Environmental Correlates of Sexual Signaling in the Heteroptera: A Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Heteroptera
2.1. Chemical Signaling
2.2. Stridulation
2.3. Abdominal Vibration
2.4. Antennation
2.5. Methods
3. Discussion
Predicting through Patterns
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersson, M.B. Sexual Selection; Princeton University Press: Princeton, NJ, USA, 1994. [Google Scholar]
- Shuker, D.M.; Simmons, L.W. The Evolution of Insect Mating Systems (No. 27); Oxford University Press: Oxford, UK, 2014. [Google Scholar]
- Hardy, I.C.; Briffa, M. Animal Contests; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Virant-Doberlet, M.; Mazzoni, V.; de Groot, M.; Polajnar, J.; Lucchi, A.; Symondson, W.O.C.; Čokl, A. Vibrational Communication Networks: Eavesdropping and Biotic Noise. Springer, Berlin, Heidelberg. In Studying Vibrational Communication; Springer: Berlin/Heidelberg, Germany, 2014; pp. 93–123. [Google Scholar]
- Endler, J.A. Signals, signal conditions, and the direction of evolution. Am. Nat. 1992, 139, S125–S153. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Simmons, L.W. Sexual selection and mate choice. Trends Ecol. Evol. 2006, 21, 296–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, B.G.; Jones, T.M. The role of chemical communication in mate choice. Biol. Rev. 2007, 82, 265–289. [Google Scholar] [CrossRef] [PubMed]
- Gerhardt, H.C.; Huber, F. Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions; University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar]
- Broder, E.D.; Elias, D.O.; Rodríguez, R.L.; Rosenthal, G.G.; Seymoure, B.M.; Tinghitella, R.M. Evolutionary novelty in communication between the sexes. Biol. Lett. 2021, 17, 20200733. [Google Scholar] [CrossRef]
- Bradbury, J.W.; Vehrencamp, S.L. Principles of Animal Communication; Sinauer Associates: Sunderland, MA, USA, 1998. [Google Scholar]
- Boake, C.R. Coevolution of senders and receivers of sexual signals: Genetic coupling and genetic correlations. Trends Ecol. Evol. 1991, 7, 225–227. [Google Scholar] [CrossRef]
- Boake, C.R.B.; DeAngelis, M.P.; Andreadis, D.K. Is sexual selection and species recognition a continuum? Mating behavior of the stalk-eyed Drosophila heteroneura. Proc. Natl. Acad. Sci. USA 1997, 94, 12442–12445. [Google Scholar] [CrossRef] [Green Version]
- Ten Cate, C.; Rowe, C. Biases in signal evolution: Learning makes a difference. Trends Ecol. Evol. 2007, 22, 380–387. [Google Scholar] [CrossRef]
- Ryan, M.J. Sexual selection, receiver biases, and the evolution of sex differences. Science 1998, 281, 1999–2003. [Google Scholar] [CrossRef] [Green Version]
- Bussière, L.F.; Hunt, J.; Stölting, K.N.; Jennions, M.D.; Brooks, R. Mate choice for genetic quality when environments vary: Suggestions for empirical progress. Genetica 2008, 134, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, S.R.; Scarlett Tudor, M.; Moore, A.J.; Miller, C.W. Sexual selection is influenced by both developmental and adult environments. Evolution 2014, 68, 3421–3432. [Google Scholar] [CrossRef]
- Griffith, S.C.; Owens, I.P.F.; Burke, T. Environmental determination of a sexually selected trait. Lett. Nat. 1999, 400, 358–360. [Google Scholar] [CrossRef]
- Ingleby, F.C.; Hunt, J.; Hosken, D.J. The role of genotype-by-environment interactions in sexual selection. J. Evol. Biol. 2010, 23, 2031–2045. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.W.; Svensson, E.I. Sexual selection in complex environments. Annu. Rev. Entomol. 2014, 59, 427–445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narraway, C.; Hunt, J.; Wedell, N.; Hosken, D.J. Genotype-by-environment interactions for female preference. J. Evol. Biol. 2010, 23, 2550–2557. [Google Scholar] [CrossRef]
- Peake, T. Eavesdropping in communication. In Animal Communication Networks; Cambridge University Press: Cambridge, UK, 2005; pp. 13–37. [Google Scholar]
- Virant-Doberlet, M.; Kuhelj, A.; Polajnar, J.; Šturm, R. Predator-prey interactions and eavesdropping in vibrational communication networks. Front. Ecol. Evol. 2019, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cole, G.L.; Endler, J.A. Male courtship decisions are influenced by light environment and female receptivity. Proc. Biol. Sci. 2016, 283, 20160861. [Google Scholar] [CrossRef] [Green Version]
