Two Complete Mitogenomes of Chalcididae (Hymenoptera: Chalcidoidea): Genome Description and Phylogenetic Implications
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation and DNA Extraction
2.2. High throughout Sequencing
2.3. Data Assemble and Annotation
2.4. Statistics of the Chalcididae Mitochondrial Genomes
2.5. Phylogenetic Analysis
3. Results and Discussion
3.1. Mitogenome Organization and Base Composition
3.2. Protein-Coding Genes and Codon Usage
3.3. Transfer and Ribosomal RNA Genes
3.4. A + T-Rich Region
3.5. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nedoluzhko, A.V.; Sharko, F.S.; Boulygina, E.S.; Tsygankova, S.V.; Sokolov, A.S.; Mazur, A.M.; Polilov, A.A.; Prokhortchouk, E.B.; Skryabin, K.G. Mitochondrial genome of Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2016, 27, 4526–4527. [Google Scholar] [CrossRef]
- Noyes, J.S. Universal Chalcidoidea Database. 2021. Available online: www.nhm.ac.uk/jdsml/researchcuration/projects/chalcidoids (accessed on 18 August 2021).
- Wijesekara, G.A.W. Phylogeny of Chalcididae (Insecta: Hymenoptera) and its congruence with contemporary heirarchical classification. Contrib. Am. Entomol. Inst. 1997, 29, 1–61. [Google Scholar]
- Gibson, G.A.P. Sister-group relationships of the Platygastroidea and Chalcidoidea (Hymenoptera)—An alternate hypothesis to Rasnitsyn (1988). Zool. Scr. 1999, 28, 125–138. [Google Scholar] [CrossRef]
- Campbell, B.; Heraty, J.M.; Rasplus, J.-Y.; Chan, K.; Steffen-Campbell, J.; Babcock, C. Molecular Systematics of the Chalcidoidea Using 28S-D2 rDNA; CSIRO Publishing: Collingwood, Australia, 2000; pp. 57–71. [Google Scholar]
- Munro, J.; Heraty, J.; Burks, R.; Hawks, D.; Mottern, J.; Cruaud, A.; Rasplus, J.-Y.; Jansta, P. A Molecular Phylogeny of the Chalcidoidea (Hymenoptera). PLoS ONE 2011, 6, e27023. [Google Scholar] [CrossRef] [Green Version]
- Peters, R.S.; Niehuis, O.; Gunkel, S.; Bläser, M.; Mayer, C.; Podsiadlowski, L.; Kozlov, A.; Donath, A.; van Noort, S.; Liu, S.; et al. Transcriptome sequence-based phylogeny of chalcidoid wasps (Hymenoptera: Chalcidoidea) reveals a history of rapid radiations, convergence, and evolutionary success. Mol. Phylogenet. Evol. 2018, 120, 286–296. [Google Scholar] [CrossRef]
- Zhang, J.; Lindsey, A.R.I.; Peters, .S.; Heraty, J.M.; Hopper, K.R.; Werren, J.H.; Martinson, E.O.; Woolley, J.B.; Yoder, M.J.; Krogmann, L. Conflicting signal in transcriptomic markers leads to a poorly resolved backbone phylogeny of chalcidoid wasps. Syst. Entomol. 2020, 45, 783–802. [Google Scholar] [CrossRef]
- Heraty, J.M.; Burks, R.A.; Cruaud, A.; Gibson, G.A.P.; Liljeblad, J.; Munro, J.; Rasplus, J.-Y.; Delvare, G.; Janšta, P.; Gumovsky, A.; et al. A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics 2013, 29, 466–542. [Google Scholar] [CrossRef] [Green Version]
