Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its Natural Wolbachia Infections in México
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ecological Niche Modeling of Ae. albopictus in México
2.1.1. Database
2.1.2. Accessible Area (M)
2.1.3. Bioclimatic Variables
2.1.4. Ecological Niche Modeling of Ae. albopictus
2.2. Extrapolation Risk and Uncertainty Map of Ae. albopictus
2.3. The Total Human Population at Risk of Contact with Ae. albopictus
2.4. Validation of the ENM of Ae. albopictus from 2015 to 2020
2.5. ENM of Natural Wolbachia Infections in Ae. albopictus Populations
3. Results
3.1. Distributional Potential of Ae. albopictus by 2020 in México
3.2. Validation of the Distributional Potential of Ae. albopictus in México
3.3. ENM of Natural Wolbachia Infections in the Host Ae. albopictus
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kamal, M.; Kenawy, M.A.; Rady, M.H.; Khaled, A.S.; Samy, A.M. Mapping the global potential distributions of two arboviral vectors Aedes aegypti and Ae. albopictus under changing climate. PLoS ONE 2018, 13, e0210122. [Google Scholar] [CrossRef] [PubMed]
- Juliano, S.A.; Lounibos, L.P. Ecology of invasive mosquitoes: Effects on resident species and on human health. Ecol. Lett. 2005, 8, 558–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forattini, O.P. Identificação de Aedes (Stegomyia) albopictus (Skuse) no Brasil. Rev. Saúde Pública 1986, 20, 244–245. [Google Scholar] [CrossRef] [PubMed]
- Sprenger, D.; Wuithiranyagool, T. The discovery and distribution of Aedes albopictus in Harris County, Texas. J. Am. Mosq. Control. Assoc. 1986, 2, 217–219. [Google Scholar]
- Ibáñez-Bernal, S.; Martínez-Campos, C. Aedes albopictus in Mexico. J. Am. Mosq. Control. Assoc. 1994, 10, 231–232. [Google Scholar] [PubMed]
- Torres-Avendaño, J.I.; Castillo-Ureta, H.; Torres-Montoya, E.H.; Meza-Carrillo, E.; Lopez-Mendoza, R.L.; Vazquez-Martinez, M.G.; Rendon-Maldonado, J.G. First record of Aedes albopictus in Sinaloa, Mexico. J. Am. Mosq. Control. Assoc. 2015, 31, 164–166. [Google Scholar] [CrossRef]
- Ortega-Morales, A.I.; Cueto-Medina, S.M.; Rodríguez, Q.K. First record of the Asian tiger mosquito Aedes albopictus in Hidalgo State, Mexico. J. Am. Mosq. Control. Assoc. 2016, 32, 234–236. [Google Scholar] [CrossRef]
- Ortega-Morales, A.I.; Rodríguez, Q.K. First record of Aedes albopictus (Diptera: Culicidae) in San Luis Potosi, Mexico. J. Vector Ecol. 2016, 41, 314–315. [Google Scholar] [CrossRef]
- Pech-May, A.; Moo-Llanes, D.A.; Puerto-Avila, M.B.; Casas, M.; Danis-Lozano, R.; Ponce, G.; Tun-Ku, E.; Pinto-Castillo, J.F.; Villegas, A.; Ibáñez-Piñon, C.R.; et al. Population genetics and ecological niche of invasive Aedes albopictus in Mexico. Acta Trop. 2016, 157, 30–41. [Google Scholar] [CrossRef]
- Bond, J.G.; Moo-Llanes, D.A.; Ortega-Morales, A.I.; Marina, C.F.; Casas-Martínez, M.; Danis-Lozano, R. Diversity and potential distribution of culicids of medical importance of the Yucatan Peninsula, Mexico. Salud Publica Mex. 2020, 62, 379–387. [Google Scholar] [CrossRef]
- Hernández-Rodríguez, J.L.; Perez-Pacheco, R.; Vásquez-López, A.; Mejenes-Hernández, M.C.; Granados-Echegoyen, C.A.; Arcos-Cordova, I.D.R.; Pérez-Rentería, C.; Benítez-Alva, J.I.; Manrique-Saide, P.; Huerta, H. Asian tiger mosquito in Yucatan Peninsula: First record of Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Campeche, Mexico. J. Med. Entomol. 2020, 57, 2022–2024. [Google Scholar] [CrossRef]
