolis. Ann. Entomol. Soc. Am. 2009, 102, 137–143. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, C.G.; Blochtein, B.; Megiolaro, F.L.; Imperatriz-Fonseca, V.L. Age polyethism in Plebeia emerina (Friese) (Hymenoptera: Apidae) colonies related to propolis handling. Neotrop. Entomol. 2010, 39, 691–696. [Google Scholar] [CrossRef] [Green Version]
- Massaro, C.F.; Smyth, T.J.; Smyth, W.F.; Heard, T.; Leonhardt, S.D.; Katouli, M.; Wallace, H.M.; Brooks, P. Phloroglucinols from anti-microbial deposit-resins of Australian stingless bees (Tetragonula carbonaria). Phyther. Res. 2015, 29, 48–58. [Google Scholar] [CrossRef]
- Roubik, D.W. Nest and colony characteristics of stingless bees from French Guiana (Hymenoptera: Apidae). J. Kans. Entomol. Soc. 1979, 52, 443–470. [Google Scholar]
- Murphy, C.M.; Breed, M.D. Nectar and resin robbing in stingless bees. Am. Entomol. 2008, 54, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Salatino, A.; Salatino, M.L.F. Scientific note: Often quoted, but not factual data about propolis composition. Apidologie 2021, 52, 312–314. [Google Scholar] [CrossRef]
- Gastauer, M.; Campos, L.A.O.; Wittmann, D. Handling sticky resin by stingless bees (Hymenoptera, Apidae). Rev. Bras. Entomol. 2011, 55, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Bonsucesso, J.S.; Gloaguen, T.V.; do Nascimento, A.S.; de Carvalho, C.A.L.; Dias, F.D.S. Metals in geopropolis from beehive of Melipona scutellaris in urban environments. Sci. Total Environ. 2018, 634, 687–694. [Google Scholar] [CrossRef]
- Lavinas, F.C.; Macedo, E.H.B.C.; Sá, G.B.L.; Amaral, A.C.F.; Silva, J.R.A.; Azevedo, M.M.B.; Vieira, B.A.; Domingos, T.F.S.; Vermelho, A.B.; Carneiro, C.S.; et al. Brazilian stingless bee propolis and geopropolis: Promising sources of biologically active compounds. Rev. Bras. Farmacogn. 2019, 29, 389–399. [Google Scholar] [CrossRef]
- Barth, O.M. Melissopalynology in Brazil: A review of pollen analysis of honeys, propolis and pollen loads of bees. Sci. Agric. 2004, 61, 342–350. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, D.; Camargo, J.M.F. Nest architecture and distribution of the primitive stingless bee, Mourella caerulea (Hymenoptera Apidae, Meliponinae): Evidence for the origin of Plebeia (s. lat.) on the Gondwana continent. Stud. Neotrop. Fauna Environ. 1989, 24, 213–229. [Google Scholar] [CrossRef]
- Seeley, T.D.; Morse, R.A. The nest of the honeybee (Apis mellifera L.). Insectes Soc. 1976, 4, 495–512. [Google Scholar] [CrossRef]
- Wang, S.; Wittwer, B.; Heard, T.A.; Goodger, J.Q.D.; Elgar, M.A. Nonvolatile chemicals provide a nest defence mechanism for stingless bees Tetragonula carbonaria (Apidae, Meliponini). Ethology 2018, 124, 633–640. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Blüthgen, N. A sticky affair: Resin collection by Bornean stingless bees. Biotropica 2009, 41, 730–736. [Google Scholar] [CrossRef]
- Bänziger, H.; Pumikong, S.; Srimuang, K. The remarkable nest entrance of tear drinking Pariotrigona klossi and other stingless bees nesting in limestone cavities (Hymenoptera: Apidae). J. Kans. Entomol. Soc. 2011, 84, 22–35. [Google Scholar] [CrossRef]
- Alves, A.; Sendoya, S.F.; Rech, A.R. Fortress with sticky moats: The functional role of small particles around Tetragonisca angustula Latreille (Apidae: Hymenoptera) nest entrance. Sociobiology 2018, 65, 330–332. [Google Scholar] [CrossRef]
- Howard, J.J. Observations on resin collecting by six interacting species of stingless bees (Apidae: Meliponinae). J. Kans. Entomol. Soc. 1985, 58, 337–345. [Google Scholar]
- de Portugal Araujo, V. Subterranean nests of two African stingless bees (Hymenoptera: Apidae). J. N. Y. Entomol. Soc. 1963, 71, 130–141. [Google Scholar]
