Monitoring Exotic Beetles with Inexpensive Attractants: A Case Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design, Traps, and Baits
2.3. Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roques, A. Taxonomy, Time and Geographic Patterns. Chapter 2. BioRisk 2010, 4, 11–26. [Google Scholar] [CrossRef] [Green Version]
- Ratti, E. Coleotteri alieni in Italia/Alien Coleoptera in Italy. Vers. 2007-05-25. Available online: https://msn.visitmuve.it/it/ricerca/settori/entomologia/progetti/coleotteri-alieni-in-italia-1957-2006/lista/ (accessed on 22 April 2021).
- Cocquempot, C.; Lindelöw, Å. Longhorn beetles (Coleoptera, Cerambycidae). Chapter 8.1. BioRisk 2010, 4, 193–218. [Google Scholar] [CrossRef]
- Sauvard, D.; Branco, M.; Lakatos, F.; Faccoli, M.; Kirkendall, L. Weevils and Bark Beetles (Coleoptera, Curculionoidea). Chapter 8.2. BioRisk 2010, 4, 219–266. [Google Scholar] [CrossRef]
- Beenen, R.; Roques, A. Leaf and Seed Beetles (Coleoptera, Chrysomelidae). Chapter 8.3. BioRisk 2010, 4, 267–292. [Google Scholar] [CrossRef]
- Roy, H.; Migeon, A. Ladybeetles (Coccinellidae). Chapter 8.4. BioRisk 2010, 4, 293–313. [Google Scholar] [CrossRef] [Green Version]
- Denux, O.; Zagatti, P. Coleoptera Families Other than Cerambycidae, Curculionidae sensu lato, Chrysomelidae sensu lato, and Coccinellidae. Chapter 8.5. BioRisk 2010, 4, 315–406. [Google Scholar] [CrossRef] [Green Version]
- Montagna, M.; Zoia, S.; Leonardi, C.; Di Taddeo, V.; Caldara, R.; Sassi, D. Colasposoma dauricum Mannerheim, 1849 an Asian species adventive to Piedmont, Italy (Coleoptera: Chrysomelidae: Eumolpinae). Zootaxa 2016, 4097, 127–129. [Google Scholar] [CrossRef]
- Rassati, D.; Lieutier, F.; Faccoli, M. Alien wood-boring beetles in Mediterranean regions. In Insects and Diseases of Mediterranean For. Systems; Paine, T.D., Lieutier, F., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 293–327. [Google Scholar] [CrossRef]
- Binazzi, F.; Del Nista, D.; Sabbatini Peverieri, G.; Marianelli, L.; Roversi, P.F.; Pennacchio, F. Saperda tridentata Olivier (Coleoptera Cerambycidae Lamiinae): Continuous interceptions at the italian port of Livorno represent a growing challenge for phytosanitary services. Redia 2019, 102, 171–176. [Google Scholar] [CrossRef]
- Ruzzier, E.; Colla, A. Micromalthus debilis LeConte, 1878 (Coleoptera: Micromalthidae), an American wood-boring beetle new to Italy. Zootaxa 2019, 4623, 589–594. [Google Scholar] [CrossRef]
- Nardi, G.; Bocci, M.; Poggi, R. Ptilodactyla exotica Chapin, 1927 in Italy (Coleoptera: Ptilodactylidae). Zootaxa 2020, 4861, 63–70. [Google Scholar] [CrossRef]
- Ruzzier, E.; Morin, L.; Glerean, P.; Forbicioni, L. New and Interesting Records of Coleoptera from Northeastern Italy and Slovenia (Alexiidae, Buprestidae, Carabidae, Cerambycidae, Ciidae, Curculionidae, Mordellidae, Silvanidae). Coleopt. Bull. 2020, 74, 523–531. [Google Scholar] [CrossRef]
- Stoett, P.; Roy, H.E.; Pauchard, A. Invasive alien species and planetary and global health policy. LANCET Planet. Health 2019, 3, 400–401. [Google Scholar] [CrossRef] [Green Version]