- Endler, J.A. Multiple-trait coevolution and environmental gradients in guppies. Trends Ecol. Evol. 1995, 10, 22–29. [Google Scholar] [CrossRef]
- Lepore, S.J.; Evans, G.W. Coping with multiple stressors in the environment. In Handbook of Coping: Theory, Research, Applications; John Wiley & Sons: Hoboken, NJ, USA, 1996; pp. 350–377. [Google Scholar]
- Boughman, J.W. Divergent sexual selection enhances reproductive isolation in sticklebacks. Nature 2001, 411, 944–948. [Google Scholar] [CrossRef]
- Carleton, K.L.; Parry, J.W.; Bowmaker, J.K.; Hunt, D.M.; Seehausen, O. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol. Ecol. 2005, 14, 4341–4353. [Google Scholar] [CrossRef] [PubMed]
- Kotiaho, J.S.; Alatalo, R.V.; Mappes, J.; Parri, S. Microhabitat selection and audible sexual signalling in the wolf spider Hygrolycosa rubrofasciata (Araneae, Lycosidae). Acta Ethol. 2000, 2, 123–128. [Google Scholar] [CrossRef]
- Bateson, P.P.G. Mate Choice; Cambridge University Press: Cambridge, UK, 1983. [Google Scholar]
- Bradbury, J.W.; Andersson, M.B. Sexual Selection: Testing the Alternatives; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Rosenthal, G.G. Mate Choice; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Eberhard, W.G. Sexual Selection and Animal Genitalia (Vol. 244); Harvard University Press: Cambridge, MA, USA, 1985. [Google Scholar]
- Parker, G.A. Sperm Competition and its Evolutionary Cosequences in the Insects. Biol. Rev. 1970, 45, 525–567. [Google Scholar] [CrossRef]
- Simmons, L.W. The evolution of polyandry: Patterns of genotypic variation in female mating frequency, male fertilization success and a test of the sexy-sperm hypothesis. J. Evol. Biol. 2003, 16, 624–634. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.W. The abundance of Anisakis simple (L3) In the body cavity and flesh of marine teleosts. Int. J. Parasitol. 1984, 14, 491–495. [Google Scholar] [CrossRef]
- Zuk, M.; Garcia-Gonzalez, F.; Herberstein, M.E.; Simmons, L.W. Model systems, taxonomic bias, and sexual selection: Beyond drosophila. Annu. Rev. Entomol. 2014, 59, 321–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, R.H.; Machado, G. Sexual Selection: Perspectives and Models from the Neotropics; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Johnson, M.T.J.; Prashad, C.M.; Lavoignat, M.; Saini, H.S. Contrasting the effects of natural selection, genetic drift and gene flow on urban evolution in white clover (Trifolium repens). Proc. R. Soc. B Biol. Sci. 2018, 285, 20181019. [Google Scholar] [CrossRef] [Green Version]
- Henry, T.J. Biodiversity of Heteroptera. Insect Biodivers. Sci. Soc. 2017, 1, 279–335. [Google Scholar]
- Li, H.; Leavengood Jr, J.M.; Chapman, E.G.; Burkhardt, D.; Song, F.; Jiang, P.; Liu, J.; Zhou, X.; Cai, W. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171223. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, J.G. Reproductive ecology of predaceous Heteroptera. Biol. Control 2011, 59, 37–52. [Google Scholar] [CrossRef]
- Eschscholtz, J.F. Entomographien, Volume. 1 (1ste Lieferung); G. Reimer: Berlin, Germany, 1822. [Google Scholar]
- Schaefer, C.W.; Panizzi, A.R. Heteroptera of Economic Importance; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Johnson, K.P.; Dietrich, C.H.; Friedrich, F.; Beutel, R.G.; Wipfler, B.; Peters, R.S.; Allen, J.M.; Petersen, M.; Donath, A.; Walden, K.K.; et al. Phylogenomics and the evolution of hemipteroid insects. Proc. Natl. Acad. Sci. USA 2018, 115, 12775–12780. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, J.F.; Rodrigues, H.D.D. The True Water Bugs (Nepomorpha). Entomol. Focus 2015, 159–199. [Google Scholar]
- Burdfield-Steel, E.R.; Shuker, D.M. The evolutionary ecology of the Lygaeidae. Ecol. Evol. 2014, 4, 1–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabitsch, W. True Bugs (Hemiptera, Heteroptera). Chapter 9.1. BioRisk 2010, 4, 407–433. [Google Scholar] [CrossRef]
- Gourevitch, E.H.Z.; Shuker, D.M. Size does not influence pre-copulatory sexual selection in Lygaeus simulans. Manuscr. Prep. under review.