- Sakagami, S.F.; Inoue, T.; Yamane, S.; Salmah, S. Nests of the myrmecophilous stingless bee, Trigona moorei: How do bees initiate their nest within an arboreal ant nest? Biotropica 1989, 21, 265. [Google Scholar] [CrossRef]
- Bobadoye, B.O.; Fombong, A.T.; Kiatoko, N.; Suresh, R.; Teal, P.E.A.; Salifu, D.; Torto, B. Behavioral responses of the small hive beetle, Aethina tumida, to odors of three meliponine bee species and honey bees, Apis mellifera scutellata. Entomol. Exp. Appl. 2018, 166, 528–534. [Google Scholar] [CrossRef]
- Bordoni, A.; Mocilnik, G.; Forni, G.; Bercigli, M.; Giove, C.D.V.; Luchetti, A.; Turillazzi, S.; Dapporto, L.; Marconi, M. Two aggressive neighbours living peacefully: The nesting association between a stingless bee and the bullet ant. Insectes Soc. 2020, 67, 103–112. [Google Scholar] [CrossRef]
- Drumond, P.M.; Bego, L.R.; Melo, G.A.R. Nest architecture of the stingless bee Plebeia poecilochroa Moure & Camargo, 1993 and related considerations (Hymenoptera, Apidae, Meliponinae). Iheringia 1995, 79, 39–45. [Google Scholar]
- Leonhardt, S.D.; Dworschak, K.; Eltz, T.; Blüthgen, N. Foraging loads of stingless bees and utilisation of stored nectar for pollen harvesting. Apidologie 2007, 38, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Harano, K.; Maia-Silva, C.; Hrncir, M. Why do stingless bees (Melipona subnitida) leave their nest with resin loads? Insectes Soc. 2020, 67, 195–200. [Google Scholar] [CrossRef]
- Wenzel, F. Smell and Repel: Resin Based Defense Mechanisms and Interactions between Australian Ants and Stingless Bees. Master’s Thesis, Universität Würzburg, Fakultät für Biologie, Würzburg, Germany, 2011. [Google Scholar]
- Leonhardt, S.D.; Wallace, H.M.; Blüthgen, N.; Wenzel, F. Potential role of environmentally derived cuticular compounds in stingless bees. Chemoecology 2015, 25, 159–167. [Google Scholar] [CrossRef]
- Jones, S.M.; van Zweden, J.S.; Grüter, C.; Menezes, C.; Alves, D.A.; Nunes-Silva, P.; Czaczkes, T.; Imperatriz-Fonseca, V.L.; Ratnieks, F.L.W. The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behav. Ecol. Sociobiol. 2012, 66, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Simone-Finstrom, M.D.; Spivak, M. Increased resin collection after parasite challenge: A case of self-medication in honey bees? PLoS ONE 2012, 7, e34601. [Google Scholar] [CrossRef] [Green Version]
- Bankova, V.; Popova, M. Propolis of stingless bees: A promising source of biologically active compounds. Pharmacogn. Rev. 2007, 1, 88–92. [Google Scholar]
- de Freitas, P.V.D.X.; da Silva, I.E.; Faquinello, P.; Zanata, R.A.; Arnhold, E.; e Silva-Neto, C.d.M. External activity of the stingless bee Melipona fasciculata (Smith) kept in the Brazilian Cerrado. J. Apic. Res. 2020. [Google Scholar] [CrossRef]
- do Nascimento, D.L.; Nascimento, F.S. Extreme effects of season on the foraging activities and colony productivity of a stingless bee (Melipona asilvai Moure, 1971) in northeast Brazil. Psyche 2012, 2012, 267361. [Google Scholar] [CrossRef] [Green Version]
- Silva, W.P.; Gimenes, M. Pattern of the daily flight activity of Nannotrigona testaceicornis (Lepeletier) (Hymenoptera: Apidae) in the Brazilian semiarid region. Sociobiology 2014, 61, 547–553. [Google Scholar] [CrossRef] [Green Version]
- Ferreira Junior, N.T.; Blochtein, B.; de Moraes, J.F. Seasonal flight and resource collection patterns of colonies of the stingless bee Melipona bicolor schencki Gribodo (Apidae, Meliponini) in an Araucaria forest area in southern Brazil. Rev. Bras. Entomol. 2010, 54, 630–636. [Google Scholar] [CrossRef]
- Inoue, T.; Salmah, S.; Abbas, I.; Yusuf, E. Foraging behavior of individual workers and foraging dynamics of colonies of three sumatran stingless bees. Res. Popul. Ecol. 1985, 27, 373–392. [Google Scholar] [CrossRef]
