Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = Nitidulidae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 7789 KiB  
Article
Integrated Sampling Approaches Enhance Assessment of Saproxylic Beetle Biodiversity in a Mediterranean Forest Ecosystem (Sila National Park, Italy)
by Federica Mendicino, Francesco Carlomagno, Domenico Bonelli, Erica Di Biase, Federica Fumo and Teresa Bonacci
Insects 2025, 16(8), 812; https://doi.org/10.3390/insects16080812 - 6 Aug 2025
Abstract
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase [...] Read more.
Saproxylic beetles are key bioindicators of forest ecosystem quality and play essential roles in deadwood decomposition and nutrient cycling. However, their populations are increasingly threatened by habitat fragmentation, deadwood removal, and climate-driven environmental changes. For this reason, an integrated sampling method can increase the detection of species with varying ecological traits. We evaluated the effectiveness of integrative sampling methodologies to assess saproxylic beetle diversity within Sila National Park, a Mediterranean forest ecosystem of high conservation value, specifically in two beech forests and four pine forests. The sampling methods tested included Pan Traps (PaTs), Malaise Traps (MTs), Pitfall Traps (PTs), Bait Bottle Traps (BBTs), and Visual Census (VC). All specimens were identified to the species level whenever possible, using specialized dichotomous keys and preserved in the Entomological Collection TB, Unical. Various trap types captured a different number of species: the PaT collected 32 species, followed by the PT with 24, the MT with 16, the VC with 7, and the BBT with 5 species. Interestingly, biodiversity analyses conducted using PAST software version 4.17 revealed that PaTs and MTs recorded the highest biodiversity indices. The GLMM analysis, performed using SPSS software 29.0.1.0, demonstrated that various traps attracted different species with different abundances. By combining multiple trapping techniques, we documented a more comprehensive community composition compared to single-method approaches. Moreover, PaTs, MTs, and PTs recorded 20%, 40%, and 33% of the Near Threatened species, respectively. We report new records for Sila National Park, including the LC species Pteryngium crenulatum (Curculionidae) and the NT species Grynocharis oblonga (Trogossitidae). For the first time in Calabria, the LC species Triplax rufipes (Erotylidae) and the NT species Oxypleurus nodieri (Cerambycidae) and Glischrochilus quadrisignatus (Nitidulidae) were collected. Our results emphasize the importance of method diversity in capturing species with distinct ecological requirements and highlight the relevance of saproxylic beetles as indicators of forest health. These findings support the adoption of multi-method sampling protocols in forest biodiversity monitoring and management programs, especially in biodiversity-rich and structurally heterogeneous landscapes. Full article
Show Figures

Figure 1

24 pages, 14728 KiB  
Article
Death-Leading Envenomization of Rabbits with Snake Versus Scorpion Venoms: A Comparative Forensic Investigation of Postmortem Decomposition and Beetle Succession
by Afnan Saleh Al-Qurashi, Mohammed Saleh Al-Khalifa, Hathal Mohammed Al Dhafer, Mahmoud Saleh Abdel-Dayem, Hossam Ebaid and Ashraf Mohamed Ahmed
Insects 2025, 16(6), 625; https://doi.org/10.3390/insects16060625 - 13 Jun 2025
Viewed by 572
Abstract
Background:Envenomation by poisonous creatures is a major global cause of mortality. Its concomitant impact on the postmortem corpse decomposition and associated insect succession pattern is still poorly understood. Purpose of the study: This study comparatively investigates the impact of envenomization with [...] Read more.
Background:Envenomation by poisonous creatures is a major global cause of mortality. Its concomitant impact on the postmortem corpse decomposition and associated insect succession pattern is still poorly understood. Purpose of the study: This study comparatively investigates the impact of envenomization with the venoms of the snake Walterinnesia aegyptia L. versus the scorpion, Androctonus crassicauda L., on rabbit corpse decomposition and beetle succession. Methods: Three groups of rabbits (five animals each) were injected with the snake venom, the scorpion venom, or 0.9% saline (control) prior to euthanasia with CO2. The corpse decomposition stages and beetle succession were monitored over 11 days. Results: Four stages of decomposition with venom-dependent duration variation were observed. The scorpion-envenomized corpses showed a longer decay stage and a delayed dry stage. A total of 1094 beetles belonging to 27 species of 14 families were reported. Histeridae, Dermestidae, Scarabaeidae, and Tenebrionidae were the most diversified and prevalent families. Chrysomelidae, Elateridae, Hybosoridae, and Ptinidae were incidentally attracted to control corpses, while Nitidulidae and Zopheridae were only found on control and snake-envenomized ones. Four species belonging to the families Anthicidae, Histeridae, Scarabaeidae, and Tenebrionidae were predominant on all corpses. Four species belonging to the families Chrysomelidae, Curculionidae, Elateridae, and Hybosoridae were distinctively associated with the control corpses. Conclusions: These findings provided evidence that envenomation impacted the decomposition process and beetle succession in a venom-dependent manner, which could be significant for forensic investigations. Full article
(This article belongs to the Section Role of Insects in Human Society)
Show Figures