- Panizzi, A.R.; Grazia, J. True Bugs (Heteroptera) of the Neotropics; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 9789401798617. [Google Scholar]
- Panizzi, A.R.; Silva, F.A. Seed-sucking bugs (Heteroptera). In Insect Bioecology and Nutrition for Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2012; pp. 295–324. [Google Scholar]
- Aldrich, J.R. Chemical Communication in the True Bugs and Parasitoid Exploitation. In Chemical Ecology of Insects 2; Springer: Boston, MA, USA, 1995; Volume 2, pp. 318–363. [Google Scholar]
- Millar, J.G. Pheromones of True Bugs. Top. Curr. Chem. 2005, 240, 37–84. [Google Scholar] [CrossRef]
- Čokl, A.; Virant-Doberlet, M. Communication with substrate-borne signals in small plant-dwelling insects. Annu. Rev. Entomol. 2003, 48, 29–50. [Google Scholar] [CrossRef]
- Jansson, A. Stridulation and Its Significance in the Genus Cenocorixa (Hemiptera, Corixidae). Behaviour 1973, 46, 1–36. [Google Scholar] [CrossRef]
- Theiß, J. Generation and Radiation of Sound by Stridulating Water Insects as Exemplified by the Corixids. Behav. Ecol. Sociobiol. 1982, 10, 225–235. [Google Scholar] [CrossRef]
- Gogala, M. Sound or Vibration, an Old Question of Insect Communication. In Studying Vibrational Communication. Animal Signals and Communication; Springer: New York, NY, USA, 2014; Volume 3, pp. 31–46. [Google Scholar]
- Lazzari, C.R.; Manrique, G.; Schilman, P. Vibrational communication in Triatominae (Heteroptera: Reduviidae). In Insect Sounds and Communication. Physiology, Behaviour, Ecology and Evolution; CRC Press: Boca Raton, FL, USA, 2006; pp. 297–304. [Google Scholar]
- Žunič, A.; Cokl, A.; Doberlet, M.V.; Millar, J.G. Communication with signals produced by abdominal vibration, tremulation, and percussion in Podisus maculiventris (Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 2008, 101, 1169–1178. [Google Scholar] [CrossRef]
- Krupke, C.H.; Brunner, J.F.; Jones, V.P. Factors influencing mate choice in Euschistus conspersus Uhler (Heteroptera: Pentatomidae). Environ. Entomol. 2008, 37, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Aldrich, J.R. Chemical ecology of the Heteroptera. Annu. Rev. Entomol. 1988, 33, 211–238. [Google Scholar] [CrossRef]
- Billen, J.; Morgan, E.D. Pheromone Communication in Social Insects: Sources and Secretions. In Pheromone Communication in Social Insects. Ants, Wasps, Bees and Termites; CRC Press: Boca Raton, FL, USA, 1998; pp. 3–33. [Google Scholar]
- Steiger, S.; Stökl, J. The role of sexual selection in the evolution of chemical signals in insects. Insects 2014, 5, 423–438. [Google Scholar] [CrossRef]
- Cardé, R.T.; Baker, T.C. Sexual communication with pheromones. In Chemical Ecology of Insects; Springer: Boston, MA, USA, 1984; pp. 355–383. [Google Scholar]
- Wiman, N.G.; Walton, V.M.; Shearer, P.W.; Rondon, S.I.; Lee, J.C. Factors affecting flight capacity of brown marmorated stink bug, Halyomorpha halys (Hemiptera: Pentatomidae). J. Pest Sci. 2015, 88, 37–47. [Google Scholar] [CrossRef]
- Baroffio, C.A.; Sigsgaard, L.; Ahrenfeldt, E.J.; Borg-Karlson, A.K.; Bruun, S.A.; Cross, J.V.; Fountain, M.T.; Hall, D.; Mozuraitis, R.; Ralle, B.; et al. Combining plant volatiles and pheromones to catch two insect pests in the same trap: Examples from two berry crops. Crop Prot. 2018, 109, 1–8. [Google Scholar] [CrossRef]
- Landolt, P.J.; Phillips, T.W. Host plant influences on sex pheromone behavior of phytophagous insects. Annu. Rev. Entomol. 1997, 42, 371–391. [Google Scholar] [CrossRef] [PubMed]
- Morrison, W.R.; Allen, M.; Leskey, T.C. Behavioural response of the invasive Halyomorpha halys (Hemiptera: Pentatomidae) to host plant stimuli augmented with semiochemicals in the field. Agric. For. Entomol. 2018, 20, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Chemnitz, J.; Jentschke, P.C.; Ayasse, M.; Steiger, S. Beyond species recognition: Somatic state affects long-distance sex pheromone communication. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150832. [Google Scholar] [CrossRef]