- Ortega-Morales, A.I.; Bond, G.; Méndez-López, R.; Garza-Hernández, J.A.; Hernández-Triana, L.M.; Casas-Martínez, M. First record of invasive mosquito Aedes albopictus in Tabasco and Yucatan, Mexico. J. Am. Mosq. Control. Assoc. 2018, 34, 120–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dávalos-Becerril, E.; Correa-Morales, F.; González-Acosta, C.; Santos-Luna, R.; Peralta-Rodríguez, J.; Pérez-Rentería, C.; Ordoñez-Álvarez, J.; Huerta, H.; Carmona-Perez, M.; Díaz-Quiñonez, J.A.; et al. Urban and semi-urban mosquitoes of Mexico City: A risk for endemic mosquito-borne disease transmission. PLoS ONE 2019, 14, e0212987. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez Martínez, L.M.; Izquierdo Aquino, F.; González Fernández, M.I.; Correa Morales, F.; González Acosta, C. Distribución de Aedes albopictus (Skuse 1895) en Tabasco, México durante 2015–2018. Horiz. Sanit. 2019, 18, 159–165. [Google Scholar]
- Organización Panamericana de la Salud (OPS). Dengue Información General; OPS/OMS: Washington, DC, USA, 2020. [Google Scholar]
- WHO. Zika-Epidemiological Report. Available online: https://www.paho.org/hq/dmdocuments/2017/2017-phe-zika-situation-report-mex.pdf (accessed on 11 October 2020).
- Nava-Frías, M.; Searcy-Pavía, R.E.; Juárez-Contreras, C.A.; Valencia-Bautista, A. Chikungunya fever: Current status in Mexico. Bol. Med. Hosp. Infan. Mex. 2016, 73, 67–74. [Google Scholar]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011. [Google Scholar]
- Campbell, L.P.; Luther, C.; Moo-Llanes, D.A.; Ramsey, J.M.; Danis-Lozano, R.; Peterson, A.T. Climate change influences on global distributions of dengue and chikungunya virus vectors. Philos. Trans. R Soc. Lond. B Biol. Sci. 2015, 370, 20140135. [Google Scholar] [CrossRef]
- Carmona-Castro, O.; Moo-Llanes, D.A.; Ramsey, J.M. Impact of climate change on vector transmission of Trypanosoma cruzi (Chagas, 1909) in North America. Med. Vet. Entomol. 2018, 32, 84–101. [Google Scholar] [CrossRef]
- Moo-Llanes, D.A.; Montes de Oca-Aguilar, A.C.; Rodríguez-Rojas, J.J. Pattern of climate connectivity and equivalent niche of Triatominae species of the Phyllosoma complex. Med. Vet. Entomol. 2020, 34, 440–451. [Google Scholar] [CrossRef]
- Moo-Llanes, D.A.; Pech-May, A.; de Oca-Aguilar, A.C.M.; Salomón, O.D.; Ramsey, J.M. Niche divergence and paleo-distributions of Lutzomyia longipalpis mitochondrial haplogroups (Diptera: Psychodidae). Acta Trop. 2020, 211, 105607. [Google Scholar] [CrossRef]
- Blagrove, M.S.; Arias-Goeta, C.; Failloux, A.B.; Sinkins, S.P. Wolbachia strain wMel induces cytoplasmic incompatibility and blocks dengue transmission in Aedes albopictus. Proc. Natl. Acad. Sci. USA 2012, 109, 255–260. [Google Scholar] [CrossRef] [Green Version]
- Dobson, S.L.; Marsland, E.J.; Rattanadechakul, W. Mutualistic Wolbachia infection in Aedes albopictus: Accelerating cytoplasmic drive. Genetics 2002, 160, 1087–1094. [Google Scholar]
- World Mosquito Program. Mosquito-borne diseases are a growing threat to local communities in Mexico. Available online: https://www.worldmosquitoprogram.org/en/global-progress/mexico (accessed on 11 October 2020).