- Meurisse, N.; Rassati, D.; Hurley, B.P.; Brockerhoff, E.G.; Haack, R.A. Common pathways by which non-native forest insects move internationally and domestically. J. Pest Sci. 2019, 92, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Ruzzier, E.; Tomasi, F.; Poso, M.; Martinez-Sañudo, I. Archophileurus spinosus Dechambre, 2006 (Coleoptera: Scarabaeidae: Dynastinae), a new exotic scarab possibly acclimatized in Italy, with a compilation of exotic Scarabaeidae found in Europe. Zootaxa 2020, 4750, 577–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyšek, P.; Hulme, P.E.; Simberloff, D.; Bacher, S.; Blackburn, T.M.; Carlton, J.T.; Dawson, W.; Essl, F.; Foxcroft, L.C.; Genovesi, P.; et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020, 95, 1511–1534. [Google Scholar] [CrossRef] [PubMed]
- Poland, T.M.; Rassati, D. Improved Biosecurity Surveillance of Non-Native Forest Insects: A Review of Current Methods. J. Pest Sci. 2019, 92, 37–49. [Google Scholar] [CrossRef]
- Marchioro, M.; Rassati, D.; Faccoli, M.; Rooyen, K.V.; Kostanowicz, C.; Webster, V.; Mayo, P.; Sweeney, J. Maximizing bark and ambrosia beetle (Coleoptera: Curculionidae) catches in trapping surveys for longhorn and jewel beetles. J. Econ. Entomol. 2020, 113, 2745–2757. [Google Scholar] [CrossRef]
- Hamilton, R.M.; Foster, R.E.; Gibb, T.J.; Sadof, C.S.; Holland, J.D.; Engel, B.A. Distribution and Dynamics of Japanese Beetles Along the Indianapolis Airport Perimeter and the Influence of Land Use on Trap Catch. Environ. Entomol. 2007, 36, 287–296. [Google Scholar] [CrossRef]
- Rassati, D.; Faccoli, M.; Petrucco Toffolo, E.; Battisti, A.; Marini, L.; Clough, Y. Improving the early detection of alien wood-boring beetles in ports and surrounding forests. J. Appl. Ecol. 2015, 52, 50–58. [Google Scholar] [CrossRef]
- Faccoli, M.; Gallego, D.; Branco, M.; Brockerhoff, E.G.; Corley, J.; Coyle, D.R.; Hurley, B.P.; Hervé, J.; Lakatos, F.; Lantschner, V.; et al. A first worldwide multispecies survey of invasive Mediterranean pine bark beetles (Coleoptera: Curculionidae, Scolytinae). Biol. Invasions 2020, 22, 1785–1799. [Google Scholar] [CrossRef]
- Rizzo, D.; Luchi, N.; Da Lio, D.; Bartolini, L.; Nugnes, F.; Cappellini, G.; Bruscoli, T.; Salemi, C.; Griffo, R.V.; Garonna, A.P.; et al. Development of a loop-mediated isothermal amplification (LAMP) assay for the identification of the invasive wood borer Aromia bungii (Coleoptera: Cerambycidae) from frass. 3 Biotech 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Tobin, P.C.; Strom, B.L.; Francese, J.A.; Herms, D.A.; McCullough, G.D.; Poland, T.M.; Ryall, K.L.; Scarr, T.; Silk, P.J.; Thistle, H.W. Evaluation of Trapping Schemes to Detect Emerald Ash Borer (Coleoptera: Buprestidae). J. Econ. Entomol. 2021, toab065. [Google Scholar] [CrossRef]
- Caley, P.; Welvaert, M.; Barry, S.C. Crowd Surveillance: Estimating Citizen Science Reporting Probabilities for Insects of Biosecurity Concern: Implications for Plant Biosecurity Surveillance. J. Pest Sci. 2020, 93, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Ruzzier, E.; Menchetti, M.; Bortolotti, L.; Selis, M.; Monterastelli, M.; Forbicioni, L. Updated Distribution of the Invasive Megachile sculpturalis (Hymenoptera: Megachilidae) in Italy and Its First Record on a Mediterranean Island. Biodivers. Data J. 2020, 8, e57783. [Google Scholar] [CrossRef]