Figure 1

16 pages, 1540 KiB  
Article
The Effect of Cropping Systems on the Dispersal of Mycotoxigenic Fungi by Insects in Pre-Harvest Maize in Kenya
by Ginson M. Riungu, James Muthomi, Maina Wagacha, Wolfgang Buechs, Esther S. Philip and Torsten Meiners
Insects 2024, 15(12), 995; https://doi.org/10.3390/insects15120995 - 16 Dec 2024
Viewed by 1296
Abstract
Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A [...] Read more.
Maize productivity has remained low and has worsened in the wake of a changing climate, resulting in new invasive pests, with pests that were earlier designated as minor becoming major and with pathogens being transported by pests and/or entering their feeding sites. A study was conducted in 2021 in the Kisumu and Makueni counties, Kenya, to determine how different maize cropping systems affect insect diversity, insect damage to maize, and insects’ ability to spread mycotoxigenic fungi in pre-harvest maize. The field experiments used a randomized complete block design, with the four treatments being maize monocrop, maize intercropped with beans, maize–bean intercrop with the addition of Trichoderma harzianum at planting, and push–pull technology. The FAW, Spodoptera frugiperda (J.E Smith) (Lepidoptera: Noctuidae), was the most damaging pest in the two regions. The push–pull and the maize–bean intercropping technologies significantly reduced the maize foliage and ear damage caused by the FAW. Beetles passively spread mycotoxigenic Aspergillus spp. and Fusarium verticillioides on pre-harvest maize. Maize weevils, namely, Sitophilus zeamais Motschulsky, 1855 (Coleoptera: Curculionidae), and Carpophilus dimidiatus Fabricius, 1792 (Coleoptera: Nitidulidae), earwigs, namely, Forficula spp. L. (Dermaptera: Forficulidae), and carpenter ants, namely, Camponotus spp. L. (Hymenoptera: Formicidae) carried the highest number of spores on their exoskeletons. This study stresses the role of insects in the spread of fungi on pre-harvest maize and their possible control by intercropping and other cropping technologies. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

22 pages, 2495 KiB  
Review
Current and Future Insect Threats to Oaks of the Midwest, Great Lakes, and Northeastern United States and Canada
by Amanda J. Stump, Katie Bershing, Tara L. Bal and Carsten Külheim
Forests 2024, 15(8), 1361; https://doi.org/10.3390/f15081361 - 4 Aug 2024
Viewed by 3898
Abstract
Increasing temperatures, prolonged drought, the increased severity and intensity of storms, and other effects of climate change are being felt globally, and long-lived forest tree species may struggle in their current ranges. Oaks (Quercus spp.) have evolved a range of adaptations to [...] Read more.
Increasing temperatures, prolonged drought, the increased severity and intensity of storms, and other effects of climate change are being felt globally, and long-lived forest tree species may struggle in their current ranges. Oaks (Quercus spp.) have evolved a range of adaptations to dry and hot conditions and are believed to be a “climate change winner” by increasing their suitable habitat. However, a mixture of life history traits and increasing susceptibility to herbivores and xylovores as well as secondary pathogen infections still put oaks at risk of decline. Oak species found in the Midwestern, Great Lakes, and Northeastern United States and Canada are important keystone species with high ecological and economical importance. They are also vulnerable to existing, new, and emerging threats that have the potential to cause mortality across entire stands quickly. Current examples of insect threats include the Lymantria dispar (spongy moth), Agrilus bilineatus (twolined chestnut borer), and Nitidulidae (sap beetles) as disease vectors. Examples of emerging insects of concern include Cynipidae (oak gall wasps) and Enaphalodes rufulus (red oak borer). This study describes these insects, explains their mechanisms of action and the effects on oaks, and explores mitigation strategies for each. Full article
(This article belongs to the Special Issue Forest Pathology and Entomology—Series II)
Show Figures