- Roblero-Andrade, A.R.-R.G.; Torres-Monzón, J.A.; López-Ordoñez, T.; Avendaño-Rabiella, R.A.; Casas-Martinez, M. Distribución de la infección por Wolbachia sp. en mosquitos de cementerios del sur de Chiapas, México. Entomol. Mex. 2019, 6, 484–489. [Google Scholar]
- Torres-Monzón, J.A.; Casas-Martínez, M.; López-Ordóñez, T. Infection of Aedes mosquitoes by native Wolbachia in urban cemeteries of Southern Mexico. Salud Publica Mex. 2020, 62, 447–449. [Google Scholar] [CrossRef] [PubMed]
- Puerta-Guardo, H.; Contreras-Perera, Y.; Perez-Carrillo, S.; Che-Mendoza, A.; Ayora-Talavera, G.; Vazquez-Prokopec, G.; Martin-Park, A.; Zhang, D.; Manrique-Saide, P.; Team, U.-L. Wolbachia in native populations of Aedes albopictus (Diptera: Culicidae) from Yucatan Peninsula, Mexico. J. Insect Sci. 2020, 20, 16. [Google Scholar] [CrossRef] [PubMed]
- Contreras-Perera, Y.J.; Briceño-Mendez, M.; Flores-Suárez, A.E.; Manrique-Saide, P.; Palacio-Vargas, J.A.; Huerta-Jimenez, H.; Martin-Park, A. New Record of Aedes albopictus in a suburban area of Merida, Yucatan, Mexico. J. Am. Mosq. Control. Assoc. 2019, 35, 210–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiello-Lammens, M.E.; Boria, R.A.; Radosavljevic, A.; Vilela, B.; Anderson, R.P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 2015, 38, 541–545. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Barve, N.; Barve, V.; Jiménez-Valverde, A.; Lira-Noriega, A.; Maher, S.P.; Peterson, A.T.; Soberón, J.; Villalobos, F. The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol. Model. 2011, 222, 1810–1819. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the world: A new map of life on Earth: A new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Escobar, L.E.; Lira-Noriega, A.; Medina-Vogel, G.; Peterson, A.T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health 2014, 9, 221–229. [Google Scholar] [CrossRef]
- Datta, A.; Schweiger, O.; Kühn, I. Origin of climatic data can determine the transferability of species distribution models. NeoBiota 2020, 59, 61–76. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Cobos, M.E.; Peterson, A.T.; Barve, N.; Osorio-Olvera, L. kuenm: An R package for detailed development of ecological niche models using Maxent. PeerJ 2019, 7, e6281. [Google Scholar] [CrossRef] [Green Version]
- Owens, H.L.; Campbell, L.P.; Dornak, L.L.; Saupe, E.E.; Barve, N.; Soberón, J.; Ingenloff, K.; Lira-Noriega, A.; Hensz, C.M.; Myers, C.E.; et al. Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol. Model. 2013, 263, 10–18. [Google Scholar] [CrossRef]
- Instituto Nacional de Estadística y Geografía. Censo de Población y Vivienda 2010. Available online: http://inegi.org.mx/programas/ccpv/2010/ (accessed on 15 May 2020).
- Consejo Nacional de Población. Proyecciones de la Población de México 2010–2050. Available online: http://www.conapo.gob.mx/work/models/CONAPO/Resource/1529/2/images/DocumentoMetodologicoProyecciones2010_2050.pdf (accessed on 15 May 2020).