- Boore, J.L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gazi, M.; Sultana, T.; Min, G.-S.; Park, Y.C.; García-Varela, M.; Nadler, S.A.; Park, J.-K. The complete mitochondrial genome sequence of Oncicola luehei (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata. Parasitol. Int. 2012, 61, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Gazi, M.; Kim, J.; Park, J.-K. The complete mitochondrial genome sequence of Southwellina hispida supports monophyly of Palaeacanthocephala (Acanthocephala: Polymorphida). Parasitol. Int. 2015, 64, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Gazi, M.; Kim, J.; García-Varela, M.; Park, C.; Littlewood, D.T.J.; Park, J.-K. Mitogenomic phylogeny of Acanthocephala reveals novel Class relationships. Zool. Scr. 2016, 45, 437–454. [Google Scholar] [CrossRef]
- Sun, S.E.; Sha, Z.; Wang, Y. Mitochondrial phylogenomics reveal the origin and adaptive evolution of the deep-sea caridean shrimps (Decapoda: Caridea). J. Oceanol. Limnol. 2021, 39, 1948–1960. [Google Scholar] [CrossRef]
- Cheng, J.; Chan, T.-Y.; Zhang, N.; Sun, S.; Sha, Z. Mitochondrial phylogenomics reveals insights into taxonomy and evolution of Penaeoidea (Crustacea: Decapoda). Zool. Scr. 2018, 47, 582–594. [Google Scholar] [CrossRef]
- Bourguignon, T.; Tang, Q.; Ho, S.Y.W.; Juna, F.; Wang, Z.; Arab, D.A.; Cameron, S.L.; Walker, J.; Rentz, D.; Evans, T.A.; et al. Transoceanic Dispersal and Plate Tectonics Shaped Global Cockroach Distributions: Evidence from Mitochondrial Phylogenomics. Mol. Biol. Evol. 2018, 35, 970–983. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Leavengood, J.M., Jr.; Chapman, E.G.; Burkhardt, D.; Song, F.; Jiang, P.; Liu, J.; Zhou, X.; Cai, W. Mitochondrial phylogenomics of Hemiptera reveals adaptive innovations driving the diversification of true bugs. Proc. R. Soc. B Biol. Sci. 2017, 284, 20171223. [Google Scholar] [CrossRef]
- Tang, P.; Zhu, J.; Zheng, B.; Wei, S.; Sharkey, M.; Chen, X.; Vogler, A.P. Mitochondrial phylogenomics of the Hymenoptera. Mol. Phylogenet. Evol. 2019, 131, 8–18. [Google Scholar] [CrossRef]
- Abascal, F.; Posada, D.; Knight, R.D.; Zardoya, R. Parallel evolution of the genetic code in arthropod mitochondrial genomes. PLoS Biol. 2006, 4, e127. [Google Scholar] [CrossRef] [Green Version]
- Cameron, S.L. Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, A.C.; Cann, R.L.; Carr, S.M.; George, M.; Gyllensten, U.B.; Helm-Bychowski, K.M.; Higuchi, R.G.; Palumbi, S.R.; Prager, E.M.; Sage, R.D.; et al. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 1985, 26, 375–400. [Google Scholar] [CrossRef]
- Ilyasov, R.; Park, J.; Takahashi, J.; Kwon, H.-W. Phylogenetic Uniqueness of Honeybee Apis Cerana from the Korean Peninsula Inferred from The Mitochondrial, Nuclear, and Morphological Data. J. Apic. Sci. 2018, 62, 189–214. [Google Scholar] [CrossRef] [Green Version]
- Ilyasov, R.A.; Youn, H.G.; Lee, M.-L.; Kim, K.W.; Proshchalykin, M.Y.; Lelej, A.S.; Takahashi, J.-I.; Kwon, H.W. Phylogenetic Relationships of Russian Far-East with Other North Asian Populations. J. Apic. Sci. 2019, 63, 289–314. [Google Scholar] [CrossRef] [Green Version]
- Gibson, G.A.P. Chalcididae. In Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera); Gibson, G.A.P., Huber, J.T., Woolley, J.B., Eds.; NRC Research Press: Ottawa, ON, Canada, 1997. [Google Scholar]
- Narendran, T.C.; van Achterberg, C. Revision of the family Chalcididae (Hymenoptera, Chalcidoidea) from Vietnam, with the description of 13 new species. ZooKeys 2016, 576, 1–202. [Google Scholar]
