Two Haplotypes of Aedes aegypti Detected by ND4 Mitochondrial Marker in Three Regions of Ecuador
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. DNA Extraction, Amplification, and Sequencing of the ND4 Gene
2.3. Phylogenetic Analyses
2.4. Genetic Diversity and Population Structure of Seven Populations Ae. aegypti
3. Results
3.1. Phylogenetic Analyses
3.2. Genetic Diversity and Population Structure of Seven Populations of Aedes aegypti
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO (World Health Organization). Working to Overcome the Global Impact of Neglected Tropical Diseases Annexe I First WHO Report on Neglected Tropical Diseases; WHO: Geneva, Switzerland, 2010; ISBN 9789241564090. [Google Scholar]
- Kraemer, M.U.G.; Sinka, M.E.; Duda, K.A.; Mylne, A.Q.N.; Shearer, F.M.; Barker, C.M.; Moore, C.G.; Carvalho, R.G.; Coelho, G.E.; Van Bortel, W.; et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. Elife 2015, 4, e08347. [Google Scholar] [CrossRef]
- Crawford, J.E.; Alves, J.M.; Palmer, W.J.; Day, J.P.; Sylla, M.; Ramasamy, R.; Surendran, S.N.; Black, W.C.; Pain, A.; Jiggins, F.M. Population genomics reveals that an anthropophilic population of Aedes aegypti mosquitoes in West Africa recently gave rise to American and Asian populations of this major disease vector. BMC Biol. 2017, 15, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.E.; Evans, B.R.; Zheng, W.; Obas, V.; Barrera-Martinez, L.; Egizi, A.; Zhao, H.; Caccone, A.; Powell, J.R. Human impacts have shaped historical and recent evolution in Aedes aegypti, the dengue and yellow fever mosquito. Evolution 2014, 68, 514–525. [Google Scholar] [CrossRef] [Green Version]
- Stewart Ibarra, A.M.; Luzadis, V.A.; Borbor Cordova, M.J.; Silva, M.; Ordoñez, T.; Beltrán Ayala, E.; Ryan, S.J. A social-ecological analysis of community perceptions of dengue fever and Aedes aegypti in Machala, Ecuador. BMC Public Health 2014, 14, 1135. [Google Scholar] [CrossRef] [Green Version]
- MSP, (Ministerio de Salud Pública) Gaceta Vectorial, Subsistema De Vigilancia SIVE-ALERTA, Ministerio de Salud Pública. Enfermedades Transmitidas Por Vectores Ecuador, SE 01/2020. Available online: https://www.salud.gob.ec/wp-content/uploads/2020/01/VECTORES-0120.pdf (accessed on 26 October 2020).
- Lippi, C.; Stewart-Ibarra, A.; Muñoz, Á.; Borbor-Cordova, M.; Mejía, R.; Rivero, K.; Castillo, K.; Cárdenas, W.; Ryan, S. The Social and Spatial Ecology of Dengue Presence and Burden during an Outbreak in Guayaquil, Ecuador, 2012. Int. J. Environ. Res. Public Health 2018, 15, 827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heydari, N.; Larsen, D.; Neira, M.; Beltrán Ayala, E.; Fernandez, P.; Adrian, J.; Rochford, R.; Stewart-Ibarra, A. Household Dengue Prevention Interventions, Expenditures, and Barriers to Aedes aegypti Control in Machala, Ecuador. Int. J. Environ. Res. Public Health 2017, 14, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, D.; Ponce, P.; Cevallos, V.; Espinosa, P.; Vaca, D.; Quezada, W. Resistance Status of Aedes aegypti to Deltamethrin, Malathion, and Temephos in Ecuador. J. Am. Mosq. Control. Assoc. 2019, 35, 113–122. [Google Scholar] [CrossRef]
- Paduan, K.d.S.; Ribolla, P.E.M. Mitochondrial DNA polymorphism and heteroplasmy in populations of Aedes aegypti in Brazil. J. Med. Entomol. 2008, 45, 59–67. [Google Scholar] [CrossRef]
- Powell, J.R.; Tabachnick, W.J. History of domestication and spread of Aedes aegypti-A review. Mem. Inst. Oswaldo Cruz 2013, 108 (Suppl. 1), 11–17. [Google Scholar] [CrossRef] [PubMed]
- Jaimes-Dueñez, J.; Arboleda, S.; Triana-Chávez, O.; Gómez-Palacio, A. Spatio-temporal distribution of Aedes aegypti (Diptera: Culicidae) mitochondrial lineages in cities with distinct dengue incidence rates suggests complex population dynamics of the dengue vector in Colombia. PLoS Negl. Trop. Dis. 2015, 9, e0003553. [Google Scholar] [CrossRef] [PubMed]
- Bracco, J.E.; Capurro, M.L.; Lourenço-de-Oliveira, R.; Sallum, M.A.M. Genetic variability of Aedes aegypti in the Americas using a mitochondrial gene: Evidence of multiple introductions. Mem. Inst. Oswaldo Cruz 2007, 102, 573–580. [Google Scholar] [CrossRef] [Green Version]
- MSP, (Ministerio de Salud Pública) Gaceta Epidemiológica, Subsistema De Vigilancia SIVE-ALERTA, Ministerio de Salud Pública. Enfermedades Transmitidas Por Vectores Ecuador, SE 06/2013. Available online: http://instituciones.msp.gob.ec/images/Documentos/Ministerio/EPIDEMIOLOGIA/gaceta2013/gaceta2.pdf (accessed on 18 March 2013).