- Moo-Llanes, D.A.; Ibarra-Cerdeña, C.N.; Rebollar-Téllez, E.A.; Ibáñez-Bernal, S.; González, C.; Ramsey, J.M. Current and future niche of North and Central American sand flies (Diptera: Psychodidae) in climate change scenarios. PLoS Negl. Trop. Dis. 2013, 7, e2421. [Google Scholar] [CrossRef] [Green Version]
- Fielding, A.H.; Bell, J.F. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Qiao, H.; Peterson, A.T.; Campbell, L.P.; Soberón, J.; Ji, L.; Escobar, L.E. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 2016, 39, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Di Cola, V.; Broennimann, O.; Petitpierre, B.; Breiner, F.T.; D’Amen, M.; Randin, C.; Engler, R.; Pottier, J.; Pio, D.; Dubuis, A.; et al. ecospat: An R package to support spatial analyses and modeling of species niches and distributions. Ecography 2017, 40, 774–787. [Google Scholar] [CrossRef]
- Broennimann, O.; Fitzpatrick, M.C.; Pearman, P.B.; Petitpierre, B.; Pellissier, L.; Yoccoz, N.G.; Thuiller, W.; Fortin, M.-J.; Randin, C.; Zimmermann, N.E.; et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 2012, 21, 481–497. [Google Scholar] [CrossRef] [Green Version]
- Rey, J.R.; Lounibos, P. Ecología de Aedes aegypti y Aedes albopictus en América y transmisión enfermedades. Biomédica 2015, 35, 177–185. [Google Scholar] [CrossRef] [Green Version]
- O’Meara, G.F.; Evans, L.F., Jr.; Gettman, A.D.; Cuda, J.P. Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J. Med. Entomol. 1995, 32, 554–562. [Google Scholar] [CrossRef]
- Yañez-Arenas, C.; Rioja-Nieto, R.; Martín, G.A.; Dzul-Manzanilla, F.; Chiappa-Carrara, X.; Buenfil-Ávila, A.; Manrique-Saide, P.; Correa-Morales, F.; Díaz-Quiñónez, J.A.; Pérez-Rentería, C.; et al. Characterizing environmental suitability of Aedes albopictus (Diptera: Culicidae) in Mexico based on regional and global niche models. J. Med. Entomol. 2018, 55, 69–77. [Google Scholar] [CrossRef]
- Kraemer, M.U.G.; Reiner, R.C., Jr.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol. 2019, 4, 854–863. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A., Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef]
- Raes, N. Partial versus full species distribution models. Nat. Conserv. 2012, 10, 127–138. [Google Scholar] [CrossRef]
- Beale, C.M.; Lennon, J.J. Incorporating uncertainty in predictive species distribution modelling. Philos. Trans. R. Soc. Lond. B Biol. Sc. 2012, 367, 247–258. [Google Scholar] [CrossRef]
- Tessarolo, G.; Rangel, T.F.; Araújo, M.B.; Hortal, J. Uncertainty associated with survey design in species distribution models. Divers. Distrib. 2014, 20, 1258–1269. [Google Scholar] [CrossRef]
- Cunze, S.; Kochmann, J.; Koch, L.K.; Klimpel, S. Aedes albopictus and its environmental limits in Europe. PLoS ONE 2016, 11, e0162116. [Google Scholar] [CrossRef] [Green Version]
- Lubinda, J.; Treviño, C.J.A.; Walsh, M.R.; Moore, A.J.; Hanafi-Bojd, A.A.; Akgun, S.; Zhao, B.; Barro, A.S.; Begum, M.M.; Jamal, H.; et al. Environmental suitability for Aedes aegypti and Aedes albopictus and the spatial distribution of major arboviral infections in Mexico. Parasite Epidemiol. Control. 2019, 6, e00116. [Google Scholar] [CrossRef]