- Meng, G.; Li, Y.; Yang, C.; Liu, S. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Peterson, D.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perna, N.T.; Kocher, T.D. Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J. Mol. Evol. 1995, 41, 353–358. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Wang, N.; Murphy, R.W.; Cook, J.; Jia, L.; Huang, D. Wolbachia Infection And Dramatic Intraspecific Mitochondrial DNA Divergence in a Fig Wasp. Evolution 2012, 66, 1907–1916. [Google Scholar] [CrossRef]
- Wang, J.; Liu, J.; Miao, Y.; Huang, D.; Xiao, J. Tracking the Distribution and Burst of Nuclear Mitochondrial DNA Sequences (NUMTs) in Fig Wasp Genomes. Insects 2020, 11, 680. [Google Scholar] [CrossRef]
- Du, Y.; Song, X.; Liu, X.; Ouyang, Z.; Lu, Z. Mitochondrial genome of Tamarixia radiata (Hymenoptera: Chalcidoidea: Eulophidae) and phylogenetic analysis. Mitochondrial DNA Part B 2019, 4, 2839–2840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, J.; Tang, P.; Zheng, B.; Wu, Q.; Wei, S.; Chen, X. The first two mitochondrial genomes of the family Aphelinidae with novel gene orders and phylogenetic implications. Int. J. Biol. Macromol. 2018, 118, 386–396. [Google Scholar] [CrossRef]
- Xiong, M.; Zhou, Q.-S.; Zhang, Y.-Z. The complete mitochondrial genome of Encyrtus infelix (Hymenoptera: Encyrtidae). Mitochondrial DNA Part B 2019, 4, 114–115. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, B.; Zhu, J.; Tang, P.; Chen, X. The mitochondrial genome of Aenasius arizonensis (Hymenoptera: Encyrtidae) with novel gene order. Mitochondrial DNA Part B 2019, 4, 2023–2024. [Google Scholar] [CrossRef] [Green Version]
- Du, Y.; Song, X.; Liu, X.; Zhong, B. Mitochondrial genome of Diaphorencyrtus aligarhensis (Hymenoptera: Chalcidoidea: Encyrtidae) and phylogenetic analysis. Mitochondrial DNA Part B 2019, 4, 3190–3191. [Google Scholar] [CrossRef]
- Tian, X.; Xian, X.; Zhang, G.; Castañé, C.; Romeis, J.; Wan, F.; Zhang, Y. Complete mitochondrial genome of a predominant parasitoid, Necremnus tutae (Hymenoptera: Eulophidae) of the South American tomato leafminer Tuta absoluta (Lepidoptera: Gelechiidae). Mitochondrial DNA Part B 2021, 6, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Lyu, B.; Lu, H.; Tang, J.; Meng, R.; Cai, B. The mitochondrial genome of a parasitic wasp, Chouioia cunea Yang (Hymenoptera: Chalcidoidea: Eulophidae) and phylogenetic analysis. Mitochondrial DNA Part B 2021, 6, 872–874. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Huang, D.; Wu, Y.; He, B.; Liang, A. Sequencing and characterization of mitochondrial genome of Eurytoma sp. (Hymenoptera: Eurytomidae). Mitochondrial DNA Part B 2016, 1, 826–828. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Chen, L.; Chen, L.; Li, Y. Information from the mitochondrial genomes of two egg parasitoids, Gonatocerus sp. and Telenomus sp., reveals a controversial phylogenetic relationship between Mymaridae and Scelionidae. Genomics 2019, 111, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Jia, J.; Murphy, R.W.; Huang, D. Rapid Evolution of the Mitochondrial Genome in Chalcidoid Wasps (Hymenoptera: Chalcidoidea) Driven by Parasitic Lifestyles. PLoS ONE 2011, 6, e26645. [Google Scholar] [CrossRef] [Green Version]