- Atencia, M.C.; Pérez, M.D.J.; Caldera, S.M.; Jaramillo, M.C.; Bejarano, E.E. Variabilidad genética de Aedes aegypti en el departamento de Sucre, Colombia, mediante el análisis de la secuencia de nucleótidos del gen mitocondrial ND4. Biomédica 2018, 38, 267–276. [Google Scholar] [CrossRef]
- da Costa-da-Silva, A.L.; Capurro, M.L.; Bracco, J.E. Genetic lineages in the yellow fever mosquito Aedes (Stegomyia) aegypti (Diptera: Culicidae) from Peru. Mem. Inst. Oswaldo Cruz 2005, 100, 539–544. [Google Scholar] [CrossRef] [Green Version]
- Paupy, C.; Le Goff, G.; Brengues, C.; Guerra, M.; Revollo, J.; Barja Simon, Z.; Hervé, J.-P.; Fontenille, D. Genetic structure and phylogeography of Aedes aegypti, the dengue and yellow-fever mosquito vector in Bolivia. Infect. Genet. Evol. 2012, 12, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Carrozza, M.; Rubio-Palis, Y.; Herrera, F. Genetic structure of Latin American Aedes aegypti. Bol. Malariol. y Salud Ambient. 2016, 56, 53–62. [Google Scholar]
- Twerdochlib, A.L.; Bonna, A.C.D.; Leite, S.S.; Chitolina, R.F.; Westphal, B.; Navarro-Silva, M.A. Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. Rev. Bras. Entomol. 2012, 56, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Lima, R.S.; Scarpassa, V.M. Evidence of two lineages of the dengue vector Aedes aegypti in the Brazilian Amazon, based on mitochondrial DNA ND4 gene sequences. Genet. Mol. Biol. 2009, 32, 414–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorrochotegui-Escalante, N.; Gomez-Machorro, C.; Lozano-Fuentes, S.; Fernandez-Salas, L.; De Lourdes Munoz, M.; Farfan-Ale, J.A.; Garcia-Rejon, J.; Beaty, B.J.; Black, W.C. Breeding structure of Aedes aegypti populations in Mexico varies by region. Am. J. Trop. Med. Hyg. 2002, 66, 213–222. [Google Scholar] [CrossRef]
- Campos, M.; Ward, D.; Morales, R.F.; Gomes, A.R.; Silva, K.; Sepúlveda, N.; Gomez, L.F.; Clark, T.G.; Campino, S. Surveillance of Aedes aegypti populations in the city of Praia, Cape Verde: Zika virus infection, insecticide resistance and genetic diversity. Parasit. Vectors 2020, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Salgueiro, P.; Serrano, C.; Gomes, B.; Alves, J.; Sousa, C.A.; Abecasis, A.; Pinto, J. Phylogeography and invasion history of Aedes aegypti, the Dengue and Zika mosquito vector in Cape Verde Islands (West Africa). Evol. Appl. 2019, 12, 1797–1811. [Google Scholar] [CrossRef] [PubMed]
- Gorrochotegui-Escalante, N.; Munoz, M.L.; Fernandez-Salas, I.; Beaty, B.J.; Black, W.C. Genetic isolation by distance among Aedes aegypti populations along the northeastern coast of Mexico. Am. J. Trop. Med. Hyg. 2000, 62, 200–209. [Google Scholar] [CrossRef] [Green Version]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [Green Version]
- Huelsenbeck, J.P.; Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 2001, 17, 754–755. [Google Scholar] [CrossRef] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef]
- Cummings, M.P. PAUP* (Phylogenetic Analysis Using Parsimony (and Other Methods)). In Dictionary of Bioinformatics and Computational Biology; John Wiley & Sons, Ltd.: Chichester, UK, 2004. [Google Scholar] [CrossRef]