- Fink, P. Ecological functions of volatile organic compounds in aquatic systems. Mar. Freshw. Behav. Physiol. 2007, 40, 155–168. [Google Scholar] [CrossRef]
- Arnqvist, G. Pre-eopulatory fighting in a water strider: Inter-sexual conflict or mate assessment? Anim. Behav. 1992, 559–567. [Google Scholar] [CrossRef]
- Belanger, R.M.; Corkum, L.D. Review of aquatic sex pheromones and chemical communication in anurans. J. Herpetol. 2009, 43, 184–191. [Google Scholar] [CrossRef]
- Ohba, S. ya Ecology of giant water bugs (Hemiptera: Heteroptera: Belostomatidae). Entomol. Sci. 2019, 22, 6–20. [Google Scholar] [CrossRef]
- Elgar, M.A.; Zhang, D.; Wang, Q.; Wittwer, B.; Pham, H.T.; Johnson, T.L.; Freelance, C.B.; Coquilleau, M. Insect antennal morphology: The evolution of diverse solutions to odorant perception. Yale J. Biol. Med. 2018, 91, 457–469. [Google Scholar] [PubMed]
- Niven, J.E.; Laughlin, S.B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 2008, 211, 1792–1804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oku, K.; Yasuda, T. Effects of age and mating on female sex attractant pheromone levels in the sorghum plant bug, Stenotus rubrovittatus (Matsumura). J. Chem. Ecol. 2010, 36, 548–552. [Google Scholar] [CrossRef]
- Frati, F.; Chamberlain, K.; Birkett, M.; Dufour, S.; Mayon, P.; Woodcock, C.; Wadhams, L.; Pickett, J.; Salerno, G.; Conti, E.; et al. Vicia faba-Lygus rugulipennis Interactions: Induced Plant Volatiles and Sex Pheromone Enhancement. J. Chem. Ecol. 2009, 35, 505. [Google Scholar] [CrossRef] [Green Version]
- Addesso, K.M.; Short, K.A.; Moore, A.J. Context-dependent female mate preferences in leaf-footed cactus bugs. Behaviour 2014, 151, 479–492. [Google Scholar] [CrossRef]
- Williams, L.; Blackmer, J.L.; Rodriguez-Saona, C.; Zhu, S. Plant volatiles influence electrophysiological and behavioral responses of Lygus hesperus. J. Chem. Ecol. 2010, 36, 467–478. [Google Scholar] [CrossRef]
- Scudder, G.G.E.; Moore, L.V.; Isman, M.B. Sequestration of cardenolides in Oncopeltus fasciatus: Morphological and physiological adaptations. J. Chem. Ecol. 1986, 12, 1171–1181. [Google Scholar] [CrossRef]
- Zych, A.F.; Mankin, R.W.; Gillooly, J.F.; Foreman, E. Stridulation by Jadera haematoloma (Hemiptera: Rhopalidae): Production Mechanism and Associated Behaviors. Ann. Entomol. Soc. Am. 2012, 105, 118–127. [Google Scholar] [CrossRef] [Green Version]
- Breed, M.D.; Moore, J. Communication. In Animal Behavior; Academic Press: Cambridge, MA, USA, 2016; pp. 211–251. [Google Scholar]
- Aiken, R.B. Sound Production by Aquatic Insects. Biol. Rev. 1985, 60, 163–211. [Google Scholar] [CrossRef]
- Fluitt, K.; Mermagen, T.; Letowski, T. Chapter 7: Auditory Distance Estimation in an Open Space. In Soundscape Semiotics—Localisation and Categorisation; Books on Demand: Norderstedt, Germany; Hamburg, Germany, 2014; pp. 135–165. [Google Scholar]
- Cocroft, R.B.; Rodríguez, R.L. The behavioral ecology of insect vibrational communication. Bioscience 2005, 55, 323–334. [Google Scholar] [CrossRef]
- Hill, P.S.M. How do animals use substrate-borne vibrations as an information source? Naturwissenschaften 2009, 96, 1355–1371. [Google Scholar] [CrossRef]
- Finfer, D.C.; Leighton, T.G.; White, P.R. Issues relating to the use of a 61.5 dB conversion factor when comparing airborne and underwater anthroprogenic noise levels. Appl. Acoust. 2008, 69, 464–471. [Google Scholar] [CrossRef]
- Slabbekoorn, H.; Bouton, N.; van Opzeeland, I.; Coers, A.; ten Cate, C.; Popper, A.N. A noisy spring: The impact of globally rising underwater sound levels on fish. Trends Ecol. Evol. 2010, 25, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, I.M. Underwater sound production in Micronecta batilla Hale (Heteroptera: Corixidae). J. Aust. Entological Soc. 1976, 15, 35–43. [Google Scholar] [CrossRef]
- King, I.M. Acoustic communication and mating behaviour in water bugs of the genus micronecta. Bioacoustics 1999, 10, 115–130. [Google Scholar] [CrossRef]