- Hilário, S.D.; Imperatriz-Fonseca, V.L.; Kleinert, A.d.M.P. Flight activity and colony strength in the stingless bee Melipona bicolor bicolor (Apidae, Meliponinae). Rev. Bras. Biol. 2000, 60, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Layek, U.; Karmakar, P. Nesting characteristics, floral resources, and foraging activity of Trigona iridipennis Smith in Bankura district of West Bengal, India. Insectes Soc. 2018, 65, 117–132. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Heard, T.A.; Wallace, H. Differences in the resource intake of two sympatric Australian stingless bee species. Apidologie 2014, 45, 514–527. [Google Scholar] [CrossRef] [Green Version]
- Biesmeijer, J.C.; Slaa, E.J. Information flow and organization of stingless bee foraging. Apidologie 2004, 35, 143–157. [Google Scholar] [CrossRef] [Green Version]
- Macías-Macías, J.O.; Tapia-Gonzalez, J.M.; Contreras-Escareño, F. Foraging behavior, environmental parameters and nests development of Melipona colimana Ayala (Hymenoptera: Meliponini) in temperate climate of Jalisco, México. Braz. J. Biol. Braz. J. Biol. 2017, 77, 383–387. [Google Scholar] [CrossRef] [Green Version]
- Bassindale, R. The biology of the stingless bee Trigona (Hypotrigona) gribodoie Magretti (Meliponidae). Proc. Zool. Soc. Lond. 1955, 125, 49–62. [Google Scholar] [CrossRef]
- Biesmeijer, J.C.; Tóth, E. Individual foraging, activity level and longevity in the stingless bee Melipona beecheii in Costa Rica (Hymenoptera, Apidae, Meliponinae). Insectes Soc. 1998, 45, 427–443. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, J.; Seeley, T.D. The functional organization of resin work in honeybee colonies. Behav. Ecol. Sociobiol. 2006, 60, 339–349. [Google Scholar] [CrossRef]
- Reyes-González, A.; Zamudio, F. Competition interactions among stingless bees (Apidae: Meliponini) for Croton yucatanensis Lundell resins. Int. J. Trop. Insect Sci. 2020, 40, 1099–1104. [Google Scholar] [CrossRef]
- López-Guillón, G.; Chamó-Vázquez, E.R.; Ruiz, J.G.; Barrera, J.F. First report of Trigona fuscipennis and T. nigerrima chewing tissues of Jatropha curcas L. in Southern Chiapas, Mexico. Southwest. Entomol. 2019, 44, 503–507. [Google Scholar] [CrossRef]
- Patricio, E.F.L.R.A.; Cruz-López, L.; Maile, R.; Tentschert, J.; Jones, G.R.; Morgan, E.D. The propolis of stingless bees: Terpenes from the tibia of three Frieseomelitta species. J. Insect Physiol. 2002, 48, 249–254. [Google Scholar] [CrossRef]
- Gastauer, M.; Campos, L.A.O.; Wittmann, D. Handling sticky resin by stingless bees: Adhesive properties of surface structures. An. Acad. Bras. Cienc. 2013, 85, 1189–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira Grosso, A.; Rolani Bego, L. Labor division, average life span, survival curve, and nest architecture of Tetragonisca angustula angustula (Hymenoptera, Apinae, Meliponini). Sociobiology 2002, 40, 615–637. [Google Scholar]
- Waldschmidt, A.M.; Campos, L.A.O.; De Marco, P. Genetic variability of behavior in Melipona quadrifasciata (Hymenoptera: Meliponinae). Braz. J. Genet. 1997, 20, 595–599. [Google Scholar] [CrossRef]
- Lockey, K.H. Lipids of the insect cuticle: Origin, composition and function. Comp. Biochem. Physiol. Part B Biochem. 1988, 89, 595–645. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Blüthgen, N.; Schmitt, T. Smelling like resin: Terpenoids account for species-specific cuticular profiles in Southeast-Asian stingless bees. Insectes Soc. 2009, 56, 157–170. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Blüthgen, N.; Schmitt, T. Chemical profiles of body surfaces and nests from six Bornean stingless bee species. J. Chem. Ecol. 2011, 37, 98–104. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Jung, L.M.; Schmitt, T.; Blüthgen, N. Terpenoids tame aggressors: Role of chemicals in stingless bee communal nesting. Behav. Ecol. Sociobiol. 2010, 64, 1415–1423. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Wallace, H.M.; Schmitt, T. The cuticular profiles of Australian stingless bees are shaped by resin of the eucalypt tree Corymbia torelliana. Austral Ecol. 2011, 36, 537–543. [Google Scholar] [CrossRef]