- Clement, M.; Posada, D.; Crandall, K.A. TCS: A computer program to estimate gene genealogies. Mol. Ecol. 2000, 9, 1657–1659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rozas, J.; Sánchez-DelBarrio, J.C.; Messeguer, X.; Rozas, R. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19, 2496–2497. [Google Scholar] [CrossRef] [PubMed]
- Excoffier, L.; Lischer, H.E.L. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Guayasamin, J.M.; Hutter, C.R.; Tapia, E.E.; Culebras, J.; Peñafiel, N.; Pyron, R.A.; Morochz, C.; Funk, W.C.; Arteaga, A. Diversification of the rainfrog Pristimantis ornatissimus in the lowlands and Andean foothills of Ecuador. PLoS ONE 2017, 12, e0172615. [Google Scholar] [CrossRef] [Green Version]
- Krabbe, N. Arid valleys as dispersal barriers to high-Andean forest birds in Ecuador. Cotinga 2008, 29, 28–30. [Google Scholar]
- Muñoz-Tobar, S.I.; Caterino, M.S. The role of dispersal for shaping phylogeographical structure of flightless beetles from the Andes. PeerJ 2019, 7, e7226. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Wright, S. Evolution in Mendelian Populations. Genetics 1931, 16, 97–159. [Google Scholar] [CrossRef] [PubMed]
- Holsinger, K.E.; Weir, B.S. Genetics in geographically structured populations: Defining, estimating and interpreting F(ST). Nat. Rev. Genet. 2009, 10, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, A.; González, D.; Suárez, N. Mitochondrial DNA variation of the Dengue’s mosquito vector Aedes aegypti (Diptera: Culicidae) in Rivera city, northern Uruguay. Boletín la Soc. Zoológica del Uruguay 2019. [Google Scholar] [CrossRef]
- Dueñas, J.C.R.; Llinás, G.A.; Panzetta-Dutari, G.M.; Gardenal, C.N. Two Different Routes of Colonization of Aedes aegypti in Argentina From Neighboring Countries. J. Med. Entomol. 2009, 46, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Urdaneta-Marquez, L.; Bosio, C.; Herrera, F.; Rubio-Palis, Y.; Salasek, M.; Black, W.C. Genetic Relationships among Aedes aegypti Collections in Venezuela as Determined by Mitochondrial DNA Variation and Nuclear Single Nucleotide Polymorphisms. Am. J. Trop. Med. Hyg. 2008, 78, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, P.; Mamani, E.; Valle, J.; García, M.P.; León, W.; Villaseca, P.; Torres, D.; Cabezas, C. Variabilidad genética del Aedes aegypti determinada mediante el análisis del gen mitocondrial ND4 en once áreas endémicas para Dengue en el Perú. Rev. Peru. Med. Exp. Salud Publica 2013, 30, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Salgueiro, P.; Restrepo-Zabaleta, J.; Costa, M.; Galardo, A.K.R.; Pinto, J.; Gaborit, P.; Guidez, A.; Martins, A.J.; Dusfour, I. Liaisons dangereuses: Cross-border gene flow and dispersal of insecticide resistance-associated genes in the mosquito Aedes aegypti from Brazil and French Guiana. Mem. Inst. Oswaldo Cruz 2019, 114, e190120. [Google Scholar] [CrossRef]