- Yan, Z.; Fang, Q.; Tian, Y.; Wang, F.; Chen, X.; Werren, J.H.; Ye, G. Mitochondrial DNA and their nuclear copies in the parasitic wasp Pteromalus puparum: A comparative analysis in Chalcidoidea. Int. J. Biol. Macromol. 2019, 121, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, H.; Feng, Z.; Li, B.; Zhou, W.; Song, F.; Li, H.; Zhang, L.; Cai, W. Novel gene rearrangement in the mitochondrial genome of Pachyneuron aphidis (Hymenoptera: Pteromalidae). Int. J. Biol. Macromol. 2020, 149, 1207–1212. [Google Scholar] [CrossRef]
- Huang, Z.; Dai, H.; Lin, Q.; Zhang, B. The mitochondrial genome of parasitic wasp: Anisopteromalus calandrae (Howard, 1881) (Hymenoptera: Pteromalidae). Mitochondrial DNA Part B 2021, 6, 2048–2049. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, H.; Li, Y.; Wei, Z. The rearranged mitochondrial genome of Podagrion sp. (Hymenoptera: Torymidae), a parasitoid wasp of mantis. Genomics 2019, 111, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Chen, P.; Xue, X.; Hua, H.; Li, Y.; Zhang, F.; Wei, S. Extensive gene rearrangements in the mitochondrial genomes of two egg parasitoids, Trichogramma japonicum and Trichogramma ostriniae (Hymenoptera: Chalcidoidea: Trichogrammatidae). Sci. Rep. 2018, 8, 7034. [Google Scholar] [CrossRef] [PubMed]
- Xue, S.; Zhang, Y.; Gao, S.; Lu, S.; Wang, J.; Zhang, K. Mitochondrial genome of Trichagalma acutissimae (Hymenoptera: Cynipoidea: Cynipidae) and phylogenetic analysis. Mitochondrial DNA Part B 2020, 5, 1073–1074. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, Z.; Zhu, J.; Zheng, B.; Tang, P.; Chen, X. The mitochondrial genome of Telenomus remus (Hymenoptera: Platygastridae). Mitochondrial DNA Part B 2021, 6, 844–845. [Google Scholar] [CrossRef] [PubMed]
- Xian, Z.; Pan, Z.; Chen, J.; Zhu, J.; Zhou, S.; Pang, L.; Shi, M.; Chen, X.; Huang, J. The complete mitochondrial genome of Trichopria drosophilae (Hymenoptera: Diapriidae). Mitochondrial DNA Part B 2020, 5, 2391–2393. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A.; Suchard, M.A.; Xie, D.; Drummond, A. Tracer v1.6. Available online: http://tree.bio.ed.ac.uk/software/tracer (accessed on 6 September 2020).
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [Google Scholar] [CrossRef] [PubMed]
- Rambaut, A. Figtree 1.4.0. Available online: http://tree.bio.ed.ac.uk/software/figtree (accessed on 18 August 2020).
- Ojala, D.; Montoya, J.; Attardi, G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290, 470–474. [Google Scholar] [CrossRef]
- Lavrov, D.V.; Boore, J.L.; Brown, W.M. The Complete Mitochondrial DNA Sequence of the Horseshoe Crab Limulus polyphemus. Mol. Biol. Evol. 2000, 17, 813–824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heraty, J.; Ronquist, F.; Carpenter, J.M.; Hawks, D.; Schulmeister, S.; Dowling, A.P.; Murray, D.; Munro, J.; Wheeler, W.C.; Schiff, N. Evolution of the hymenopteran megaradiation. Mol. Phylogenet. Evol. 2011, 60, 73–88. [Google Scholar] [CrossRef] [Green Version]
- Sharkey, M.J.; Carpenter, J.M.; Vilhelmsen, L.; Heraty, J.; Liljeblad, J.; Dowling, A.P.G.; Schulmeister, S.; Murray, D.; Deans, A.R.; Ronquist, F.; et al. Phylogenetic relationships among superfamilies of Hymenoptera. Cladistics 2011, 28, 80–112. [Google Scholar] [CrossRef] [Green Version]