Figure 1

20 pages, 1671 KiB  
Article
Post-Fire Coleoptera Fauna in Central Russian Forests after the 2021 Fires (Study Using Beer Traps)
by Leonid V. Egorov, Alexander B. Ruchin and Alexander I. Fayzulin
Insects 2024, 15(6), 420; https://doi.org/10.3390/insects15060420 - 5 Jun 2024
Cited by 1 | Viewed by 1185
Abstract
Fires can significantly impact forest ecosystems. However, studies on the effects of fires on insect communities in post-fire plots in natural forests are rare. This study presents an analysis of the Coleoptera fauna in the forests of the Mordovia State Nature Reserve (European [...] Read more.
Fires can significantly impact forest ecosystems. However, studies on the effects of fires on insect communities in post-fire plots in natural forests are rare. This study presents an analysis of the Coleoptera fauna in the forests of the Mordovia State Nature Reserve (European Russia) in 2022 and 2023 after a fire. Insects were sampled from burned plots (9) in 2010 and 2021, as well as unburned (control) plots (2), and alpha diversity was compared. After processing the material, we examined a total of 12,218 Coleoptera specimens from 38 families and identified 194 species. The families Nitidulidae, Cerambycidae, Elateridae, and Scarabaeidae were the most abundant across all plots. Cerambycidae, Elateridae, Nitidulidae, Staphylinidae, Coccinellidae, and Scarabaeidae exhibited the greatest species diversity. In total, 17 species were found on all plots, including Cetonia aurata, Protaetia cuprea volhyniensis, Trogoderma glabrum, Carpophilus hemipterus, Epuraea biguttata, Glischrochilus grandis, Glischrochilus hortensis, Glischrochilus quadripunctatus, Soronia grisea, Pediacus depressus, Chrysanthia geniculata, Anastrangalia reyi, Leptura quadrifasciata, Leptura thoracica, Lepturalia nigripes, Rhagium mordax, and Anisandrus dispar. Only five species exhibited preferences for certain plots. Maximum abundance and species diversity were observed on unburned (control) plots. The plots where fires occurred in 2010 and 2021 had the lowest total abundance values for Coleoptera. These fires destroyed almost all potential sites for beetle settlement, feeding, breeding, and shelter. Traps recorded a higher abundance of Coleoptera in the first year after fires compared to the second year. The Coleoptera fauna showed the greatest similarity on the control plots. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