- Ayala, A.M.; Vera, N.S.; Chiappero, M.B.; Almirón, W.R.; Gardenal, C.N. Urban Populations of Aedes aegypti (Diptera: Culicidae) From Central Argentina: Dispersal Patterns Assessed by Bayesian and Multivariate Methods. J. Med. Entomol. 2020, 57, 1069–1076. [Google Scholar] [CrossRef] [PubMed]
- Soghigian, J.; Gloria-Soria, A.; Robert, V.; Le Goff, G.; Failloux, A.-B.; Powell, J.R. Genetic evidence for the origin of Aedes aegypti, the yellow fever mosquito, in the southwestern Indian Ocean. Mol. Ecol. 2020, 29, 3593–3606. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.E.; McBride, C.S.; Johnson, P.; Ritchie, S.; Paupy, C.; Bossin, H.; Lutomiah, J.; Fernandez-Salas, I.; Ponlawat, A.; Cornel, A.J.; et al. Worldwide patterns of genetic differentiation imply multiple “domestications” of Aedes aegypti, a major vector of human diseases. Proc. Biol. Sci. 2011, 278, 2446–2454. [Google Scholar] [CrossRef] [Green Version]
- Pless, E.; Hopperstad, K.A.; Ledesma, N.; Dixon, D.; Henke, J.A.; Powell, J.R. Sunshine versus gold: The effect of population age on genetic structure of an invasive mosquito. Ecol. Evol. 2020, 10, 9588–9599. [Google Scholar] [CrossRef]
- Sherpa, S.; Rioux, D.; Goindin, D.; Fouque, F.; François, O.; Després, L. At the Origin of a Worldwide Invasion: Unraveling the Genetic Makeup of the Caribbean Bridgehead Populations of the Dengue Vector Aedes aegypti. Genome Biol. Evol. 2018, 10, 56–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endersby-Harshman, N.M.; Schmidt, T.L.; Chung, J.; van Rooyen, A.; Weeks, A.R.; Hoffmann, A.A. Heterogeneous genetic invasions of three insecticide resistance mutations in Indo-Pacific populations of Aedes aegypti (L.). Mol. Ecol. 2020, 29, 1628–1641. [Google Scholar] [CrossRef] [PubMed]
- Suarez, A.V.; Tsutsui, N.D. The evolutionary consequences of biological invasions. Mol. Ecol. 2008, 17, 351–360. [Google Scholar] [CrossRef]
- Bennett, K.L.; Shija, F.; Linton, Y.-M.; Misinzo, G.; Kaddumukasa, M.; Djouaka, R.; Anyaele, O.; Harris, A.; Irish, S.; Hlaing, T.; et al. Historical environmental change in Africa drives divergence and admixture of Aedes aegypti mosquitoes: A precursor to successful worldwide colonization? Mol. Ecol. 2016, 25, 4337–4354. [Google Scholar] [CrossRef] [Green Version]
- Kotsakiozi, P.; Gloria-Soria, A.; Schaffner, F.; Robert, V.; Powell, J.R. Aedes aegypti in the Black Sea: Recent introduction or ancient remnant? Parasit. Vectors 2018, 11, 396. [Google Scholar] [CrossRef]
- Gonçalves da Silva, A.; Cunha, I.C.L.; Santos, W.S.; Luz, S.L.B.; Ribolla, P.E.M.; Abad-Franch, F. Gene flow networks among American Aedes aegypti populations. Evol. Appl. 2012, 5, 664–676. [Google Scholar] [CrossRef]
- Figueiredo, L.T.M. Dengue in Brazil: Past, Present and Future Perspective. Dengue Bull. 2003, 27, 25–33. [Google Scholar]
- Powell, J.R.; Gloria-Soria, A.; Kotsakiozi, P. Recent History of Aedes aegypti: Vector Genomics and Epidemiology Records. Bioscience 2018, 68, 854–860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matocq, M.D.; Villablanca, F.X. Low genetic diversity in an endangered species: Recent or historic pattern? Biol. Conserv. 2001, 98, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123, 585–595. [Google Scholar] [CrossRef]