- Ruchin, A.B.; Egorov, L.V.; Khapugin, A.A.; Vikhrev, N.E.; Esin, M.N. The use of simple crown traps for the insects collection. Nat. Conserv. Res. 2020, 5, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Touroult, J.; Witté, I. Beer, Wine, or Fruit Juice: Which Is Best? A Case Study of Bait Efficiency to Sample Saproxylic Beetles (Coleoptera) in an Oak Woodland. Coleopt. Bull. 2020, 74, 763–771. [Google Scholar] [CrossRef]
- Carvalho, A.G.; Trevisan, H. A New Trap Model for Scolytinae and Platypodinae (Insecta, Coleoptera). Floresta Ambiente 2015, 22, 575–578. [Google Scholar] [CrossRef]
- Steininger, M.S.; Hulcr, J.; Šigut, M.; Lucky, A. Simple and Efficient Trap for Bark and Ambrosia Beetles (Coleoptera: Curculionidae) to Facilitate Invasive Species Monitoring and Citizen Involvement. J. Econ. Entomol. 2015, 108, 1115–1123. [Google Scholar] [CrossRef] [Green Version]
- Rosenberger, D.W.; Aukema, B.H. Stimulating curiosity and engagement with insects beyond the college classroom through citizen science. Am. Entomol. 2016, 62, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Wong, J.C.; Hanks, L.M. Influence of fermenting bait and vertical position of traps on attraction of cerambycid beetles to pheromone lures. J. Econ. Entomol. 2016, 109, 2145–2150. [Google Scholar] [CrossRef]
- Ruchin, A.B.; Egorov, L.V.; Khapugin, A.A. Usage of Fermental Traps for the Study of the Species Diversity of Coleoptera. Insects 2021, 12, 407. [Google Scholar] [CrossRef] [PubMed]
- Uso e copertura del suolo in Regione Lombardia. Available online: https://www.geoportale.regione.lombardia.it/download-ricerca (accessed on 10 October 2020).
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; pp. 1–497. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 10 October 2020).
- Delignette-Muller, M.L.; Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 2015, 64, 1–34. [Google Scholar] [CrossRef] [Green Version]
- Lüdecke, D. sjPlot: Data Visualization for Statistics in Social Science. R Package Version 2.8.6. 2020. Available online: https://CRAN.R-project.org/package=sjPlot (accessed on 10 October 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; pp. 1–260. [Google Scholar]
- Jelínek, J.; Audisio, P.; Hajek, J.; Baviera, C.; Moncourtier, B.; Barnouin, T.; Brustel, H.; Genç, H.; Leschen, R.A. Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of sap beetles introduced to Europe and Mediterranean areas. AAPP Phys. Math. Nat. Sci. 2016, 94, 1–24. [Google Scholar]
- Marini, F.; Mutinelli, F.; Montarsi, F.; Cline, A.R.; Gatti, E.; Audisio, P. First report in Italy of the dusky sap beetle, Carpophilus lugubris, a new potential pest for Europe. J. Pest Sci. 2013, 86, 157–160. [Google Scholar] [CrossRef]
- Audisio, P.; Marini, F.; Gatti, E.; Montarsi, F.; Mutinelli, F.; Campanaro, A.; Cline, A.R. A scientific note on rapid host shift of the invasive dusky sap-beetle (Carpophilus lugubris) in Italian beehives: New commensal or potential threat for European apiculture? Apidologie 2014, 45, 464–466. [Google Scholar] [CrossRef] [Green Version]
- Grottolo, M. Indagine sulla entomofauna della riserva naturale “della rocca, del sasso e parco lacuale” (Manerba del Garda, Lombardia). Nat. Brescia. Annu. Mus. Civ. Stor. Nat. Brescia 2020, 43, 73–117. [Google Scholar]
- Torres-Vila, L.M.; Sanchez-González, Á.; Ponce-Escudero, F.; Martín-Vertedor, D.; Ferrero-Garcia, J.J. Assessing mass trapping efficiency and population density of Cerambyx welensii Küster by mark-recapture in dehesa open woodlands. Eur. J. For. Res. 2012, 131, 1103–1116. [Google Scholar] [CrossRef]