- Reid, A.; Hardie, D.J.W.; Mackie, D.; Jackson, J.C.; Windmill, J.F.C. Extreme call amplitude from near-field acoustic wave coupling in the stridulating water insect Micronecta scholtzi (Micronectinae). J. R. Soc. Interface 2018, 15. [Google Scholar] [CrossRef] [Green Version]
- Sueur, J.; Mackie, D.; Windmill, J.F.C. So Small, So Loud: Extremely High Sound Pressure Level from a Pygmy Aquatic Insect (Corixidae, Micronectinae). PLoS ONE 2011, 6, 21089. [Google Scholar] [CrossRef] [Green Version]
- Roces, F.; Manrique, G. Different stridulatory vibrations during sexual behaviour and disturbance in the blood-sucking bug Triatoma infestans (Hemiptera: Reduviidae). J. Insect Physiol. 1996, 42, 231–238. [Google Scholar] [CrossRef]
- Schaefer, C.W. Prosorrhyncha: Heteroptera and Coleorrhyncha. In Encyclopedia of Insects; Elsevier: Amsterdam, The Netherlands, 2009; pp. 839–855. [Google Scholar]
- Manrique, G.; Schilman, P.E. Two different vibratory signals in Rhodnius prolixus (Hemiptera: Reduviidae). Acta Trop. 2000, 77, 271–278. [Google Scholar] [CrossRef]
- Vulinec, K. Collective security: Aggregation by insects as a defense. In Insect Defenses; SUNY Press: Albany, NY, USA, 1990; pp. 251–288. [Google Scholar]
- Schaefer, C.W.; Pupedis, R.J. A Stridulatory Device in Certain Alydinae (Hemiptera: Heteroptera: Alydidae). J. Kansas Entomol. Soc. 1981, 54, 143–152. [Google Scholar]
- Čokl, A.; Zorović, M.; Kosi, A.Ž.; Stritih, N.; Virant-Doberlet, M. Communication Through Plants in a Narrow Frequency Window. In Studying Vibrational Communication. Animal Signals and Communication; Springer: Berlin/Heidelberg, Germany, 2014; Volume 3, pp. 171–195. [Google Scholar]
- Shuker, D.M.; Burdfield-steel, E.R. Reproductive interference in insects. Ecol. Entomol. 2017, 42, 65–75. [Google Scholar] [CrossRef]
- Čokl, A.; Laumann, R.A.; Kosi, A.Ž.; Blassioli-Moraes, M.C.; Virant-Doberlet, M.; Borges, M. Interference of overlapping insect vibratory communication signals: An eushistus heros model. PLoS ONE 2015, 10, e0130775. [Google Scholar] [CrossRef] [Green Version]
- Elias, D.O.; Mason, A.C.; Hebets, E.A. A signal-substrate match in the substrate-borne component of a multimodal courtship display. Curr. Zool. 2010, 56, 370–378. [Google Scholar] [CrossRef]
- Gordon, S.D.; Uetz, G.W. Multimodal communication of wolf spiders on different substrates: Evidence for behavioural plasticity. Anim. Behav. 2011, 81, 367–375. [Google Scholar] [CrossRef]
- Hebets, E.A.; Elias, D.O.; Mason, A.C.; Miller, G.L.; Stratton, G.E. Substrate-dependent signalling success in the wolf spider, Schizocosa retrorsa. Anim. Behav. 2008, 75, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Ota, D.; Čokl, A. Mate location in the southern green stink bug, Nezara Viridula (Heteroptera: Pentatomidae), mediated through substrate-borne signals on ivy. J. Insect Behav. 1991, 4, 441–447. [Google Scholar] [CrossRef]
- Goodwyn, P.P.; Katsumata-wada, A.; Okada, K. Morphology and neurophysiology of tarsal vibration receptors in the water strider Aquarius paludum (Heteroptera: Gerridae). J. Insect Physiol. 2009, 55, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Vepsalainen, K. Exclusive female vs. male territoriality in two waterstrider (Gerridae) species: Hypotheses of function. Ann. Entomol. Fenn. 1985, 51, 45–49. [Google Scholar]
- Wilcox, R.S.; Spence, J.R. The mating system of two hybridizing species of water striders (Gerridae). Behav. Ecol. Sociobiol. 1986, 19, 76–85. [Google Scholar] [CrossRef]
- Henry, C. Chapter 10: Acoustic Communication in Neuropterid. In Insect Sounds and Communication: Physiology, Behaviour, Ecology and Evolution; CRC Press: Boca Raton, FL, USA, 2005; pp. 153–166. ISBN 9781420039337. [Google Scholar]
- Soulier-Perkins, A.; Sueur, J.; Hoch, H. Historical use of substrate-borne acoustic production within the Hemiptera: First record for an Australian Lophopid (Hemiptera, Lophopidae). Aust. J. Entomol. 2007, 46, 129–132. [Google Scholar] [CrossRef]
- Bennet-Clark, H.C. Resonators in insect sound production: How insects produce loud pure-tone songs. J. Exp. Biol. 1999, 202, 3347–3357. [Google Scholar] [CrossRef] [PubMed]
