Landmark Data to Distinguish and Identify Morphologically Close Tabanus spp. (Diptera: Tabanidae)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Fly Collection and Species Determination
2.3. Geometric Morphometric Analysis
2.3.1. Wing Preparation
2.3.2. Inter-User Repeatability
2.3.3. Landmark-Based Analysis
2.3.4. Classification Based on Size and Shape
2.3.5. Allometric Effect Analysis
2.3.6. Identification of Unknown Specimens in the Field
2.3.7. Morphometric Software
3. Results
3.1. Inter-User Repeatability
3.2. Wing Size Variation
3.3. Wing Shape Variation
3.4. Allometric Effect
3.5. Identification of Unknown Specimens in the Field
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morita, S.I.; Bayless, K.M.; Yeates, D.K.; Wiegmann, B.M. Molecular phylogeny of the horse flies: A framework for renewing tabanid taxonomy. Syst. Entomol. 2016, 41, 56–72. [Google Scholar] [CrossRef]
- Stern, A.W. African horse sickness. Compend. Contin. Educ. Vet. 2011, 33, E1–E5. [Google Scholar] [PubMed]
- Baldacchino, F.; Desquesnes, M.; Mihok, S.; Foil, L.D.; Duvallet, G.; Jittapalapong, S. Tabanids: Neglected subjects of research, but important vectors of disease agents. Infect. Genet. Evol. 2014, 28, 596–615. [Google Scholar] [CrossRef] [PubMed]
- Mullen, B.A. Horse Flies and Deer Flies (Tabanidae). In Medical and Veterinary Entomology, 3rd ed.; Mullen, G.R., Durden, L.A., Eds.; Academic Press: London, UK, 2019; pp. 327–343. [Google Scholar]
- Burton, J.J.S. Tabanini of Thailand above the Isthmus of Kra (Diptera: Tabanidae); Entomological Reprint Specialists: Los Angeles, CA, USA, 1978. [Google Scholar]
- Tumrasvin, W. Tabanus species and their distribution in Thailand (Diptera: Tabanidae). Southeast Asian J. Trop. Med. Public Health 1989, 20, 319–323. [Google Scholar] [PubMed]
- Changbunjong, T.; Sedwisi, P.; Weluwanarak, T.; Nitiyamatawat, E.; Sariwongchan, R.; Chareonviriyaphap, T. Species diversity and abundance of Tabanus spp. (Diptera: Tabanidae) in different habitats of Thailand. J. Asia. Pac. Entomol. 2018, 21, 134–139. [Google Scholar] [CrossRef]
- Boonchit, S.; Sarataphan, N.; Tantasuvan, D. Seasonal abundance of Tabanid fly population (Diptera: Tabanidae) at a key farm, in Pathumthani province, Thailand. In Proceedings of the 34th Kasetsart University Annual Conference, Kasetsart University, Bangkok, Thailand, 30 January–3 February 1996; pp. 441–445. [Google Scholar]
- Klinsri, T.; Leksawasdi, P. Horse fly’s survey, Tabanus in Chiang Mai Province. In Proceedings of the 37th Kasetsart University annual conference, Kasetsart University, Bangkok, Thailand, 3–5 February 1999; pp. 39–46. [Google Scholar]
- Cywinska, A.; Hannan, M.A.; Kevan, P.G.; Roughley, R.E.; Iranpour, M.; Hunter, F.F. Evaluation of DNA barcoding and identification of new haplomorphs in Canadian deerflies and horseflies. Med. Vet. Entomol. 2010, 24, 382–410. [Google Scholar] [CrossRef]
- Banerjee, D.; Kumar, V.; Maity, A.; Ghosh, B.; Tyagi, K.; Singha, D.; Kundu, S.; Laskar, B.A.; Naskar, A.; Rath, S. Identification through DNA barcoding of Tabanidae (Diptera) vectors of surra disease in India. Acta Trop. 2015, 150, 52–58. [Google Scholar] [CrossRef]
- Changbunjong, T.; Bhusri, B.; Sedwisai, P.; Weluwanarak, T.; Nitiyamatawat, E.; Chareonviriyaphap, T.; Ruangsittichai, J. Species identification of horse flies (Diptera: Tabanidae) in Thailand using DNA barcoding. Vet. Parasitol. 2018, 259, 35–43. [Google Scholar] [CrossRef]
- Mugasa, C.M.; Villinger, J.; Gitau, J.; Ndungu, N.; Ciosi, M.; Masiga, D. Morphological re-description and molecular identification of Tabanidae (Diptera) in East Africa. ZooKeys 2018, 769, 117–144. [Google Scholar] [CrossRef]
- Votýpka, J.; Brzoňová, J.; Ježek, J.; Modrý, D. Horse flies (Diptera: Tabanidae) of three west African countries: A faunistic update, barcoding analysis and trypanosome occurrence. Acta Trop. 2019, 197, 105069. [Google Scholar] [CrossRef]
- Dujardin, J.P. Morphometrics applied to medical entomology. Infect. Genet. Evol. 2008, 8, 875–890. [Google Scholar] [CrossRef]
- Ruangsittichai, J.; Apiwathnasorn, C.; Dujardin, J.P. Interspecific and sexual shape variation in the filariasis vectors Mansonia dives and Ma. bonneae. Infect. Genet. Evol. 2011, 11, 2089–2094. [Google Scholar] [CrossRef] [PubMed]