21 pages, 8346 KiB  
Article
The First Two Complete Mitochondrial Genomes for the Subfamily Meligethinae (Coleoptera: Nitidulidae) and Implications for the Higher Phylogeny of Nitidulidae
by Jiaqi Dai, Meike Liu, Andrea Di Giulio, Simone Sabatelli, Wenkai Wang and Paolo Audisio
Insects 2024, 15(1), 57; https://doi.org/10.3390/insects15010057 - 12 Jan 2024
Cited by 6 | Viewed by 2380
Abstract
The phylogenetic status of the family Nitidulidae and its sister group relationship remain controversial. Also, the status of the subfamily Meligethinae is not fully understood, and previous studies have been mainly based on morphology, molecular fragments, and biological habits, rather than the analysis [...] Read more.
The phylogenetic status of the family Nitidulidae and its sister group relationship remain controversial. Also, the status of the subfamily Meligethinae is not fully understood, and previous studies have been mainly based on morphology, molecular fragments, and biological habits, rather than the analysis of the complete mitochondrial genome. Up to now, there has been no complete mitochondrial genome report of Meligethinae. In this study, the complete mitochondrial genomes of Meligethinus tschungseni and Brassicogethes affinis (both from China) were provided, and they were compared with the existing complete mitochondrial genomes of Nitidulidae. The phylogenetic analysis among 20 species of Coleoptera was reconstructed via PhyloBayes analysis and Maximum likelihood (ML) analysis, respectively. The results showed that the full lengths of Meligethinus tschungseni and Brassicogethes affinis were 15,783 bp and 16,622 bp, and the AT contents were 77% and 76.7%, respectively. Each complete mitochondrial genome contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs), and a control region (A + T-rich region). All the PCGs begin with the standard start codon ATN (ATA, ATT, ATG, ATC). All the PCGs terminate with a complete terminal codon, TAA or TAG, except cox1, cox2, nad4, and nad5, which terminate with a single T. Furthermore, all the tRNAs have a typical clover-leaf secondary structure except trnS1, whose DHU arm is missing in both species. The two newly sequenced species have different numbers and lengths of tandem repeat regions in their control regions. Based on the genetic distance and Ka/Ks analysis, nad6 showed a higher variability and faster evolutionary rate. Based on the available complete mitochondrial genomes, the results showed that the four subfamilies (Nitidulinae, Meligethinae, Carpophilinae, Epuraeinae) of Nitidulidae formed a monophyletic group and further supported the sister group relationship of Nitidulidae + Kateretidae. In addition, the taxonomic status of Meligethinae and the sister group relationship between Meligethinae and Nitidulinae (the latter as currently circumscribed) were also preliminarily explored. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

29 pages, 2914 KiB  
Article
A New Subgenus of the Genus Phenolia (Coleoptera, Nitidulidae) from Myanmar Cretaceous Amber with Taxonomic, Phylogenetic and Bionomic Notes on the ‘Nitidulid’ Group of Families
by Alexander Georgievich Kirejtshuk, Josh Jenkins Shaw and Igor Sergeevich Smirnov
Insects 2023, 14(7), 647; https://doi.org/10.3390/insects14070647 - 18 Jul 2023
Cited by 9 | Viewed by 2422
Abstract
A new subgenus, Palaeoronia subgen. nov., is described from the Cretaceous amber of North Myanmar (Kachin State) and assigned to the genus Phenolia. The type species of the new subgenus, Phenolia (Palaeoronia) haoranae subgen. et sp. nov., is characterized by [...] Read more.
A new subgenus, Palaeoronia subgen. nov., is described from the Cretaceous amber of North Myanmar (Kachin State) and assigned to the genus Phenolia. The type species of the new subgenus, Phenolia (Palaeoronia) haoranae subgen. et sp. nov., is characterized by a rather ‘archaic’ aspect. A discussion of the diagnostic and structure of the Soronia-complex of genera (together with the Phenolia-complex of genera) (Nitidulinae, Nitidulini) is proposed. Reasons for the ‘conservatism’ of this group during the Mesozoic and Cenozoic are discussed. The position of the Apophisandridae stat. nov. (type genus Apophisandra) and the transfers of the following genera into this family: Cretaretes, Electrumeretes, Furcalabratum, Pelretes, Polliniretes, Protokateretes, Protonitidula, and Scaporetes, from the Kateretidae, Nitidulidae or Cerambycidae are grounded. The relations of the family Parandrexidae (with inclusion of the genus Cretoparacucujus, transferred from Boganiidae with a proposal of the subfamily Cretoparacucujinae subfam.nov.), Martynoposis and Parandrexis are considered. The genus Antirhelus gen. nov. (type species Heterhelus buzina) is assigned to the new subfamily, Antirhelinae subfam. nov. in the family Kateretidae. The fossil records of the ‘nitidulid’ group of families (Apophisandridae stat. nov., Kateretidae, Nitidulidae, Parandrexidae, Smicripidae and possibly Boganiidae) are reviewed. The relationship of the family Boganiidae, some aspects of pollination and pollinophagy, and also changes in beetle diet in the past are discussed. The lectotype of Parandrixis parvula is designated. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Graphical abstract