- Cevallos, V.; Benítez, D.; Coloma, J.; Carrazco, A.; Wang, C.; Holecheck, S.; Quiroga, C.; Castillo, G.; Tillis, B.; Ponce, P. Genetic variation of Aedes aegypti populations from Ecuador. bioRxiv 2019, 26. [Google Scholar] [CrossRef] [Green Version]
- Causton, C.E.; Peck, S.B.; Sinclair, B.J.; Roque-Albelo, L.; Hodgson, C.J.; Landry, B. Alien insects: Threats and implications for conservation of Galápagos Islands. Ann. Entomol. Soc. Am. 2006, 99, 121–143. [Google Scholar] [CrossRef]
- Medley, K.A.; Jenkins, D.G.; Hoffman, E.A. Human-aided and natural dispersal drive gene flow across the range of an invasive mosquito. Mol. Ecol. 2015, 24, 284–295. [Google Scholar] [CrossRef]
- Damal, K.; Murrell, E.G.; Juliano, S.A.; Conn, J.E.; Loew, S.S. Phylogeography of Aedes aegypti (Yellow Fever Mosquito) in South Florida: mtDNA Evidence for Human-Aided Dispersal. Am. J. Trop. Med. Hyg. 2013, 89, 482–488. [Google Scholar] [CrossRef] [Green Version]
Region | N° | Locality | Longitude | Latitude | Collection Year | Sample Size |
---|---|---|---|---|---|---|
Amazon basin | 1 | Francisco de Orellana | −76.679 | −0.468 | 2013 | 6 |
2 | Macas | −78.133 | −2.323 | 2013 | 7 | |
3 | Nueva Loja | −76.877 | 0.064 | 2013 | 9 | |
4 | Puyo | −77.956 | −1.479 | 2012 | 4 | |
5 | Tena | −77.820 | −0.982 | 2015 | 5 | |
Galapagos Islands | 6 | Santa Cruz | −90.325 | −0.715 | 2014 | 9 |
7 | San Cristobal | −89.594 | −0.910 | 2014 | 3 | |
Pacific coast | 8 | Babahoyo | −79.679 | −1.787 | 2014 | 5 |
9 | Borbón | −78.987 | 1.093 | 2018 | 10 | |
10 | Cumandá | −79.135 | −2.208 | 2014 | 8 | |
11 | Esmeraldas | −79.660 | 0.947 | 2014 | 5 | |
12 | Guayaquil | −79.921 | −2.246 | 2016 | 40 | |
13 | Lita | −78.451 | 0.869 | 2018 | 9 | |
14 | Machala | −79.927 | −3.259 | 2017 | 8 | |
15 | Manta | −80.732 | 0.955 | 2017 | 4 | |
16 | Quinsaloma | −79.310 | −1.204 | 2017 | 2 | |
17 | Santo Domingo | −79.156 | −0.222 | 2013 | 3 | |
Total | 137 |
Ecuadorian Haplotype | America, Asia, Africa | Cape Verde | Brazilian Amazon | Brazil | Mexico | Colombia | Peru | Bolivia |
---|---|---|---|---|---|---|---|---|
H1 | H15 | H6 | H1 | H11 | H13 | H2 [15]; H81 [12] | H2 | H4 |
H2 | H5 | X | H10 | H2 | H20 | X | H1 | X |
Region | N° | Locality | N | h | π | S | D | F |
---|---|---|---|---|---|---|---|---|
Amazon basin | 1 | Fco. de Orellana | 6 | 0.545 ± 0.062 | 0.01685 ± 0.00190 | 8 | 2.58449 b | 7.657 b |
2 | Macas | 6 | 0.264 ± 0.136 | 0.00821 ± 0.00423 | 8 | −0.60818 | 4.844 | |
3 | Nueva Loja | 9 | 0.366 ± 0.112 | 0.01105 ± 0.00339 | 8 | 0.89988 | 6.910 b | |
4 | Puyo | 4 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0 | 0.000 | 0.000 | |
5 | Tena | 5 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0 | 0.000 | 0.000 | |
Galapagos Islands | 6 | Santa Cruz | 9 | 0.523 ± 0.048 | 0.01609 ± 0.00147 | 8 | 2.77503 b | 8.980 b |
7 | San Cristobal | 3 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0 | 0.000 | 0.000 | |
Pacific coast | 8 | Babahoyo | 5 | 0.533 ± 0.095 | 0.01586 ± 0.00282 | 8 | 2.19508 a | 6.859 a |
