Behavioral Responses of the Common Bed Bug to Essential Oil Constituents
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Chemicals
2.3. Tracking of Individual Bed Bugs
2.3.1. Arenas
2.3.2. Video Tracking System
2.4. Choice Tests with 24-h Aged Residues
2.5. Feeding Test
3. Results
3.1. Responses of Insects to Essential Oil Constituent Impregnated Areas
3.2. Choice Tests
3.3. Responses of Host-Seeking Insects to EOCs Barriers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Usinger, R.L. Monograph of Cimicidae (Hemiptera-Heteroptera); Thomas Say Foundation: College Park, MD, USA, 1966. [Google Scholar]
- Romero, A.; Potter, M.F.; Haynes, K.F. Circadian rhythm of locomotor activity in the bed bug, Cimex lectularius L. J. Insect Physiol. 2010, 56, 1516–1522. [Google Scholar] [CrossRef] [PubMed]
- Gries, R. Chemical Ecology. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.-Y., Eds.; Wiley-Blackwell: Oxford, UK, 2018; pp. 163–172. [Google Scholar]
- Potter, M.F.; Haynes, K.F.; Fredericks, J. Bed bugs across America. Pestworld. November/December 2015, pp. 5–14. Available online: https://www.npmapestworld.org/default/assets/File/newsroom/magazine/2015/nov-dec_2015.pdf (accessed on 16 December 2020).
- Goddard, J.; de Shazo, R.D. Bed bugs (Cimex lectularius) and clinical consequences of their bites. J. Am. Med. Assoc. 2009, 301, 1358–1366. [Google Scholar] [CrossRef]
- Ashcroft, R.; Seko, Y.; Chan, L.F.; Dere, J.; Kim, J.; McKenzie, K. The mental health impact of bed bug infestations: A scoping review. Int. J. Public Health 2015, 60, 827–837. [Google Scholar] [CrossRef]
- Dang, K.; Doggett, S.L.; Singham, G.V.; Lee, C.Y. Insecticide resistance and resistance mechanisms in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Paras Vectors 2017, 10, 318. [Google Scholar] [CrossRef] [PubMed]
- Romero, A. Insecticide Resistance. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.-Y., Eds.; Wiley-Blackwell: Oxford, UK, 2018; pp. 273–284. [Google Scholar]
- Zhu, F.; Wigginton, J.; Romero, A.; Moore, A.; Ferguson, K.; Palli, R.; Potter, M.F.; Haynes, K.F.; Palli, S.R. Widespread distribution of knockdown resistance mutations in the bed bug, Cimex lectularius (Hemiptera: Cimicidae), populations in the United States. Arch. Insect Biochem. 2010, 73, 245–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cooper, R. Environmentally sound bed bug management solutions. In Urban Pest Management: An Environmental Perspective; CABI International: Cambridge, MA, USA, 2011; pp. 44–63. [Google Scholar]
- Cooper, R.; Wang, C.; Singh, N. Evaluation of a model community wide bed bug management program in affordable housing. Pest Manag. Sci. 2015, 72, 45–56. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.W.; Gondhalekar, A.D.; Wang, C.; Buczkowski, G.; Gibb, T.J. Using research and education to implement practical bed bug control programs in multifamily housing. Pest Manag. Sci. 2016, 72, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Wilson, M.S. Prevention. In Advances in the Biology and Management of Modern Bed Bugs; Doggett, S.L., Miller, D.M., Lee, C.-Y., Eds.; Wiley-Blackwell: Oxford, UK, 2018; pp. 233–239. [Google Scholar]
- Wang, C.; Lü, L.; Zhang, A.; Liu, C. Repellency of selected chemicals against the bed bug (Hemiptera: Cimicidae). J. Econ. Entomol. 2013, 106, 2522–2529. [Google Scholar] [CrossRef]
- Kumar, S.; Prakash, S.; Rao, K.M. Comparative activity of three repellents against bedbugs Cimex hemipterus (Fabr.). Indian J. Med. Res. 1995, 102, 20–23. [Google Scholar]
- Liu, F.; Xia, X.; Liu, N. Molecular basis of N,N-Diethyl-3-Methylbenzamide (DEET) in repelling the common bed bug, Cimex lectularius. Front. Physiol. 2017, 8, 418. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.J.; Cermak, S.C.; Kenar, J.A.; Haynes, K.F.; Boxler, D.; Baker, P.D.; Wang, D.; Wang, C.; Li, A.Y.; Xue, R.; et al. Better than DEET repellent compounds derived from coconut oil. Sci. Rep. 2018, 8, 14053. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu. Rev. Entomol. 2006, 51, 45–66. [Google Scholar] [CrossRef]
- Mullens, B.A.; Soto, D.; Gerry, A.C.; Fowler, F.E.; Dinizm, A.N. Effects of fatty acid and geraniol repellent-oil mixtures applied to cattle on blood feeding and reproductive parameters in field populations of Haematobia irritans (Diptera: Muscidae). J. Med. Entomol. 2018, 55, 408–416. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Rodriguez, S.D.; Vulcan, J.; Cordova, J.; Chung, H.N.; Moore, E.; Kandel, Y.; Hansen, I.A. Efficacy of active ingredients from the EPA 25(B) list in reducing attraction of Aedes aegypti (Diptera: Culicidae) to humans. J. Med. Entomol. 2020, 57, 477–484. [Google Scholar] [CrossRef] [PubMed]
- Govinfo. 40 CFR 152.25—Exemptions for pesticides of a character not requiring FIFRA regulation. Available online: https://www.govinfo.gov/app/details/CFR-2011-title40-vol24/CFR-2011-title40-vol24-sec152-25 (accessed on 20 February 2021).