- Martin, S.J.; Shemilt, S.; Cândida, C.B.; de Carvalho, C.A.L. Are isomeric alkenes used in species recognition among neo-tropical stingless bees (Melipona spp.). J. Chem. Ecol. 2017, 43, 1066–1072. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, S.D.; Rasmussen, C.; Schmitt, T. Genes versus environment: Geography and phylogenetic relationships shape the chemical profiles of stingless bees on a global scale. Proc. R. Soc. B Biol. Sci. 2013, 280, 7–9. [Google Scholar] [CrossRef] [Green Version]
- Leonhardt, S.D.; Schmitt, T.; Blüthgen, N. Tree resin composition, collection behavior and selective filters shape chemical profiles of tropical bees (Apidae: Meliponini). PLoS ONE 2011, 6, e23445. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Form, S.; Blüthgen, N.; Schmitt, T.; Feldhaar, H. Genetic relatedness and chemical profiles in an unusually peaceful eusocial bee. J. Chem. Ecol. 2011, 37, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Nunes, T.M.; Mateus, S.; Turatti, I.C.; Morgan, E.D.; Zucchi, R. Nestmate recognition in the stingless bee Frieseomelitta varia (Hymenoptera, Apidae, Meliponini): Sources of chemical signals. Anim. Behav. 2011, 81, 463–467. [Google Scholar] [CrossRef]
- Jungnickel, H.; Da Costa, A.J.S.; Tentschert, J.; Patricio, E.F.L.R.A.; Imperatriz-Fonseca, V.L.; Drijfhout, F.; Morgan, E.D. Chemical basis for inter-colonial aggression in the stingless bee Scaptotrigona bipunctata (Hymenoptera: Apidae). J. Insect Physiol. 2004, 50, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Kwong, W.K.; Medina, L.A.; Koch, H.; Sing, K.W.; Soh, E.J.Y.; Ascher, J.S.; Jaffé, R.; Moran, N.A. Dynamic microbiome evolution in social bees. Sci. Adv. 2017, 3, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerqueira, A.E.S.; Hammer, T.J.; Moran, N.A.; Santana, W.C.; Kasuya, M.C.M.; da Silva, C.C. Extinction of anciently associated gut bacterial symbionts in a clade of stingless bees. ISME J. 2021, 2–5. [Google Scholar] [CrossRef]
- Leonhardt, S.D.; Kaltenpoth, M. Microbial communities of three sympatric Australian stingless bee species. PLoS ONE 2014, 9, e105718. [Google Scholar] [CrossRef] [PubMed]
- Ngalimat, M.S.; Abd Rahman, R.N.Z.R.; Yusof, M.T.; Amir Hamzah, A.S.; Zawawi, N.; Sabri, S. A review on the association of bacteria with stingless bees. Sains Malays. 2020, 49, 1853–1863. [Google Scholar] [CrossRef]
- Ngalimat, M.S.; Rahman, R.N.Z.R.A.; Yusof, M.T.; Syahir, A.; Sabri, S. Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ 2019, 7, e7478. [Google Scholar] [CrossRef] [Green Version]
- de Sousa, L.P. Bacterial communities of indoor surface of stingless bee nests. PLoS ONE 2021, 16, e0252933. [Google Scholar] [CrossRef]
- Campos, J.F.; Das Santos, U.P.; Da Rocha, P.D.S.; Damião, M.J.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; Estevinho, L.M.; De Picoli Souza, K.; Dos Santos, E.L. Antimicrobial, antioxidant, anti-Inflammatory, and cytotoxic activities of propolis from the stingless bee Tetragonisca fiebrigi (Jataí). Evid. Based Complement. Altern. Med. 2015, 2015, 296186. [Google Scholar] [CrossRef] [Green Version]
- Al-Hatamleh, M.A.I.; Boer, J.C.; Wilson, K.L.; Plebanski, M.; Mohamud, R.; Mustafa, M.Z. Antioxidant-based medicinal properties of stingless bee products: Recent progress and future directions. Biomolecules 2020, 10, 923. [Google Scholar] [CrossRef] [PubMed]