- Bardiani, M.; Tini, M.; Carpaneto, G.M.; Audisio, P.; Bussola, E.; Campanaro, A.; Cini, A.; Maurizi, E.; Mason, F.; Sabbatini Peverieri, G.; et al. Effects of trap baits and height on stag beetle and flower chafer monitoring: Ecological and conservation implications. J. Insect Conserv. 2017, 21, 157–168. [Google Scholar] [CrossRef]
- Chen, Y.; Coleman, T.W.; Ranger, C.M.; Seybold, S.J. Differential flight responses of two ambrosia beetles to ethanol as indicators of invasion biology: The case with Kuroshio shot hole borer (Euwallacea kuroshio) and fruit-tree pinhole borer (Xyleborinus saxesenii). Ecol. Entomol. 2021, 52, 243–259. [Google Scholar] [CrossRef]
- Powell, G.S. A checklist of the sap beetle (Coleoptera: Nitidulidae) fauna of Indiana, with notes on effective trapping methods. Insecta Mundi 2015, 424, 1–9. [Google Scholar]
- Hadden, R.A.; Saxton, N.A.; Gerlach, P.S.; Nielson, P.L.; Brown, S.D.; Bybee, S.M.; Powell, G.S. Nitidulidae (Coleoptera: Cucujoidea) of Vanuatu. J. Asia-Pac. Entomol. 2020, 23, 470–476. [Google Scholar] [CrossRef]
- Musvuugwa, T.; Dreyer, L.L.; Roets, F. Future danger posed by fungi in the Ophiostomatales when encountering new hosts. Fungal Ecol. 2016, 22, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Jagemann, S.M.; Juzwik, J.; Tobin, P.C.; Raffa, K.F. Seasonal and regional distributions, degree-day models, and phoresy rates of the major sap beetle (Coleoptera: Nitidulidae) vectors of the oak wilt fungus, Bretziella fagacearum, in Wisconsin. Environ. Entomol. 2018, 47, 1152–1164. [Google Scholar] [CrossRef]
- Cline, A.R.; Audisio, P. Epuraea (Haptoncus) ocularis Fairmaire (Coleoptera: Nitidulidae) recently found in the USA, with comments on Nearctic members of Epuraea Erichson. Coleopt. Bull. 2011, 6, 24–26. [Google Scholar] [CrossRef]
- Popillia japonica (POPIJA). Available online: https://gd.eppo.int/taxon/POPIJA (accessed on 22 April 2021).
- Piñero, J.C.; Dudenhoeffer, A.P. Mass trapping designs for organic control of the Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae). Pest Manag. Sci. 2018, 74, 1687–1693. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Schrader, G.; Camilleri, M.; Ciubotaru, R.M.; Diakaki, M.; Vos, S. Pest survey card on Popillia japonica. EFSA Supporting Publ. 2019, 16, 1568E. [Google Scholar] [CrossRef] [Green Version]
- Shanovich, H.N.; Dean, A.N.; Koch, R.L.; Hodgson, E.W. Biology and management of Japanese beetle (Coleoptera: Scarabaeidae) in corn and soybean. J. Integr. Pest Manag. 2019, 10, 9. [Google Scholar] [CrossRef]
- Tezcan, S.; Pehlivan, E. Evaluation of the Lucanoidea and Scarabaeoidea (Coleoptera) fauna of ecological cherry orchards in İzmir and Manisa provinces of Turkey. Ziraat Fak. Derg. 2001, 3, 31–38. [Google Scholar]
- Voigt, E.; Tóth, M. Three years of mass trapping with sex attractant traps for control of Anomala Scarabs in ripening peaches. IOBC wprs Bull. 2004, 27, 69–76. [Google Scholar]
- Puker, A.; Correa, A.C.M.; Butzske, L.S.; Pacheco, R.A. Using aerial fruit-baited traps with different naturally fermented baits to survey scarab beetles in the Amazon rainforest. Stud. Neotrop. Fauna Environ. 2020, 1–6. [Google Scholar] [CrossRef]