- Ngoh, S.P.; Choo, L.E.W.; Pang, F.Y.; Huang, y.; Kini, M.R.; Ho, S.H. Insecticidal and repellent properties of nine volatile constituents of essential oils against the American cockroach, Periplaneta americana (L.). Pestic. Sci. 1998, 54, 261–268. [Google Scholar] [CrossRef]
- Terriquez, J.A.; Klotz, S.A.; Meister, E.A.; Klotz, J.H.; Schmidt, J.O. Repellency of DEET, picaridin, and three essential oils to Triatoma rubida (Hemiptera: Reduviidae: Triatominae). J. Med. Entomol. 2013, 50, 664–667. [Google Scholar] [CrossRef]
- Gaire, S.; O’Connell, M.; Holguin, F.O.; Amatya, A.; Bundy, S.; Romero, A. Insecticidal properties of essential oils and some of their constituents on the Turkestan cockroach (Blattodea: Blattidae). J. Econ. Entomol. 2017, 110, 584–592. [Google Scholar] [CrossRef]
- Zamora, D.; Klotz, S.A.; Meister, E.A.; Schmidt, J.O. Repellency of the components of the essential oil, citronella, to Triatoma rubida, Triatoma protracta, and Triatoma recurva (Hemiptera: Reduviidae: Triatominae). J. Med. Entomol. 2015, 52, 719–721. [Google Scholar] [CrossRef]
- Moretti, A.N.; Zerba, E.N.; Alzogaray, R.A. Behavioral and toxicological responses of Rhodnius prolixus and Triatoma infestans (Hemiptera: Reduviidae) to 10 Monoterpene alcohols. J. Med. Entomol. 2013, 50, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.; Wang, C.; Cooper, R. Potential of essential oil-based pesticides and detergents for bed bug control. J. Econ. Entomol. 2014, 107, 2163–2170. [Google Scholar] [CrossRef] [PubMed]
- Rehman, J.U.; Wang, M.; Yang, Y.; Liu, Y.; Li, B.; Qin, Y.; Wang, W.; Chittiboyina, A.G.; Khan, I.A. Toxicity of Kadsura coccinea (Lem.) A. C. Sm. Essential oil to the bed bug, Cimex lectularius L. (Hemiptera: Cimicidae). Insects 2019, 10, 162. [Google Scholar] [CrossRef]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A. Toxicity and neurophysiological impacts of essential oil components on bed bug (Cimex lectularius L.). Sci. Rep. 2019, 9, 3961. [Google Scholar] [CrossRef] [PubMed]
- Gaire, S.; Scharf, M.E.; Gondhalekar, A.D. Synergistic toxicity interactions between plant essential oil components against the common bed bug (Cimex lectularius L.). Insects 2020, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Gaire, S.; Lewis, C.D.; Booth, W.; Scharf, M.E.; Zheng, W.; Ginzel, M.D.; Gondhalekar, A.D. Bed bugs, Cimex lectularius L., exhibiting metabolic and target site deltamethrin resistance are susceptible to plant essential oils. Pestic. Biochem. Physiol. 2020, 169, 104667. [Google Scholar] [CrossRef]
- Feldlaufer, M.F.; Ulrich, K.R. Essential oils as fumigants for bed bugs (Hemiptera: Cimicidae). J. Entomol. Sci. 2015, 50, 129–137. [Google Scholar] [CrossRef]
- Larson, N.R.; Zhang, A.; Feldlaufer, M. Fumigation activities of methyl benzoate and its derivatives against the common bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2019, 57, 187–191. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J. Long-term efficacy of various natural or "green" insecticides against bed bugs: A double-blind study. Insects 2014, 5, 942–951. [Google Scholar] [CrossRef] [PubMed]
- Zha, C.; Wang, C.; Li, A. Toxicities of selected essential oils, silicone oils, and paraffin oil against the common bed bug (Hemiptera: Cimicidae). J. Econ. Entomol. 2018, 111, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.F.; Ferrandino, F.J.; Vasil, M.P.; Bedoukian, R.H.; Maher, M.; McKenzie, K. Repellency of naturally occurring or related compounds, DEET, and para-menthane-3,8diol to bed bugs (Hemiptera: Cimicidae). J. Med. Entomol. 2018, 55, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Wang, C.; Simon, J.E.; Reichert, W.; Wu, Q. Repellency of novel catnip oils against the bed bug (Hemiptera: Cimicidae). J. Med. Entomol. 2020, tjaa218. [Google Scholar] [CrossRef]
