Selective Arcing Electrostatically Eradicates Rice Weevils in Rice Grains
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Species
2.2. Habitual Behavior
2.3. Construction of the ADE
2.4. Insect-Mediated Arcing and Voltage-Dependent Eradication
2.5. Construction of a Practical ADE-Integrated Insect Eradicator (A-IE)
2.6. Statistical Analysis
3. Results and Discussion
3.1. Habitual Behavior of Adult Rice Weevils
3.2. Insect-Mediated Arcing
3.3. Modification of the ADE for Practical Use
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hill, D.S. Pests of Stored Products and Their Control; Belhaven Press: London, UK, 1990; pp. 1–274. [Google Scholar]
- Takikawa, Y.; Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kusakari, S.; Toyoda, H. Development of an electrostatic trap with an insect discharge recorder for multiple real-time monitoring of pests prowling in a warehouse. Int. J. Adv. Agric. Res. 2015, 3, 55–63. [Google Scholar]
- Vendan, S.E.; Manivannan, S.; Sunny, A.M.; Murugesan, R. Phytochemical residue profiles in rice grains fumigated with essential oils for the control of rice weevil. PLoS ONE 2017, 12, e0186020. [Google Scholar] [CrossRef]
- Xinyi, E.; Li, B.; Subramanyam, B. Toxicity of chlorine dioxide gas to phosphine-susceptible and -resistant adults of five stored-product insect species: Influence of temperature and food during gas exposure. J. Econ. Entomol. 2018, 111, 1947–1957. [Google Scholar]
- Hossain, F.; Follett, P.; Salmieri, S.; Vu, K.D.; Harich, M.; Lacroix, M. Synergistic effects of nanocomposite films containing essential oil nanoemulsions in combination with ionizing radiation for control of rice weevil Sitophilus oryzae in stored grains. J. Food. Sci. 2019, 84, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Amoah, B.A.; Mahroof, R.M. Ozone as a potential fumigant alternative for the management of Sitophilus oryzae (Coleoptera: Curculionidae) in wheat. J. Econ. Entomol. 2019, 112, 1953–1963. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, H.; Kusakari, S.; Matsuda, Y.; Kakutani, K.; Xu, L.; Nonomura, T.; Takikawa, Y. Electric field screen structures. In An Illustrated Manual of Electric Field Screens: Their Structures and Functions; Toyoda, H., Ed.; RAEFSS Publishing Department: Nara, Japan, 2019; pp. 9–15. [Google Scholar]
- Jones, E.; Childers, R. Electric charge and electric field. In Physics, 3rd ed.; McGraw-Hill: Boston, MA, USA, 2002; pp. 495–525. [Google Scholar]
- Toyoda, H.; Matsuda, Y. Basic concepts for constructing an electric field screen. In Electric Field Screen; Principles and Applications; Toyoda, H., Ed.; Nobunkyo Production: Tokyo, Japan, 2015; pp. 3–17. [Google Scholar]
- Matsuda, Y.; Kakutani, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. An oppositely charged insect exclusion screen with gap-free multiple electric fields. J. Appl. Phys. 2012, 112, 116103. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Sekoguchi, D.; Nonomura, T.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field screen prevents captured insects from escaping by depriving bioelectricity generated through insect movements. J. Electrostat. 2012, 70, 207–211. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Haneda, K.; Nonomura, T.; Kimbara, J.; Kusakari, S.; Osamura, K.; Toyoda, H. Insects are electrified in an electric field by deprivation of their negative charge. Ann. Appl. Biol. 2012, 160, 250–259. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Electrostatic measurement of dischargeable electricity and bioelectric potentials produced by muscular movements in flies. J. Electrostat. 2014, 72, 1–5. [Google Scholar] [CrossRef]
- Kakutani, K.; Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Electrocution of mosquitoes by a novel electrostatic window screen to minimize mosquito transmission of Japanese encephalitis viruses. Int. J. Sci. Res. 2018, 7, 47–50. [Google Scholar]
- Matsuda, Y.; Takikawa, Y.; Nonomura, T.; Kakutani, K.; Okada, K.; Shibao, M.; Kusakari, S.; Miyama, K.; Toyoda, H. Selective electrostatic eradication of Sitopholus oryzae nesting in stored rice. J. Food Technol. Pres. 2018, 2, 15–20. [Google Scholar]
- Halliday, D.; Resnick, R.; Walker, J. Electric discharge and electric fields. In Fundamentals of Physics; Johnson, S., Ford, E., Eds.; John Wiley & Sons: New York, NY, USA, 2005; pp. 561–604. [Google Scholar]