23 pages, 7377 KiB  
Article
Pollen Beetles in Oilseed Rape Fields: Spectrum and Distribution in Czech Republic during 2011–2013
by Eva Hrudová, Marek Seidenglanz, Pavel Tóth, Jana Poslušná, Pavel Kolařík and Jiří Havel
Agriculture 2023, 13(6), 1243; https://doi.org/10.3390/agriculture13061243 - 14 Jun 2023
Cited by 2 | Viewed by 1975
Abstract
Oilseed rape is frequently damaged by insect pests. Much attention is paid to the protection of oilseed rape against Brassicogethes aeneus (Coleoptera: Nitidulidae), which is one of the most significant pests of spring and winter oilseed rape. The presence of different pollen beetle [...] Read more.
Oilseed rape is frequently damaged by insect pests. Much attention is paid to the protection of oilseed rape against Brassicogethes aeneus (Coleoptera: Nitidulidae), which is one of the most significant pests of spring and winter oilseed rape. The presence of different pollen beetle species was monitored in the Czech Republic in the years 2011–2013. A minimum of 500 individuals were captured at each site. Morphometric characteristics and the morphology of male and/or female genitalia were used to determine species. B. aeneus, B. subaeneus, B. viridescens and B. coracinus were most abundant. Other species presented in oilseed rape were B. coeruleovirens, B. czwalinai, B. matronalis, B. anthracinus, Boragogethes symphyti, Cychramus luteus, Fabogethes nigrescens, Genistogethes carinulatus, Meligethes atratus, Sagitogethes maurus, and Lamiogethes atramentarius. Our main conclusion is that the reason for the presence of the pollen beetle species associated with their development into non-cruciferous plants in oilseeds is the sufficiency of pollen as food for beetles. In addition, they may occur here incidentally, as they can be transported relatively long distances by air. Accompanying species of pollen beetles probably also have a positive effect on abundance reduction in species considered to be harmful as they are hosts to parasitoids of the oilseed rape pest. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

23 pages, 2327 KiB  
Article
Edge Effects in the Distribution of Coleoptera in the Forests of the Center of the European Part of Russia
by Alexander B. Ruchin, Leonid V. Egorov and Anatoliy A. Khapugin
Insects 2023, 14(4), 371; https://doi.org/10.3390/insects14040371 - 10 Apr 2023
Cited by 6 | Viewed by 2596
Abstract
Forest edges, which are ecotones, have a significant impact on the spatial distribution of many Coleoptera species. This research was carried out in 2020–2022 on the territory of the Republic of Mordovia (the center of the European part of Russia). Beer traps (with [...] Read more.
Forest edges, which are ecotones, have a significant impact on the spatial distribution of many Coleoptera species. This research was carried out in 2020–2022 on the territory of the Republic of Mordovia (the center of the European part of Russia). Beer traps (with a bait made of beer with sugar) were used to collect Coleoptera. Four plots were selected for the research, which differed in the composition of plants on the edges, adjacent open ecosystems, and types of forest ecosystems. The forest adjoined closely to this open ecosystem. Inside the forest interior, at 300–350 m, a control inner section of the forest with a closed canopy was selected. There were eight traps on each site: edge–below, edge–above, forest interior–below, and forest interior–above, with two traps in each plot. These traps were located at a height of 1.5 (below) and 7.5 m (above) above the ground on tree branches. In total, more than 13,000 specimens from 35 families were recorded. Cerambycidae, Nitidulidae, Curculionidae, and Elateridae had the greatest species diversity. Nitidulidae (71.6% of all individuals), Curculionidae (8.3%), Scarabaeidae (7.7%), and Cerambycidae (2.4%) predominated in total number. There were 13 species common to all plots. At the same time, only four species were found in all traps (Protaetia marmorata, Cryptarcha strigata, Glischrochilus grandis, and Soronia grisea). The abundance of P. marmorata on all plots at an altitude of 7.5 m on the edges was greater. G. grandis prevailed in the lower traps. The abundance of C. strigata and S. grisea varied depending on the location of the trap on different plots. The general pattern was the greatest species diversity of Coleoptera on the edges in the lower traps. At the same time, the total number of all species on the edges was lower. At the edges, the Shannon index was practically always higher or equal to similar indicators in traps located in the forest interior. According to the average values of all plots, it turned out that the number of species of saproxylic Coleoptera prevails inside forest areas, and the largest number of saproxiles was found in the upper traps. An interesting feature for all plots was a more significant relative number of anthophilic species at the edge in the upper traps. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Figure 1