- Gómez, G.F.; Márquez, E.J.; Gutiérrez, L.A.; Conn, J.E.; Correa, M.M. Geometric morphometric analysis of Colombian Anopheles albimanus (Diptera: Culicidae) reveals significant effect of environmental factors on wing traits and presence of a metapopulation. Acta Trop. 2014, 135, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Changbunjong, T.; Sumruayphol, S.; Weluwanarak, T.; Ruangsittichai, J.; Dujardin, J.P. Landmark and outline-based geometric morphometrics analysis of three Stomoxys flies (Diptera: Muscidae). Folia Parasitol. 2016, 63, 37. [Google Scholar] [CrossRef] [Green Version]
- Lorenz, C.; Almeida, F.; Almeida-Lopes, F.; Louise, C.; Pereira, S.N.; Petersen, V.; Vidal, P.O.; Virginio, F.; Suesdek, L. Geometric morphometrics in mosquitoes: What has been measured? Infect. Genet. Evol. 2017, 54, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Sontigun, N.; Sukontason, K.L.; Zajac, B.K.; Zehner, R.; Sukontason, K.; Wannasan, A.; Amendt, J. Wing morphometrics as a tool in species identification of forensically important blow flies of Thailand. Parasit. Vectors 2017, 10, 229. [Google Scholar] [CrossRef] [Green Version]
- Chaiphongpachara, T.; Sriwichai, P.; Samung, Y.; Ruangsittichai, J.; Vargas, R.E.M.; Cui, L.; Sattabongkot, J.; Dujardin, J.P.; Sumruayphol, S. Geometric morphometrics approach towards discrimination of three member species of Maculatus group in Thailand. Acta Trop. 2019, 192, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Changbunjong, T.; Ruangsittichai, J.; Duvallet, G.; Pont, A.C. Molecular Identification and Geometric Morphometric Analysis of Haematobosca aberrans (Diptera: Muscidae). Insects 2020, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Dujardin, J.P.; Kaba, D.; Solano, P.; Dupraz, M.; McCoy, K.D.; Jaramillo-O, N. Outline-based morphometrics, an overlooked method in arthropod studies? Infect. Genet. Evol. 2014, 28, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Dujardin, S.; Dujardin, J.P. Geometric morphometrics in the cloud. Infect. Genet. Evol. 2019, 70, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Sontigun, N.; Samerjai, C.; Sukontason, K.; Wannasan, A.; Amendt, J.; Tomberlin, J.K.; Sukontason, K.L. Wing morphometric analysis of forensically important flesh flies (Diptera: Sarcophagidae) in Thailand. Acta Trop. 2019, 190, 312–319. [Google Scholar] [CrossRef]
- Lorenz, C.; Marques, T.C.; Sallum, M.A.; Suesdek, L. Morphometrical diagnosis of the malaria vectors Anopheles cruzii, An. homunculus and An. bellator. Parasit. Vectors 2012, 5, 257. [Google Scholar] [CrossRef] [Green Version]
- Sumruayphol, S.; Apiwathnasorn, C.; Ruangsittichai, J.; Sriwichai, P.; Attrapadung, S.; Samung, Y.; Dujardin, J.P. DNA barcoding and wing morphometrics to distinguish three Aedes vectors in Thailand. Acta Trop. 2016, 159, 1–10. [Google Scholar] [CrossRef]
- Gómez, G.F.; Correa, M.M. Discrimination of Neotropical Anopheles species based on molecular and wing geometric morphometric traits. Infect. Genet. Evol. 2017, 54, 379–386. [Google Scholar] [CrossRef]
- Martinet, J.-P.; Ferté, H.; Sientzoff, P.; Krupa, E.; Mathieu, B.; Depaquit, J. Wing Morphometrics of Aedes Mosquitoes from North-Eastern France. Insects 2021, 12, 341. [Google Scholar] [CrossRef] [PubMed]
- Dujardin, J.P.; Le Pont, F.; Baylac, M. Geographical versus interspecific differentiation of sand flies (Diptera: Psychodidae): A landmark data analysis. Bull. Entomol. Res. 2003, 93, 87–90. [Google Scholar] [CrossRef]
- Giordani, B.F.; Andrade, A.J.; Galati, E.A.B.; Gurgel-Gonçalves, R. The role of wing geometric morphometrics in the identification of sandflies within the subgenus Lutzomyia. Med. Vet. Entomol. 2017, 31, 373–380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godoy, R.E.; Shimabukuro, P.H.F.; Dos Santos, T.V.; Pessoa, F.A.C.; Da Cunha, A.E.F.L.; Santos, F.K.M.; Vilela, M.L.; Rangel, E.F.; Galati, E.A.B. Geometric morphometry of the head in sand flies (Diptera: Psychodidae: Phlebotominae), an alternative approach to taxonomy studies. Zootaxa 2018, 26, 566–576. [Google Scholar] [CrossRef]