- Čokl, A.; Zorović, M.; Millar, J.G. Vibrational communication along plants by the stink bugs Nezara viridula and Murgantia histrionica. Behav. Process. 2007, 75, 40–54. [Google Scholar] [CrossRef] [PubMed]
- Čokl, A.; Prešern, J.; Virant-Doberlet, M.; Bagwell, G.J.; Millar, J.G. Vibratory signals of the harlequin bug and their transmission through plants. Physiol. Entomol. 2004, 29, 372–380. [Google Scholar] [CrossRef]
- Laumann, R.A.; Moraes, M.C.B.; Čokl, A.; Borges, M. Eavesdropping on sexual vibratory signals of stink bugs (Hemiptera: Pentatomidae) by the egg parasitoid Telenomus podisi. Anim. Behav. 2007, 73, 637–649. [Google Scholar] [CrossRef]
- Lakes-Harlan, R.; Strauß, J. Chapter 14: Functional Morphology and Evolutionary Diversity of Vibration Receptors in Insects. In Studying Vibrational Communication; Springer: Berlin, Heidelberg, Germany, 2014; pp. 277–302. ISBN 9783662436073. [Google Scholar]
- Čokl, A.; Virant-Doberlet, M.; McDowell, A. Vibrational directionality in the southern green stink bug, Nezara viridula (L.), is mediated by female song. Anim. Behav. 1999, 58, 1277–1283. [Google Scholar] [CrossRef] [Green Version]
- Blassioli-Moraes, M.C.; Laumann, R.A.; Cokl, A.; Borges, M. Vibratory signals of four Neotropical stink bug species. Physiol. Entomol. 2005, 30, 175–188. [Google Scholar] [CrossRef] [Green Version]
- Laumann, R.A.; Čokl, A.; Blassioli-Moraes, M.C.; Borges, M. Vibratory Communication and its Relevance to Reproductive Isolation in two Sympatric Stink Bug Species (Hemiptera: Pentatomidae: Pentatominae). J. Insect Behav. 2016, 29, 643–665. [Google Scholar] [CrossRef] [Green Version]
- De Groot, M.; Čokl, A.; Virant-Doberlet, M. Species identity cues: Possibilities for errors during vibrational communication on plant stems. Behav. Ecol. 2011, 22, 1209–1217. [Google Scholar] [CrossRef]
- Blassioli-Moraes, M.C.; Magalhães, D.M.; Čokl, A.; Laumann, R.A.; Da Silva, J.P.; Silva, C.C.A.; Borges, M. Vibrational communication and mating behaviour of Dichelops melacanthus (Hemiptera: Pentatomidae) recorded from loudspeaker membranes and plants. Physiol. Entomol. 2014, 39, 1–11. [Google Scholar] [CrossRef]
- Briceño, R.D. Caracterización del comportamiento y las señales vibratorias en Euthyrhynchus floridanus (Hemiptera: Pentatomidae) durante el cortejo y la cópula. Rev. Biol. Trop. 2014, 62, 95. [Google Scholar] [CrossRef] [Green Version]
- McBrien, H.; Millar, J. Substrate-borne vibrational signals of the Consperse stink bug (Hemiptera: Pentatomidae). Can. Entomol. 2003, 135, 555–567. [Google Scholar] [CrossRef]
- Silva, C.C.A.; Laumann, R.A.; Ferreira, J.B.C.; Moraes, M.C.B.; Borges, M.; Čokl, A. Reproductive biology, mating behavior, and vibratory communication of the brown-winged stink bug, Edessa meditabunda (Fabr.) (Heteroptera: Pentatomidae). Psyche 2012, 598086. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Millar, J.G. Reproductive behavior of Thyanta pallidovirens (Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 1997, 90, 380–388. [Google Scholar] [CrossRef]
- Bagwell, G.J.; Čokl, A.; Millar, J.G. Characterization and comparison of substrate-borne vibrational signals of Chlorochroa uhleri, Chlorochroa ligata, and Chlorochroa sayi (Heteroptera: Pentatomidae). Ann. Entomol. Soc. Am. 2008, 101, 235–246. [Google Scholar] [CrossRef]
- Lang, H.H. Surface Wave Discrimination between Prey and Nonprey by the Back Swimmer Notonecta glauca L. (Hemiptera, Heteroptera). Behav. Ecol. Sociobiol. 1980, 6, 233–246. [Google Scholar] [CrossRef]
- Wilcox, R.S.; Stefano, J. Di Vibratory Signals Enhance Mate-Guarding in a Water Strider (Hemiptera: Gerridae). J. Insect Behav. 1991, 4, 43–50. [Google Scholar] [CrossRef]
- Han, C.S.; Jablonski, P.G. Male water striders attract predators to intimidate females into copulation. Nat. Commun. 2010, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Han, C.S.; Jablonski, P.G. Predators induce conditions for size-dependent alternative reproductive tactics in a water strider male. Anim. Behav. 2016, 111, 271–279. [Google Scholar] [CrossRef]