- Sharififard, M.; Alizadeh, I.; Jahanifard, E.; Wang, C.; Azemi, M.E. Chemical composition and repellency of Origanum vulgare essential oil against Cimex lectularius under laboratory conditions. J. Arthropod Borne Dis. 2018, 12, 387–397. [Google Scholar] [CrossRef]
- Montes, C.; Cuadrillero, C.; Vilella, D. Maintenance of a laboratory colony of Cimex lectularius (Hemiptera: Cimicidae) using an artificial feeding technique. J. Med. Entomol. 2002, 39, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Noldus, L.P.J.J.; Spink, A.J.; Tegelenbosch, R.A.J. Computerised video tracking, movement analysis and behaviour recognition in insects. Comput. Electron. Agric. 2002, 35, 201–227. [Google Scholar] [CrossRef]
- Minitab. MINITAB Statistical Software, Release 14.20 for Windows; MINITAB: State College, PA, USA, 2005. [Google Scholar]
- Todd, R. Repellents for Protection from Bed Bugs: The Need, the Candidates, Safety Challenges, Test Methods, and the Chance of Success. In Recent Developments in Invertebrate Repellents; Paluch, G.E., Coats, J.R., Eds.; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; pp. 137–150. [Google Scholar]
- Liu, X.C.; Liang, Y.; Shi, W.P.; Liu, Q.Z.; Zhou, l.; Liu, Z.L. Repellent and insecticidal effects of the essential oil of Kaempferia galanga rhizomes to Liposcelis bostrychophila (Psocoptera: Liposcelidae). J. Econ. Entomol. 2014, 107, 1706–1712. [Google Scholar] [CrossRef] [PubMed]
- Kumbhar, P.P.; Dewang, P.M. Monoterpenoids: The natural pest management agents. Frag. Flav. Assoc. India. 2001, 3, 49–56. [Google Scholar]
- Price, D.N.; Berry, M.S. Comparison of effects of octopamine and insecticidal essential oils on activity in the nerve cord, foregut, and dorsal unpaired median neurons of cockroaches. J. Insect Physiol. 2006, 52, 309–319. [Google Scholar] [CrossRef]
- Liu, F.; Haynes, K.F.; Appel, A.G.; Liu, N. Antennal olfactory sensilla responses to insect chemical repellents in the common bed bug, Cimex lectularius. J. Chem. Ecol. 2014, 40, 522–533. [Google Scholar] [CrossRef]
- Liu, F.; Chen, Z.; Liu, N. Molecular basis of olfactory chemoreception in the common bed bug, Cimex lectularius. Sci. Rep. 2017, 7, 45531. [Google Scholar] [CrossRef]
- Hao, H.; Sun, J.; Dai, J. Dose-dependent behavioral response of the mosquito Aedes albopictus to floral odorous compounds. J. Insect Sci. 2013, 13, 127. [Google Scholar] [CrossRef]
- Erbilgin, N.; Stein, J.D.; Acciavatti, R.E.; Gillette, N.E.; Mori, S.R.; Bischel, K.; Cale, J.A.; Carvalho, C.R.; Wood, D.L. A Blend of ethanol and (−)-α-Pinene were highly attractive to native Siricid woodwasps (Siricidae, Siricinae) infesting conifers of the Ssierra Nevada and the Allegheny mountains. J. Chem. Ecol. 2017, 43, 172–179. [Google Scholar] [CrossRef]
- Haselton, A.T.; Acevedo, A.; Kuruvilla, J.; Werner, E.; Kiernan, J.; Dhar, P. Repellency of α-pinene against the house fly, Musca domestica. Phytochemistry 2015, 117, 469–475. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (EPA). Product Performance Test Guidelines OCSPP 810.3900: Laboratory Product Performance Testing Methods for Bed Bug Pesticide Products. June 2017. Available online: https://www.regulations.gov/document?D=EPA-HQ-OPPT-2009-0150-0030 (accessed on 20 February 2021).