23 pages, 7863 KiB  
Article
Temperature-Dependent Development of Nitidula rufipes (Linnaeus, 1767) (Coleoptera: Nitidulidae) and Its Significance in Estimating Minimum Postmortem Interval
by Gengwang Hu, Liangliang Li, Yi Guo, Chengtao Kang, Yinghui Wang, Yanan Zhang, Zhixiang Zhang, Jiangfeng Wang and Yu Wang
Insects 2023, 14(3), 299; https://doi.org/10.3390/insects14030299 - 20 Mar 2023
Cited by 10 | Viewed by 3433
Abstract
Coleoptera, including the family Nitidulidae, are valuable for estimating long-term postmortem intervals in the late stage of body decomposition. This study showed that, under seven constant temperatures of 16, 19, 22, 25, 28, 31, and 34 °C, the developmental durations of Nitidula rufipes [...] Read more.
Coleoptera, including the family Nitidulidae, are valuable for estimating long-term postmortem intervals in the late stage of body decomposition. This study showed that, under seven constant temperatures of 16, 19, 22, 25, 28, 31, and 34 °C, the developmental durations of Nitidula rufipes (Linnaeus, 1767) from oviposition to eclosion were 71.0 ± 4.4, 52.9 ± 4.1, 40.1 ± 3.4, 30.1 ± 2.1, 24.2 ± 2.0, 21.0 ±2.3, and 20.8 ± 2.4 days, respectively. The morphological indexes of body length, the widths of the head capsules, and the distance between the urogomphi of the larvae were measured in vivo. The regression model between larval body length and developmental durations was simulated for larval aging, and the head capsule width and the distance between the urogomphi at different instars were cluster-analyzed for instar discrimination. Based on the developmental durations, larval body length and thermal summation data were obtained, and the isomorphen diagram, isomegalen diagram, linear thermal summation models, and curvilinear Optim SSI models were established. The lower developmental threshold and thermal summation constant of N. rufipes evaluated by the linear thermal summation models were 9.65 ± 0.62 °C and 471.40 ± 25.46 degree days, respectively. The lower developmental thresholds, intrinsic optimum temperature, and upper lethal developmental threshold obtained by Optim SSI models were 10.12, 24.15, and 36.00 °C, respectively. The study of the immature stages of N. rufipes can provide preliminary basic developmental data for the estimation of minimum postmortem interval (PMImin). However, more extensive studies are needed on the effects of constant and fluctuating temperatures on the development of N. rufipes. Full article
(This article belongs to the Section Medical and Livestock Entomology)
Show Figures

Figure 1

21 pages, 16386 KiB  
Article
Morphological Study of the Alimentary Canal and Malpighian Tubules in the Adult of the Pollen Beetle Meligethes (Odonthogethes) chinensis (Coleoptera: Nitidulidae: Meligethinae)
by Longyan Chen, Meike Liu, Andrea Di Giulio, Xinxin Chen, Simone Sabatelli, Wenkai Wang and Paolo Audisio
Insects 2023, 14(3), 298; https://doi.org/10.3390/insects14030298 - 20 Mar 2023
Cited by 4 | Viewed by 4750
Abstract
Meligethes (Odonthogethes) chinensis is a highly specialized species of Nitidulidae in China that takes pollen as its main food source, and its main host plant is Rubus idaeus L. (Rosaceae). In this study, the structural morphology of the alimentary canal and [...] Read more.
Meligethes (Odonthogethes) chinensis is a highly specialized species of Nitidulidae in China that takes pollen as its main food source, and its main host plant is Rubus idaeus L. (Rosaceae). In this study, the structural morphology of the alimentary canal and Malpighian tubules of adult M. (O.) chinensis was observed under light, fluorescence, and scanning electron microscopy. The alimentary canal of adult M. (O.) chinensis is divided into foregut, midgut, and hindgut. The foregut is the shortest and consists of the pharynx, esophagus, proventriculus, and cardiac valve. The midgut is a straight, distended, cylindrical, thin-walled tube. Numerous blunt-fingered gastric ceca are distributed irregularly throughout the midgut. The hindgut is subdivided into the ileum, colon, and rectum. The ileum is coiled. The colon gradually enlarges posteriorly. The rectum is thickly muscled and followed by a membranous structure. The openings of proximal Malpighian tubules are evenly inserted into the junction of the midgut and hindgut, and distal Malpighian tubules are evenly attached to the colon to form a cryptonephridial system. In this study, we also compare the structure and infer the function of the alimentary canal and Malpighian tubules among beetles, as well as discuss the evolutionary and taxonomical implications. Full article
Show Figures