- da Cunha, M.G.; Franchin, M.; Galvão, L.C.C.; de Ruiz, A.L.T.G.; de Carvalho, J.E.; Ikegaki, M.; de Alencar, S.M.; Koo, H.; Rosalen, P.L. Antimicrobial and antiproliferative activities of stingless bee Melipona scutellaris geopropolis. BMC Complement. Altern. Med. 2013, 13, 23. [Google Scholar] [CrossRef] [Green Version]
- Franchin, M.; Da Cunha, M.G.; Denny, C.; Napimoga, M.H.; Cunha, T.M.; Koo, H.; De Alencar, S.M.; Ikegaki, M.; Rosalen, P.L. Geopropolis from Melipona scutellaris decreases the mechanical inflammatory hypernociception by inhibiting the production of IL-1β and TNF-α. J. Ethnopharmacol. 2012, 143, 709–715. [Google Scholar] [CrossRef]
- Aparecida Sanches, M.; Pereira, A.M.S.; Serrão, J.E. Pharmalogical actions of extracts of propolis of stingless bees (Meliponini). J. Apic. 2017, 56, 50–57. [Google Scholar] [CrossRef]
- Machado, J.O. Symbiosis among Brazilian social bees (Meliponinae, Apidae) and a species of bacteria. Cienc. Cult. 1971, 23, 625–633. [Google Scholar]
- Bahrndorff, S.; Alemu, T.; Alemneh, T.; Lund Nielsen, J. The microbiome of animals: Implications for conservation biology. Int. J. Genom. 2016, 2016, 5304028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansell, M.H.; Ruxton, G.D. Exploring the dichotomy between animals building using self-secreted materials and using materials collected from the environment. Biol. J. Linn. Soc. 2013, 108, 688–701. [Google Scholar] [CrossRef] [Green Version]
- Slaa, E.J.; Sánchez Chaves, L.A.; Malagodi-Braga, K.S.; Hofstede, F.E. Stingless bees in applied pollination: Practice and perspectives. Apidologie 2006, 37, 293–315. [Google Scholar] [CrossRef] [Green Version]
- Kämper, W.; Kaluza, B.F.; Wallace, H.; Schmitt, T.; Leonhardt, S.D. Habitats shape the cuticular chemical profiles of stingless bees. Chemoecology 2019, 29, 125–133. [Google Scholar] [CrossRef]
- Hall, M.A.; Brettell, L.E.; Liu, H.; Nacko, S.; Spooner-Hart, R.; Riegler, M.; Cook, J.M. Temporal changes in the microbiome of stingless bee foragers following colony relocation. FEMS Microbiol. Ecol. 2021, 97, 1–12. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Rushdi, A.I.; Owayss, A.A.; Raweh, H.S.; El-Mubarak, A.H.; Simoneit, B.R.T. Organic tracers from asphalt in propolis produced by urban honey bees, Apis mellifera Linn. PLoS ONE 2015, 10, e0128311. [Google Scholar] [CrossRef]
Cerumen | A mixture of wax and resin that stingless bees use to build brood combs, honey and pollen pots, and other nest structures |
Deposit-resins | Caches of resin stored by some species on the floor or walls of their nests (also known as resin deposits or viscous propolis deposits) |
Propolis | Resin mixed with small amounts of salivary gland secretions and wax and used to seal cracks and crevices throughout the nest |
Geopropolis | Resin mixed with soil, silt, and/or sand particles |
Batumen | A wall-like structure that often contains resin; many species build a batumen to separate the inner nest environment from the external world |
Nest entrances | For some species, nest entrances consist of hardened resin tubes, which can extend both inside and outside the nest |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanahan, M.; Spivak, M. Resin Use by Stingless Bees: A Review. Insects 2021, 12, 719. https://doi.org/10.3390/insects12080719
Shanahan M, Spivak M. Resin Use by Stingless Bees: A Review. Insects. 2021; 12(8):719. https://doi.org/10.3390/insects12080719
Chicago/Turabian StyleShanahan, Maggie, and Marla Spivak. 2021. "Resin Use by Stingless Bees: A Review" Insects 12, no. 8: 719. https://doi.org/10.3390/insects12080719