- Darwin, C. Principles of sexual selection. In The Descent of Man, and Selection in Relation to Sex; Princeton University Press: Princeton, NJ, USA, 1871; Volume 1, pp. 253–320. [Google Scholar]
- Du, B.J.; Chen, R.; Tao, W.T.; Shi, H.L.; Bu, W.J.; Liu, Y.; Ma, S.; Ni, M.Y.; Kong, F.L.; Xiao, J.H.; et al. A Cretaceous bug with exaggerated antennae might be a double-edged sword in evolution. iScience 2021, 24, 101932. [Google Scholar] [CrossRef]
- Johnson, T.L.; Symonds, M.R.E.; Elgar, M.A. Sexual selection on receptor organ traits: Younger females attract males with longer antennae. Sci. Nat. 2017, 104, 1–6. [Google Scholar] [CrossRef]
- Khila, A.; Abouheif, E.; Rowe, L. Function, Developmental Genetics, and Fitness Consequences of a Sexually Antagonistic Trait. Science 2012, 336, 585–589. [Google Scholar] [CrossRef]
- Gourevitch, E.H.Z.; Shuker, D.M. Sexual selection in the Heteroptera. Manuscr. Prep. 2022. under review. [Google Scholar]
- Cooper, M.I.; Telford, S.R. Copulatory sequences and sexual struggles in millipedes. J. Insect Behav. 2000, 13, 217–230. [Google Scholar] [CrossRef]
- Li, T.-Y.; Vinson, S.B.; Gerling, D. Courtship and Mating Behavior of Bemisia tabaci (Homoptera: Aleyrodidae). Environ. Entomol. 1989, 18, 800–806. [Google Scholar] [CrossRef]
- Brent, C.S. Reproduction of the western tarnished plant bug, Lygus hesperus, in relation to age, gonadal activity and mating status. J. Insect Physiol. 2010, 56, 28–34. [Google Scholar] [CrossRef]
- Strong, F.E.; Sheldahl, J.A.; Hughes, P.R.; Hussein, E.M.K. Reproductive biology of Lygus hesperus. Hilgardia 1970, 40, 105–133. [Google Scholar] [CrossRef] [Green Version]
- Alexander, R.; Marshall, D.; Cooley, J. Evolutionary perspectives on insect mating. In Mating Systems in Insects and Arachnids; Cambridge University Press: Cambridge, UK, 1997; pp. 4–31. [Google Scholar]
- Bonduriansky, R. The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biol. Rev. Camb. Philos. Soc. 2001, 76, 305–339. [Google Scholar] [CrossRef] [Green Version]
- Eberhard, W.G. Female Control: Sexual Selection by Cryptic Female Choice; Princeton University Press: Princeton, NJ, USA, 1996; Volume 69. [Google Scholar]
- Yang, L.; Wang, Q. Precopulation Sexual Selection in Nysius huttoni White (Heteroptera: Lygaeidae) in Relation to Morphometric Traits. J. Insect Behav. 2004, 17, 695–707. [Google Scholar] [CrossRef]
- Bonhag, P.F.; Wick, J.R. The functional anatomy of the male and female reproductive systems of the milkweed bug, Oncopeltus fasciatus (Dallas) (Heteroptera: Lygaeidae). J. Morphol. 1953, 9, 177–283. [Google Scholar] [CrossRef]
- Greenway, E.V.; Balfour, V.L.; Shuker, D.M. Can females choose to avoid mating failure in the seed bug Lygaeus simulans? Anim. Behav. 2017, 129, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Greenway, E.V.G.; Dougherty, L.R.; Shuker, D.M. Mating failure. Curr. Biol. 2015, 25, R534–R536. [Google Scholar] [CrossRef] [Green Version]
- Stork, N.E. The structure and function of the adhesive organs on the antennae of male Harpocera thoracica (Fallen) (Miridae; Hemiptera). J. Nat. Hist. 1981, 15, 639–644. [Google Scholar] [CrossRef]
- Schuh, R.T.; Slater, J.A. True Bugs of the World (Hemiptera: Heteroptera): Classification and Natural History; Cornell University Press: Ithaca, NY, USA, 1995. [Google Scholar]
- Shuker, D.M.; Kvarnemo, L. The definition of sexual selection. Behav. Ecol. 2021, 32, 781–794. [Google Scholar] [CrossRef]
- Janicke, T.; David, P.; Chapuis, E. Environment-dependent sexual selection: Bateman’s parameters under varying levels of food availability. Am. Nat. 2015, 185, 756–768. [Google Scholar] [CrossRef] [PubMed]
- Somjee, U.; Allen, P.E.; Miller, C.W. Different environments lead to a reversal in the expression of weapons and testes in the heliconia bug, Leptoscelis tricolor (Hemiptera: Coreidae). Biol. J. Linn. Soc. 2015, 115, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.; Iwasa, Y. Sexual selection. Tree 1996, 11, 53–58. [Google Scholar] [CrossRef]