Graphical abstract

8 pages, 1556 KiB  
Data Descriptor
Dataset: Coleoptera (Insecta) Collected from Beer Traps in “Smolny” National Park (Russia)
by Alexander B. Ruchin, Leonid V. Egorov, Oleg N. Artaev and Mikhail N. Esin
Data 2022, 7(11), 161; https://doi.org/10.3390/data7110161 - 15 Nov 2022
Cited by 4 | Viewed by 2214
Abstract
Monitoring Coleoptera diversity in protected areas is part of the global ecological monitoring of the state of ecosystems. The purpose of this research is to describe the biodiversity of Coleoptera studied with the help of baits based on fermented substrate in the European [...] Read more.
Monitoring Coleoptera diversity in protected areas is part of the global ecological monitoring of the state of ecosystems. The purpose of this research is to describe the biodiversity of Coleoptera studied with the help of baits based on fermented substrate in the European part of Russia (Smolny National Park). The research was conducted April–August 2018–2022. Samples were collected in traps of our own design. Beer or wine with the addition of sugar, honey, or jam was used for bait. A total of 194 traps were installed. The dataset contains 1254 occurrences. A total of 9226 Coleoptera specimens have been studied. The dataset contains information about 134 species from 24 Coleoptera families. The largest number of species that have been found in traps belongs to the family Cerambycidae (30 species), Nitidulidae (14 species), Elateridae (12 species), and Curculionidae and Coccinellidae (10 species each). The number of individuals in the traps of these families was distributed as follows: Cerambycidae—1018 specimens; Nitidulidae—5359; Staphylinidae—241; Elateridae—33; Curculionidae—148; and Coccinellidae—19. The 10 dominant species accounted for 90.7% of all detected specimens in the traps. The maximum species diversity and abundance of Coleoptera was obtained in 2021. With the installation of the largest number of traps in 2022 and more diverse biotopes (64 traps), a smaller number of species was caught compared to 2021. New populations of such species have been found from rare Coleoptera: Calosoma sycophanta, Elater ferrugineus, Osmoderma barnabita, Protaetia speciosissima, and Protaetia fieberi. Full article
Show Figures

Figure 1

8 pages, 1890 KiB  
Communication
A New Genus of Sap Beetles (Coleoptera: Nitidulidae) from Mid-Cretaceous Amber of Northern Myanmar
by Qian Zhao, Diying Huang and Chenyang Cai
Insects 2022, 13(10), 884; https://doi.org/10.3390/insects13100884 - 28 Sep 2022
Cited by 6 | Viewed by 2276
Abstract
Nitidulidae is the most diverse family of the recently recognized superfamily Nitiduliodea, but Mesozoic nitidulids that are critical for understanding their early diversification are sparse. Here, we report a new genus and species of Nitidulidae, Protonitidula neli gen. et sp. nov., that was [...] Read more.
Nitidulidae is the most diverse family of the recently recognized superfamily Nitiduliodea, but Mesozoic nitidulids that are critical for understanding their early diversification are sparse. Here, we report a new genus and species of Nitidulidae, Protonitidula neli gen. et sp. nov., that was recovered from mid-Cretaceous amber in northern Myanmar. The new genus is distinguished from all members of the extant nitidulid subfamilies most prominently by the loose antennal club and the absence of subantennal grooves. Protonitidula neli can be excluded from the closely related Kateretidae and classified into Nitidulidae by the broad and apically expanded prosternal process, although it has many pleisiomorphic characters. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