9 | Borbón | 10 | 0.505 ± 0.056 | 0.01470 ± 0.00163 | 8 | 2.67114 b | 9.158 b | |
10 | Cumandá | 8 | 0.500 ± 0.074 | 0.01498 ± 0.00222 | 8 | 3.98848 c | 18.142 | |
11 | Esmeraldas | 5 | 0.533 ± 0.095 | 0.01501 ± 0.00051 | 8 | 2.19508 a | 6.859 a | |
12 | Guayaquil | 40 | 0.425 ± 0.042 | 0.01309 ± 0.00621 | 8 | 2.78019 b | 12.641 | |
13 | Lita | 9 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0 | 0.000 | 0.000 | |
14 | Machala | 8 | 0.233 ± 0.126 | 0.00697 ± 0.00375 | 8 | −0.81386 | 4.641 | |
15 | Manta | 4 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0 | 0.000 | 0.000 | |
16 | Quinsaloma | 2 | 0.000 ± 0.000 | 0.000 ± 0.000 | 0 | 0.000 | 0.000 | |
17 | Santo Domingo | 3 | 0.0296 ± 0.172 | 0.01569 ± 0.00725 | 8 | 1.28387 | 5.025 | |
Total | 137 | 0.465 ± 0.016 | 0.01501 ± 0.00051 | 8 | 3.98848 c | 18.142 |
Locality | Nueva Loja | Santa Cruz | Cumandá | Guayaquil | Machala | Borbón | Lita |
---|---|---|---|---|---|---|---|
Nueva Loja | - | 2.57 | 1.59 | 0.00 | 0.37 | 24.73 | 2.33 |
Santa Cruz | 0.07 | - | 0.00 | 4.93 | 2.36 | 0.00 | 0.44 |
Cumandá | 0.16 | −0.11 | - | 2.65 | 4.63 | 11.24 | 0.86 |
Guayaquil | −0.05 | 0.07 | 0.12 | - | 0.51 | 0.00 | 0.9 |
Machala | 0.44 | 0.07 | 0.02 | 0.39 | - | 1.22 | 0.08 |
Borbón | −0.03 | −0.05 | −0.02 | −0.04 | 0.27 | - | 0.86 |
Lita | 0.10 | 0.41 | 0.56 a | 0.14 | 0.78 a | 0.32 | - |
No. Groups | Partitions | Test | Among Groups | Among Populations | Within Groups |
---|---|---|---|---|---|
3 | (3) (6) (9,10,12,14) | Three partitions | −14.85 | 23.91 | 90.94 |
4 | (3) (6) (10,12,14) (9,13) | Four partitions | −14.85 | 23.91 | 90.94 |
5 | (3) (6) (10,12,14) (9) (13) | Five partitions | −14.85 | 23.91 | 90.94 |
6 | (3) (6) (10) (12,14) (9) (13) | Geographical Barriers | −14.85 | 23.91 | 90.94 |
7 | (3) (6) (10) (12) (14) (9) (13) | Geographical Barriers II | −2.8 | 17.99 | 84.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce, P.; Muñoz-Tobar, S.; Carrazco-Montalvo, A.; Villota, S.D.; Coloma, J.; Wang, C.; Holechek, S.; Cevallos, V. Two Haplotypes of Aedes aegypti Detected by ND4 Mitochondrial Marker in Three Regions of Ecuador. Insects 2021, 12, 200. https://doi.org/10.3390/insects12030200
Ponce P, Muñoz-Tobar S, Carrazco-Montalvo A, Villota SD, Coloma J, Wang C, Holechek S, Cevallos V. Two Haplotypes of Aedes aegypti Detected by ND4 Mitochondrial Marker in Three Regions of Ecuador. Insects. 2021; 12(3):200. https://doi.org/10.3390/insects12030200
Chicago/Turabian StylePonce, Patricio, Sofía Muñoz-Tobar, Andrés Carrazco-Montalvo, Stephany D. Villota, Josefina Coloma, Chunling Wang, Susan Holechek, and Varsovia Cevallos. 2021. "Two Haplotypes of Aedes aegypti Detected by ND4 Mitochondrial Marker in Three Regions of Ecuador" Insects 12, no. 3: 200. https://doi.org/10.3390/insects12030200
APA StylePonce, P., Muñoz-Tobar, S., Carrazco-Montalvo, A., Villota, S. D., Coloma, J., Wang, C., Holechek, S., & Cevallos, V. (2021). Two Haplotypes of Aedes aegypti Detected by ND4 Mitochondrial Marker in Three Regions of Ecuador. Insects, 12(3), 200. https://doi.org/10.3390/insects12030200