- Alto, B.W.; Juliano, S.A. Precipitation and temperature effects on populations of Aedes albopictus (Diptera: Culicidae): Implications for range expansion. J. Med. Entomol. 2001, 38, 646–656. [Google Scholar] [CrossRef] [Green Version]
- Lord, C.C. Density dependence in larval Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 1998, 35, 825–829. [Google Scholar] [CrossRef]
- Mains, J.W.; Brelsfoard, C.L.; Rose, R.I.; Dobson, S.L. Female adult Aedes albopictus suppression by Wolbachia-infected male mosquitoes. Sci. Rep. 2016, 6, 33846. [Google Scholar] [CrossRef]
- Zouache, K.; Voronin, D.; Tran-Van, V.; Mousson, L.; Failloux, A.B.; Mavingui, P. Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus. PLoS ONE 2009, 4, e6388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zouache, K.; Raharimalala, F.N.; Raquin, V.; Tran-Van, V.; Raveloson, L.H.; Ravelonandro, P.; Mavingui, P. Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiol. Ecol. 2011, 75, 377–389. [Google Scholar] [CrossRef]
- Mousson, L.; Zouache, K.; Arias-Goeta, C.; Raquin, V.; Mavingui, P.; Failloux, A.B. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus. PLoS Negl. Trop. Dis. 2012, 6, e1989. [Google Scholar] [CrossRef]
SEP | SSM | BCM | RM | FC * | AUC.r | p.ROC | O.rate 5% | AICc | ∆AICc | AICc.W | # |
---|---|---|---|---|---|---|---|---|---|---|---|
Aedes albopictus | |||||||||||
Set3 | 1479 | 1 | 3.0 | qth | 1.29 | 0.00 | 0.04 | 5941.66 | 0.00 | 0.79 | 35 |
Natural Wolbachia infections in Ae. albopictus populations | |||||||||||
Set2 | 1446 | 17 | 0.2 | p | 1.84 | 0.00 | 0.00 | 275.14 | 1.74 | 0.01 | 4 |
Candidate sets of environmental variables of Ae. albopictus and natural Wolbachia infections models | |||||||||||
Set1 | Set2 | Set3 | Set4 | ||||||||
Bio 1, Bio 2, Bio 3, Bio 4, Bio 5, Bio 6, Bio 7, Bio 10, Bio 11, Bio 12, Bio 13, Bio 14, Bio 15, Bio 16, Bio 17, and elevation | Bio 1, Bio 2, Bio 3, Bio 4, Bio 5, Bio 6, Bio 7, Bio 10, Bio 11, Bio 12, Bio 13, Bio 14, Bio 15, Bio 16, and Bio 17 | Bio 4, Bio 7, Bio 11, Bio 12, Bio 13, Bio 14, Bio 17, and elevation | Bio 1, Bio 4, Bio 5, Bio 6, Bio 7, Bio 12, Bio 13, Bio 14, Bio 15, and elevation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moo-Llanes, D.A.; López-Ordóñez, T.; Torres-Monzón, J.A.; Mosso-González, C.; Casas-Martínez, M.; Samy, A.M. Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its Natural Wolbachia Infections in México. Insects 2021, 12, 143. https://doi.org/10.3390/insects12020143
Moo-Llanes DA, López-Ordóñez T, Torres-Monzón JA, Mosso-González C, Casas-Martínez M, Samy AM. Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its Natural Wolbachia Infections in México. Insects. 2021; 12(2):143. https://doi.org/10.3390/insects12020143
Chicago/Turabian StyleMoo-Llanes, David A., Teresa López-Ordóñez, Jorge A. Torres-Monzón, Clemente Mosso-González, Mauricio Casas-Martínez, and Abdallah M. Samy. 2021. "Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its Natural Wolbachia Infections in México" Insects 12, no. 2: 143. https://doi.org/10.3390/insects12020143
APA StyleMoo-Llanes, D. A., López-Ordóñez, T., Torres-Monzón, J. A., Mosso-González, C., Casas-Martínez, M., & Samy, A. M. (2021). Assessing the Potential Distributions of the Invasive Mosquito Vector Aedes albopictus and Its Natural Wolbachia Infections in México. Insects, 12(2), 143. https://doi.org/10.3390/insects12020143