21 pages, 2327 KiB  
Article
Vertical Distribution of Beetles (Coleoptera) in Pine Forests in Central European Russia
by Alexander B. Ruchin, Leonid V. Egorov and Anatoliy A. Khapugin
Diversity 2022, 14(8), 622; https://doi.org/10.3390/d14080622 - 3 Aug 2022
Cited by 8 | Viewed by 2580
Abstract
Research on the Arthropoda distribution in temperate forest ecosystems has shown that communities are distributed vertically in unequal numbers. However, this issue still has research gaps in relation to the vertical stratification of Coleoptera in pine forests of the temperate zone. This study [...] Read more.
Research on the Arthropoda distribution in temperate forest ecosystems has shown that communities are distributed vertically in unequal numbers. However, this issue still has research gaps in relation to the vertical stratification of Coleoptera in pine forests of the temperate zone. This study was conducted in the Republic of Mordovia situated in central part of European Russia. We used fermental traps to collect Coleoptera (the bait is fermenting beer with sugar and honey). The sampling was conducted from May to September 2021 in five sites of pine forests. One hundred and twenty-five species from 36 families were identified. The highest species richness was found in Nitidulidae and Cerambycidae (19 species each), Elateridae (13), Curculionidae (7) and Scarabaeidae (6). The highest number of species (84 species) was obtained at the height of 1.5 m, while the smallest species richness (44 species) was found at the height of 12.0 m. At the height of 12 m, we also registered the minimum number of specimens. Twenty-four species from 11 families were common to all the heights studied. Cryptarcha strigata and Glischrochilus grandis preferred heights of 3 and 1.5 m. Cryptarcha undata and Protaetia marmorata were more common at a height of 7 m with a frequency of 61.4–79.6% and 68.2–79.6%, respectively. The absolute number of saproxyl and anthophilic beetle species was higher in the ground layer and at the undergrowth level. These studies expand our understanding of the vertical distribution of beetles in pine forests of the temperate zone of European Russia. Full article
(This article belongs to the Special Issue Vertical Distribution of Animals in Forest Ecosystems)
Show Figures

Figure 1

16 pages, 3888 KiB  
Article
Vertical Stratification and Seasonal Dynamics of Coleoptera in Open Biotopes of Forest Ecosystems (Centre of European Russia)
by Alexander B. Ruchin and Leonid V. Egorov
Forests 2022, 13(7), 1014; https://doi.org/10.3390/f13071014 - 28 Jun 2022
Cited by 9 | Viewed by 2021
Abstract
There are few studies on the vertical distribution and seasonal activity of arthropods in open habitats (in glades) in temperate forests due to methodological problems associated with the arrangement of certain structures for trapping. However, glades in forests are places of significant biodiversity [...] Read more.
There are few studies on the vertical distribution and seasonal activity of arthropods in open habitats (in glades) in temperate forests due to methodological problems associated with the arrangement of certain structures for trapping. However, glades in forests are places of significant biodiversity of native animals, which are attracted to such areas by the possibilities of nutrition, reproduction, and wintering. The research was carried out on the territory of the Republic of Mordovia (the center of the European part of Russia). Fermental traps (bait—fermenting beer with sugar) were used to collect Coleoptera. They were installed on a special structure at heights of 2, 4, 6, 8, and 10 m. The collections were carried out from May to October 2020 in a glade with an area of 0.93 hectares in a deciduous forest. At the end of the research, 745 specimens of 80 species were registered from 30 Coleoptera families. The greatest species diversity was recorded in Nitidulidae (11 species), Cerambycidae (10 species), Scarabaeidae (7 species), Elateridae, Coccinellidae, and Curculionidae (5 species each). The greatest species diversity (53 species) and numerical abundance were obtained at a height of 2 m, and the smallest one (16 species) at a height of 10 m. The largest differences in the Jaccard similarity index were obtained between samples from a height of 2 and 10 m. The maximum values of the Shannon index and the minimum values of the Simpson index were recorded at the height of 2 m. The most significant relative number of saproxylic species was obtained at a height of 4 m. The relative number of anthophilic species was minimal at a height of 10 m. The seasonal dynamics of Coleoptera abundance were the same at different heights and the highest abundance was observed in late May and early June. However, the seasonal dynamics were different for some Coleoptera species in the glade located and inside the forest. Our data confirm the relevance of sampling in open biotopes at different heights in the study of arthropod biodiversity. Full article
(This article belongs to the Special Issue Phylogenetic ​Classification and Distribution of Forest Insects)
Show Figures

Figure 1

Back to TopTop