- Hammons, D.L.; Kurtural, S.K.; Potter, D.A. Japanese beetles facilitate feeding by green June beetles (Coleoptera: Scarabaeidae) on ripening grapes. Environ. Entomol. 2008, 37, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Hammons, D.L.; Kurtural, S.K.; Newman, M.C.; Potter, D.A. Invasive Japanese beetles facilitate aggregation and injury by a native scarab pest of ripening fruits. Proc. Natl. Acad. Sci. USA 2009, 106, 3686–3691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potter, D.A.; Held, D.W. Biology and management of the Japanese beetle. Annu. Rev. Entomol. 2002, 47, 175–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, A.R.; Cole, W.H. The response of Popillia japonica to light and the Weber-Fechner law. J. Gen. Physiol. 1921, 3, 331–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Site Number | Nord (WGS84/UTM Zone 32N) | East (WGS84/UTM Zone 32N) | Forest Cover (250-m Buffer) | Forest Condition | Forest Type |
---|---|---|---|---|---|
1 | 5,053,409 | 476,170 | 98% | interior | broadleaved |
2 | 5,055,451 | 476,779 | 100% | interior | mixed |
3 | 5,057,292 | 477,621 | 58% | edge | broadleaved |
4 | 5,056,847 | 478,549 | 52% | edge | mixed |
5 | 5,055,783 | 478,335 | 87% | edge | mixed |
6 | 5,052,549 | 480,498 | 79% | edge | broadleaved |
7 | 5,052,204 | 480,113 | 88% | edge | broadleaved |
8 | 5,053,714 | 480,070 | 76% | edge | mixed |
9 | 5,054,249 | 480,724 | 99% | interior | mixed |
10 | 5,050,105 | 478,906 | 82% | edge | broadleaved |
11 | 5,049,577 | 478,796 | 100% | interior | broadleaved |
12 | 5,056,516 | 479,151 | 100% | interior | mixed |
13 | 5,054,071 | 479,998 | 99% | interior | mixed |
Session Number | Placement Date | Control Date | Abs. Min. Temp. (°C) 3-Day Session | Abs. Max. Temp. (°C) 3-Day Session | Mean Temp. (°C) 3-Day Session | Mean Humidity3-Days Session |
---|---|---|---|---|---|---|
1 | 31 July 2020 | 3 August 2020 | 18 | 36 | 26.3 | 64.0 |
2 | 7 August 2020 | 10 August 2020 | 17 | 34 | 26.5 | 58.0 |
3 | 14 August 2020 | 17 August 2020 | 18 | 32 | 24.5 | 68.0 |
4 | 28 August 2020 | 31 August 2020 | 13 | 27 | 21.0 | 77.0 |
5 | 4 September 2020 | 7 September 2020 | 14 | 29 | 20.8 | 73.0 |
6 | 11 September 2020 | 14 September 2020 | 17 | 31 | 23.3 | 70.5 |
7 | 25 September 2020 | 28 September 2020 | 4 | 21 | 13.0 | 64.3 |
Species | Family/Subfamily | Origin | Status | Attractant | N° of Individuals |
---|---|---|---|---|---|
Carpophilus lugubris Murray 1864 | Nitidulidae | Nearctic | Invasive | V(3); W(2) | 5 |
Cryptarcha strigata (Fabricius, 1787) | Nitidulidae | W-Palaearctic | Native | W(1) | 1 |
Epuraea guttata (Olivier, 1811) | Nitidulidae | W-Palaearctic | Native | V(6); W(1) | 7 |
Epuraea luteola (Erichson, 1843) | Nitidulidae | E-Palaearctic | Invasive | V(5) | 5 |
Epuraea ocularis (Fairmaire, 1849) | Nitidulidae | E-Palaearctic | Invasive | V(176); W(28); E(1) | 205 |
Epuraea unicolor (Olivier, 1790) | Nitidulidae | Palaearctic | Native | V(5) | 5 |
Glischrochilus quadrisignatus (Say, 1835) | Nitidulidae | Nearctic | Invasive | V(3); W(1) | 4 |
Soronia grisea (Linnaeus, 1758) | Nitidulidae | Palaearctic | Native | V(2); W(9) | 11 |
Anisandrus dispar Fabricius, 1792 | Scolytinae | Palaearctic | Native | E(4) | 4 |
Xyleborinus saxesenii (Ratzeburg, 1837) | Scolytinae | Palaearctic | Native | W(1) E(581) | 59 |