- DeVries, Z.C.; Mick, R.; Schal, C. Feel the heat: Activation, orientation and feeding responses of bed bugs to targets at different temperatures. J. Exp. Biol. 2016, 219, 3773–3780. [Google Scholar] [CrossRef] [PubMed]
Chemical Categories | Essential Oil Component | Parameter | Control (Acetone) | Fresh Residues | 24-h Aged Residues |
---|---|---|---|---|---|
Terpenoids | Geraniol | Distance (cm) | 1.68 ± 0.08 a | 2.13 ± 0.04 bA | 2.09 ± 0.04 bA |
Number of visits | 9.6 ± 2.03 a | 1.1 ± 0.31 bAB | 2.6 ± 0.73 bA | ||
Carvacrol | Distance (cm) | 2.31 ± 0.04 a | 2.73 ± 0.07 bBC | 2.35 ± 0.05 aAB | |
Number of visits | 7.83 ± 0.98 a | 2.16 ± 1.42 bABC | 7.0 ± 1.43 aBC | ||
Thymol | Distance (cm) | 2.55 ± 0.15 a | 3.51 ± 0.39 bD | 2.88 ± 0.25 aB | |
Number of visits | 10.66 ± 3.21 a | 1.16 ± 0.98 bABC | 2.0 ± 0.73 bA | ||
Citronellic Acid | Distance (cm) | 2.37 ± 0.12 a | 2.51 ± 0.04 aAC | 2.46 ± 0.05 aAB | |
Number of visits | 7.33 ± 3.77 a | 0.33 ± 0.21 bA | 1.0 ± 0.68 bA | ||
Linalool | Distance (cm) | 2.23 ± 0.14 a | 2.42 ± 0.07 aAC | 2.33 ± 0.07 aAB | |
Number of visits | 8.83 ± 1.62 a | 2.0 ± 0.51 bBC | 8.16 ± 1.95 aBC | ||
Menthone | Distance (cm) | 2.37 ± 0.08 a | 2.37 ± 0.07 aAC | 2.34 ± 0.08 aAB | |
Number of visits | 5.83 ± 2.38 a | 5.16 ± 1.51 aCD | 4.66 ± 1.62 aAB | ||
Phenylpropane | Eugenol | Distance (cm) | 1.66 ± 0.07 a | 2.29 ± 0.04 bAB | 2.14 ± 0.07 bA |
Number of visits | 9.9 ± 1.64 a | 0.5 ± 0.16 bA | 1.50 ± 0.76 bA | ||
Aldehyde | trans-Cinnamaldehyde | Distance (cm) | 2.56 ± 0.24 a | 2.93 ± 0.21 bCD | 2.33 ± 0.26 aAB |
Number of visits | 12.33 ± 3.06 a | 0.66 ± 042bAB | 11.0 ± 2.63 aBC | ||
Terpenes | α-pinene | Distance (cm) | 2.36 ± 0.09 a | 2.39 ± 0.07 aAC | 2.16 ± 0.07 aA |
Number of visits | 5.16 ± 1.19 a | 4.0 ± 0.73 aCD | 12.0 ± 2.93 bC | ||
β-pinene | Distance (cm) | 2.32 ± 0.08 a | 2.37 ± 0.01 aAC | 2.4 ± 0.05 aAB | |
Number of visits | 3.16 ± 0.87 a | 2.33 ± 0.61 aBC | 4.83 ± 0.90 aB | ||
Limonene | Distance (cm) | 2.33 ± 0.05 a | 2.32 ± 0.10 aAC | 2.37 ± 0.10 aAB | |
Number of visits | 8.33 ± 1.99 a | 8.83 ± 2.72 aD | 8.33 ± 3.30 aBC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Morales, M.A.; Terán, M.; Romero, A. Behavioral Responses of the Common Bed Bug to Essential Oil Constituents. Insects 2021, 12, 184. https://doi.org/10.3390/insects12020184
González-Morales MA, Terán M, Romero A. Behavioral Responses of the Common Bed Bug to Essential Oil Constituents. Insects. 2021; 12(2):184. https://doi.org/10.3390/insects12020184
Chicago/Turabian StyleGonzález-Morales, María A., Martín Terán, and Alvaro Romero. 2021. "Behavioral Responses of the Common Bed Bug to Essential Oil Constituents" Insects 12, no. 2: 184. https://doi.org/10.3390/insects12020184
APA StyleGonzález-Morales, M. A., Terán, M., & Romero, A. (2021). Behavioral Responses of the Common Bed Bug to Essential Oil Constituents. Insects, 12(2), 184. https://doi.org/10.3390/insects12020184