Family | Taxa | GenBank Accession No. | References |
---|---|---|---|
Agaonidae | Ceratosolen solmsi | JF816396 | [29] |
Ceratosolen fusciceps | MT916179 | [30] | |
Agaonidae | Dolichoris vasculosae | MT947596 | [31] |
Eupristina koningsbergeri | MT947597 | [30] | |
Kradibia gibbosae | MT947598 | [30] | |
Wiebesia pumilae | MT947601 | [30] | |
Platyscapa corneri | MT947604 | [30] | |
Aphelinidae | Encarsia formosa | MG813797 | [32] |
Encarsia obtusiclava | MG813798 | [32] | |
Chalcididae | Brachymeria sp. | MG923487 | [18] |
Brachymeria lasus | MZ615567 | This study | |
Haltichella nipponensis | MZ615568 | This study | |
Encyrtidae | Encyrtus infelix | MH574908 | [33] |
Encyrtus infelix | MH729198 | [33] | |
Encyrtus sasakii | MK111647 | unpublished | |
Encyrtus sasakii | MK111648 | unpublished | |
Encyrtus sasakii | MK189126 | unpublished | |
Encyrtus sasakii | MK189127 | unpublished | |
Encyrtus eulecaniumiae | MK189128 | unpublished | |
Encyrtus eulecaniumiae | MK189129 | unpublished | |
Encyrtus eulecaniumiae | MK189130 | unpublished | |
Encyrtus eulecaniumiae | MK189131 | unpublished | |
Encyrtus rhodococcusiae | MK189132 | unpublished | |
Encyrtus rhodococcusiae | MK189133 | unpublished | |
Encyrtus rhodococcusiae | MK189134 | unpublished | |
Encyrtus rhodococcusiae | MK189135 | unpublished | |
Aenasius arizonensis | MK630013 | [34] | |
Diaphorencyrtus aligarhensis | MN274569 | [35] | |
Platencyrtus parkeri | MN296710 | unpublished | |
Metaphycus eriococci | MW255970 | unpublished | |
Eulophidae | Tamarixia radiata | MN123622 | [31] |
Necremnus tutae | MT916846 | [36] | |
Chouioia cunea | MW192646 | [37] | |
Eurytomidae | Eurytoma sp. | KX066374 | [38] |
Eurytoma sp. | MG923494 | [18] | |
Sycophila sp. | MT947603 | [30] | |
Mymaridae | Gonatocerus sp. | MF776883 | [39] |
Pteromalidae | Philotrypesis sp. | JF808722 | [40] |
Philotrypesis pilosa | JF808723 | [40] | |
Pteromalus puparum | MG923513 | [18] | |
Pteromalidae | Pteromalus puparum | MH051556 | [41] |
Pachyneuron aphidis | MK577639 | [42] | |
Apocrypta bakeri | MT906648 | [30] | |
Philotrypesis tridentata | MT947602 | [30] | |
Anisopteromalus calandrae | MW817149 | [43] | |
Torymidae | Podagrion sp. | MF795597 | [44] |
Torymus sp. | MG923516 | [18] | |
Trichogrammatidae | Megaphragma amalphitanum | KT373787 | [1] |
Trichogramma japonicum | KU577436 | [45] | |
Trichogramma ostriniae | KU577437 | [45] | |
Trichogramma dendrolimi | KU836507 | unpublished | |
Trichogramma chilonis | MT712144 | unpublished | |
Trichogramma chilonis | MW789210 | unpublished | |
Cynipoidea | Trichagalma acutissimae | MN928529 | [46] |
Platygastroidea | Telenomus remus | MT906647 | [47] |
Proctotrupoidea | Trichopria drosophilae | MN966974 | [48] |
Feature | Strand | Position (from) | Position (to) | Length | Intergenic Nucleotides | Anticodon | Initial Codon | Stop Codon |
---|---|---|---|---|---|---|---|---|
COX1 | J | 1/1 | 1542/1536 | 1542/1536 | −5/−5 | ATG/ATA | TAA | |
trnL2 | J | 1538/1532 | 1603/1597 | 66/66 | 0/0 | TAA | ||
COX2 | J | 1604/1598 | 2269/2260 | 666/663 | −8/−8 | ATT | TAA | |
trnK | N | 2262/2253 | 2331/2322 | 70/70 | −1/−1 | TTT | ||