- Matsuda, Y.; Shimizu, K.; Sonoda, T.; Takikawa, Y. Use of electric discharge for simultaneous control of weeds and houseflies emerging from soil. Insects 2020, 11, 861. [Google Scholar] [CrossRef]
- Wegner, H.E. Electrical charging generators. In McGraw-Hill Encyclopedia of Science and Technology, 9th ed.; Geller, E., Ed.; The Lakeside Press: New York, NY, USA, 2002; pp. 42–43. [Google Scholar]
- Kusakari, S.; Okada, K.; Shibao, M.; Toyoda, H. High voltage electric fields have potential to create new physical pest control systems. Insects 2020, 11, 447. [Google Scholar] [CrossRef]
- Ishay, J.S.; Shimony, T.B.; Shalom, A.B.; Kristianpoller, N. Photovoltaic effects in the oriental hornet, Vespa orientalis. J. Insect Physiol. 1992, 38, 37–48. [Google Scholar] [CrossRef]
- McGonigle, D.G.; Jackson, C.W. Effect of surface material on electrostatic charging of houseflies (Musca domestica L.). Pest Manag. Sci. 2002, 58, 374–380. [Google Scholar] [CrossRef] [PubMed]
- McGonigle, D.G.; Jackson, C.W.; Davidson, J.L. Triboelectrification of houseflies (Musca domestica L.) walking on synthetic dielectric surfaces. J. Electrostat. 2002, 54, 167–177. [Google Scholar] [CrossRef]
- Honna, T.; Akiyama, Y.; Morishima, K. Demonstration of insect-based power generation using a piezoelectric fiber. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2008, 151, 460. [Google Scholar] [CrossRef]
- Moussian, B. Recent advances in understanding mechanisms of insect cuticle differentiation. Insect Biochem. Mol. Biol. 2010, 40, 363–375. [Google Scholar] [CrossRef]
- Takikawa, Y.; Takami, T.; Kakutani, K. Body water-mediated conductivity actualizes the insect-control functions of electric fields in houseflies. Insects 2020, 11, 561. [Google Scholar] [CrossRef]
- Matsuda, Y.; Takikawa, Y.; Kakutani, K.; Nonomura, T.; Okada, K.; Kusakari, S.; Toyoda, H. Use of pulsed arc discharge exposure to impede expansion of the invasive vine Pueraria montana. Agriculture 2020, 10, 600. [Google Scholar] [CrossRef]
- Jones, E.; Childers, R. Electric current and resistance. In Physics, 3rd ed.; McGraw-Hill: Boston, MA, USA, 2002; pp. 557–593. [Google Scholar]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Takikawa, Y.; Kimbara, J.; Kasaishi, Y.; Kusakari, S.; Toyoda, H. A newly devised electric field screen for avoidance and capture of cigarette beetles and vinegar flies. Crop Prot. 2011, 30, 155–162. [Google Scholar] [CrossRef]
- Nonomura, T.; Matsuda, Y.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. An electric field strongly deters whiteflies from entering window-open greenhouses in an electrostatic insect exclusion strategy. Eur. J. Plant Pathol. 2012, 134, 661–670. [Google Scholar] [CrossRef]
- Matsuda, Y.; Takikawa, Y.; Kakutani, K.; Nonomura, T.; Toyoda, H. Analysis of pole-ascending-descending action by insects subjected to high voltage electric fields. Insects 2020, 11, 187. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, Y.; Nonomura, T.; Kakutani, K.; Kimbara, J.; Osamura, K.; Kusakari, S.; Toyoda, H. Avoidance of an electric field by insects: Fundamental biological phenomenon for an electrostatic pest-exclusion strategy. J. Phys. Conf. Ser. 2015, 646, 0120031–0120034. [Google Scholar] [CrossRef]
- Newland, P.L.; Hunt, E.; Sharkh, S.M.; Hama, N.; Takahata, M.; Jackson, C.W. Static electric field detection and behavioural avoidance in cockroaches. J. Exper. Biol. 2008, 211, 3682–3690. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kakutani, K.; Takikawa, Y.; Matsuda, Y. Selective Arcing Electrostatically Eradicates Rice Weevils in Rice Grains. Insects 2021, 12, 522. https://doi.org/10.3390/insects12060522
Kakutani K, Takikawa Y, Matsuda Y. Selective Arcing Electrostatically Eradicates Rice Weevils in Rice Grains. Insects. 2021; 12(6):522. https://doi.org/10.3390/insects12060522
Chicago/Turabian StyleKakutani, Koji, Yoshihiro Takikawa, and Yoshinori Matsuda. 2021. "Selective Arcing Electrostatically Eradicates Rice Weevils in Rice Grains" Insects 12, no. 6: 522. https://doi.org/10.3390/insects12060522
APA StyleKakutani, K., Takikawa, Y., & Matsuda, Y. (2021). Selective Arcing Electrostatically Eradicates Rice Weevils in Rice Grains. Insects, 12(6), 522. https://doi.org/10.3390/insects12060522