Cetonia aurata (Linnaeus, 1758) | Scarabaeidae | W-Palaearctic | Native | W(1) | 1 |
Popillia japonica (Newman, 1838) | Scarabaeidae | E-Palaearctic | Invasive | V(161); W(51); E(6) | 218 |
Potosia cuprea (Fabricius, 1775) | Scarabaeidae | W-Palaearctic | Native | W(1) | 1 |
Protaetia speciosa (Adams, 1817) | Scarabaeidae | W-Palaearctic | Native | W(1) | 5 |
Covariates | Estimate | SE of Estimate | z-Value | p |
---|---|---|---|---|
(intercept) | −1.657 | 2.998 | −0.553 | 0.581 |
Bait: vinegar | 4.311 | 0.584 | 7.379 | <0.001 |
Bait: wine | 2.705 | 0.594 | 4.552 | <0.001 |
Forest type: mixed forests | 0.201 | 0.367 | 0.549 | 0.583 |
Forest cover condition: interior | −0.579 | 0.371 | −1.559 | 0.119 |
Absolute maximum temperature | 0.127 | 0.044 | 2.901 | 0.004 |
Mean humidity | −0.075 | 0.033 | −2.296 | 0.022 |
Covariates | Estimate | SE of Estimate | z-Value | p |
---|---|---|---|---|
(intercept) | −6.772 | 3.344 | −2.025 | 0.042 |
Bait: vinegar | −1. 187 | 0.479 | −2.479 | 0.013 |
Bait: wine | −0.986 | 0.467 | −2.110 | 0.035 |
Forest type: mixed forests | 0.345 | 0.403 | 0.857 | 0.391 |
Forest cover condition: interior | −0.411 | 0.406 | −1.012 | 0.312 |
Absolute maximum temperature | 0.039 | 0.050 | 0.786 | 0.431 |
Mean humidity | 0.073 | 0.036 | 2.038 | 0.042 |
Covariates | Estimate | SE of Estimate | z-Value | p |
---|---|---|---|---|
(intercept) | −9.751 | 9.453 | −1.032 | 0.302 |
Bait: vinegar | 3.136 | 0.922 | 3.401 | 0.001 |
Bait: wine | 2.047 | 0.940 | 2.178 | 0.029 |
Forest type: mixed forests | −1.827 | 0.680 | −2.685 | 0.007 |
Forest cover condition: interior | −2.574 | 0.795 | −3.237 | 0.001 |
Absolute maximum temperature | 0.519 | 0.172 | 3.012 | 0.003 |
Mean humidity | −0.147 | 0.078 | −1.893 | 0.058 |
Covariates | Estimate | SE of Estimate | z-Value | p |
---|---|---|---|---|
(intercept) | −8.111 | 3.705 | −2.189 | 0.029 |
Bait: vinegar | 5.382 | 1.115 | 4.829 | <0.001 |
Bait: wine | 3.410 | 1.129 | 3.019 | 0.003 |
Forest type: mixed forests | 1.083 | 0.466 | 2.327 | 0.020 |
Forest cover condition: interior | −0.392 | 0.461 | −0.851 | 0.395 |
Absolute maximum temperature | −0.016 | 0.052 | −0.311 | 0.756 |
Mean humidity | 0.051 | 0.040 | 1.292 | 0.196 |
Covariates | Estimate | SE of Estimate | z-Value | p |
---|---|---|---|---|
(intercept) | −64.815 | 45.690 | −1.419 | 0.156 |
Forest type: mixed forests | 1.544 | 0.860 | 1.796 | 0.073 |
Forest cover condition: interior | −0.972 | 0.861 | −1.129 | 0.259 |
Absolute maximum temperature | 0.711 | 0.596 | 1.194 | 0.233 |
Mean humidity | 0.597 | 0.390 | 1.530 | 0.126 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruzzier, E.; Galli, A.; Bani, L. Monitoring Exotic Beetles with Inexpensive Attractants: A Case Study. Insects 2021, 12, 462. https://doi.org/10.3390/insects12050462
Ruzzier E, Galli A, Bani L. Monitoring Exotic Beetles with Inexpensive Attractants: A Case Study. Insects. 2021; 12(5):462. https://doi.org/10.3390/insects12050462
Chicago/Turabian StyleRuzzier, Enrico, Andrea Galli, and Luciano Bani. 2021. "Monitoring Exotic Beetles with Inexpensive Attractants: A Case Study" Insects 12, no. 5: 462. https://doi.org/10.3390/insects12050462
APA StyleRuzzier, E., Galli, A., & Bani, L. (2021). Monitoring Exotic Beetles with Inexpensive Attractants: A Case Study. Insects, 12(5), 462. https://doi.org/10.3390/insects12050462