trnD | J | 2331/2322 | 2383/2385 | 53/64 | 13/0 | GTC | ||
ATP8 | J | 2397/2386 | 2552/2541 | 156/155 | −7/−7 | ATT | TAA | |
ATP6 | J | 2546/2535 | 3218/3207 | 673/673 | 0/0 | ATG | T | |
COX3 | J | 3219/3208 | 3999/3988 | 781/781 | 6/6 | ATG | T | |
trnG | J | 4006/3995 | 4070/4059 | 65/65 | −3/−4 | TCC | ||
ND3 | J | 4068/4056 | 4418/4406 | 351/351 | 18/−2 | ATA | TAA | |
trnC | J | 4437/4405 | 4501/4467 | 65/63 | 0/0 | GCA | ||
trnS1 | J | 4502/4468 | 4560/4526 | 59/59 | −1/0 | TCT | ||
trnI | N | 4560/4527 | 4626/4592 | 67/66 | 16/38 | GAT | ||
ND2 | J | 4643/4631 | 5653/5617 | 1011/987 | −2/−1 | ATA/ATT | TAA | |
trnW | J | 5652/5617 | 5720/5680 | 69/64 | 1/1 | TCA | ||
trnY | J | 5722/5682 | 5787/5749 | 66/68 | 1/1 | GTA | ||
trnN | N | 5789/5751 | 5854/5815 | 66/65 | −1/−1 | GTT | ||
trnQ | N | 5854/5815 | 5921/5881 | 68/67 | 0/2 | TTG | ||
trnS2 | N | 5922/5884 | 5986/5949 | 65/66 | 2/2 | TGA | ||
trnV | J | 5989/5952 | 6054/6016 | 66/65 | 10/0 | TAC | ||
trnA | J | 6065/6017 | 6128/6084 | 64/68 | 222/433 | TGC | ||
trnM | N | 6351/6518 | 6416/6583 | 66/66 | 0/0 | CAT | ||
CR | J | 6417/6584 | 6652/6872 | 236/289 | 0/0 | |||
s-rRNA | J | 6653/6873 | 7383/7600 | 731/728 | −3/−4 | |||
trnR | J | 7381/7597 | 7446/7658 | 66/62 | 0/12 | TCG | ||
l-rRNA | J | 7447/7671 | 8740/8935 | 1264/1265 | 0/2 | |||
trnL1 | J | 8741/8938 | 8808/9005 | 68/68 | 27/27 | TAG | ||
ND1 | J | 8836/9033 | 9762/9959 | 927/927 | 44/42 | TTG/ATT | TAA | |
CYTB | N | 9807/10,002 | 10,959/11,156 | 1153/1155 | −20/−20 | ATG | T/TAA | |
ND6 | N | 10,940/11,137 | 11,521/11,688 | 582/552 | 1/31 | ATT/ATG | TAA | |
trnP | J | 11,523/11,720 | 11,590/11,784 | 68/65 | 6/3 | TGG | ||
trnT | N | 11,597/11,788 | 11,656/11,850 | 60/63 | 4/1 | TGT | ||
ND4L | J | 11,661/11,853 | 11,945/12,137 | 285/285 | −7/−7 | ATT | TAA | |
ND4 | J | 11,939/12,131 | 13,272/13,464 | 1334/1334 | −1/−1 | ATG | TA | |
trnH | J | 13,272/13,464 | 13,333/13,528 | 62/65 | 13/12 | GTG | ||
ND5 | J | 13,347/13,541 | 15,014/15,205 | 1668/1665 | 0/−1 | ATT | TAA | |
trnF | J | 15,015/15,205 | 15,078/15,269 | 64/65 | −2/0 | GAA | ||
trnE | N | 15,077/15,270 | 15,141/15,334 | 65/65 | TTC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Chen, Y.; Wang, Z.; Chen, H.; Qin, Y. Two Complete Mitogenomes of Chalcididae (Hymenoptera: Chalcidoidea): Genome Description and Phylogenetic Implications. Insects 2021, 12, 1049. https://doi.org/10.3390/insects12121049
Zhao H, Chen Y, Wang Z, Chen H, Qin Y. Two Complete Mitogenomes of Chalcididae (Hymenoptera: Chalcidoidea): Genome Description and Phylogenetic Implications. Insects. 2021; 12(12):1049. https://doi.org/10.3390/insects12121049
Chicago/Turabian StyleZhao, Huifeng, Ye Chen, Zitong Wang, Haifeng Chen, and Yaoguang Qin. 2021. "Two Complete Mitogenomes of Chalcididae (Hymenoptera: Chalcidoidea): Genome Description and Phylogenetic Implications" Insects 12, no. 12: 1049. https://doi.org/10.3390/insects12121049
APA StyleZhao, H., Chen, Y., Wang, Z., Chen, H., & Qin, Y. (2021). Two Complete Mitogenomes of Chalcididae (Hymenoptera: Chalcidoidea): Genome Description and Phylogenetic Implications. Insects, 12(12), 1049. https://doi.org/10.3390/insects12121049