- Moller, A.P.; Pomiankowski, A. Why have birds got multiple sexual ornaments? Behav. Ecol. Sociobiol. 1993, 32, 167–176. [Google Scholar] [CrossRef]
- Ryan, M.J.; Keddy-Hector, A. Directional patterns of female mate choice and the role of sensory biases. Am. Soc. Nat. 1992, 139, 4–35. [Google Scholar] [CrossRef]
- Ey, E.; Fischer, J. The “acoustic adaptation hypothesis”—a review of the evidence from birds, anurans and mammals. Bioacoustics 2009, 19, 21–48. [Google Scholar] [CrossRef]
- Hansen, P. Vocal learning: Its role in adapting sound structures to long-distance propagation, and a hypothesis on its evolution. Anim. Behav. 1979, 27, 1270–1271. [Google Scholar] [CrossRef]
- Hardt, B.; Benedict, L. Can you hear me now? A review of signal transmission and experimental evidence for the acoustic adaptation hypothesis. Bioacoustics 2020, 30, 716–742. [Google Scholar] [CrossRef]
- Morton, E.S. Ecological Sources of Selection on Avian Sounds. Am. Nat. 1975, 109, 17–34. [Google Scholar] [CrossRef] [Green Version]
- Velásquez, N.A.; Moreno-Gómez, F.N.; Brunetti, E.; Penna, M. The acoustic adaptation hypothesis in a widely distributed South American frog: Southernmost signals propagate better. Sci. Rep. 2018, 8, 6990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courter, J.R.; Perruci, R.J.; McGinnis, K.J.; Rainieri, J.K. Black-capped chickadees (Poecile atricapillus) alter alarm call duration and peak frequency in response to traffic noise. PLoS ONE 2020, 15, 1–10. [Google Scholar] [CrossRef]
- Halfwerk, W.; Blaas, M.; Kramer, L.; Hijner, N.; Trillo, P.A.; Bernal, X.E.; Page, R.A.; Goutte, S.; Ryan, M.J.; Ellers, J. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 2019, 3, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Higham, V.; Deal, N.D.S.; Chan, Y.K.; Chanin, C.; Davine, E.; Gibbings, G.; Keating, R.; Kennedy, M.; Reilly, N.; Symons, T.; et al. Traffic noise drives an immediate increase in call pitch in an urban frog. J. Zool. 2021, 313, 307–315. [Google Scholar] [CrossRef]
- Kaiser, K.; Hammers, J.L. The Effect of Anthropogenic Noise on Male Advertisement Call Rate in the Neotropical Treefrog, Dendropsophus triangulum. Behaviour 2016, 146, 1053–1069. [Google Scholar] [CrossRef]
- Parris, K.M.; Velik-Lord, M.; North, J.M.A. Frogs call at a higher pitch in traffic noise. Ecol. Soc. 2009, 14, 25. [Google Scholar] [CrossRef] [Green Version]
- Henneken, J.; Jones, T.M. Pheromones-based sexual selection in a rapidly changing world. Curr. Opin. Insect Sci. 2017, 24, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Geiselhardt, S.; Otte, T.; Hilker, M. Looking for a similar partner: Host plants shape mating preferences of herbivorous insects by altering their contact pheromones. Ecol. Lett. 2012, 15, 971–977. [Google Scholar] [CrossRef]
Names | Abdominal Vibration | Stridulation | Chemical | Antennation |
---|---|---|---|---|
Semiaquatic | 4 | 15 | 0 | 0 |
Plants | 8 | 16 | 10 | 10 |
Leaf-litter/floor | 1 | 5 | 5 | 2 |
Number of Signal Types | |||||
---|---|---|---|---|---|
0 | 1 | 2 | 3 | ||
Number of habitats | 0 | 7 | 2 | 1 | 0 |
1 | 19 | 21 | 10 | 5 | |
2 | 3 | 4 | 0 | 1 | |
3 | 1 | 2 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gourevitch, E.H.Z.; Shuker, D.M. Environmental Correlates of Sexual Signaling in the Heteroptera: A Prospective Study. Insects 2021, 12, 1079. https://doi.org/10.3390/insects12121079
Gourevitch EHZ, Shuker DM. Environmental Correlates of Sexual Signaling in the Heteroptera: A Prospective Study. Insects. 2021; 12(12):1079. https://doi.org/10.3390/insects12121079
Chicago/Turabian StyleGourevitch, Eleanor H. Z., and David M. Shuker. 2021. "Environmental Correlates of Sexual Signaling in the Heteroptera: A Prospective Study" Insects 12, no. 12: 1079. https://doi.org/10.3390/insects12121079
APA StyleGourevitch, E. H. Z., & Shuker, D. M. (2021). Environmental Correlates of Sexual Signaling in the Heteroptera: A Prospective Study. Insects, 12(12), 1079. https://doi.org/10.3390/insects12121079