- Kaba, D.; Berté, D.; Ta, B.T.; Tellería, J.; Solano, P.; Dujardin, J.P. The wing venation patterns to identify single tsetse flies. Infect. Genet. Evol. 2017, 47, 132–139. [Google Scholar] [CrossRef]
- Mihok, S. The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. Bull. Entomol. Res. 2002, 92, 385–403. [Google Scholar] [CrossRef]
- Arnqvist, G.; Martensson, T. Measurement error in geometric morphometrics: Empirical strategies to assess and reduce its impact on measures of shape. Acta Zool. Academ. Sci. Hung 1998, 44, 73–96. [Google Scholar]
- Klingenberg, C.P.; McIntyre, G.S. Geometric morphometrics of developmental instability: Analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 1998, 52, 1363–1375. [Google Scholar] [CrossRef] [PubMed]
- Bookstein, F.L. Morphometric Tools for Landmark Data. Geometry and Biology; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Rohlf, F.J. Rotational fit (Procrustes) methods. In Proceedings of the Michigan Morphometrics Workshop; University of Michigan Museum of Zoology: Ann Arbor, MI, USA, 1990; pp. 227–236. [Google Scholar]
- Dujardin, J.P.; Dujardin, S.; Kaba, D.; Santillán-Guayasamín, S.; Villacís, A.G.; Piyaselakul, S.; Sumruayphol, S.; Samung, Y.; Morales-Vargas, R. The maximum likelihood identifcation method applied to insect morphometric data. Zool. Syst. 2017, 42, 46–58. [Google Scholar]
- Manly, B.F.J. Multivariate Statistical Methods: A Primer; Chapman Hall/CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Dujardin, J.P.; Kaba, D.; Henry, A.B. The exchangeability of shape. BMC Res. Notes 2010, 22, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitthawee, S.; Dujardin, J.P. The Diachasmimorpha longicaudata complex in Thailand discriminated by its wing venation. Zoomorphology 2016, 135, 323–332. [Google Scholar] [CrossRef]
- Couette, S.; Escarguel, G.; Montuire, S. Constructing, bootstrapping, and comparing morphometric and phylogenetic trees: A case study on new world monkeys (Platyrrhini, Primates). J. Mammal. 2005, 85, 773–781. [Google Scholar] [CrossRef]
- Morales Vargas, R.E.; Phumala-Morales, N.; Tsunoda, T.; Apiwathnasorn, C.; Dujardin, J.P. The phenetic structure of Aedes albopictus. Infect. Genet. Evol. 2013, 13, 242–251. [Google Scholar] [CrossRef]
- Jirakanjanakit, N.; Leemingsawat, S.; Thongrungkiat, S.; Apiwathnasorn, C.; Singhaniyom, S.; Bellec, C.; Dujardin, J.P. Influence of larval density or food variation on the geometry of the wing of Aedes (Stegomyia) aegypti. Trop. Med. Int. Health 2007, 12, 1354–1360. [Google Scholar] [CrossRef]
- Morales Vargas, R.E.; Ya-umphan, P.; Phumala-Morales, N.; Komalamisra, N.; Dujardin, J.P. Climate associated size and shape changes in Aedes aegypti (Diptera: Culicidae) populations from Thailand. Infect. Genet. Evol. 2010, 10, 580–585. [Google Scholar] [CrossRef]
- Phanitchat, T.; Apiwathnasorn, C.; Sungvornyothin, S.; Samung, Y.; Dujardin, S.; Dujardin, J.P.; Sumruayphol, S. Geometric morphometric analysis of the effect of temperature on wing size and shape in Aedes albopictus. Med. Vet. Entomol. 2019, 33, 476–484. [Google Scholar] [CrossRef]
- Horenstein, M.B.; Peretti, A.V. Environmental conditions influence allometric patterns in the blow fly, Chrysomya albiceps. J. Insect Sci. 2011, 11, 131. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.P.; Ma, C.S.; Wen, H.; Zhan, Q.B.; Wang, X.L. A tool for developing an automatic insect identification system based on wing outlines. Sci. Rep. 2015, 5, 12786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, C.; Terhune, C.E. Error in geometric morphometric data collection: Combining data from multiple sources. Am. J. Phys. Anthropol. 2017, 164, 62–75. [Google Scholar] [CrossRef] [PubMed]
Species | Regions | District/Provinces | Hosts | N |
---|---|---|---|---|
T. megalops | Northern | Mueang, Phitsanulok (1) | Horse and buffalo | 50 |
Central | Mueang, Nakhon Pathom (2) | Beef cattle and buffalo | 20 | |
Sankhaburi, Chainat (3) | Beef cattle | 10 * | ||
Western | Sam Roi Yot, Prachuap Khiri Khan (4) | Beef cattle | 40 | |
Southern | Mueang, Chumphon (5) | Beef cattle | 50 | |
T. rubidus | Northern | Mueang, Chiang Mai (6) | Beef cattle | 20 |
Mueang, Uthai Thani (7) | Buffalo | 10 * | ||
Central | Mueang, Singburi (8) | Beef cattle | 45 | |
Northeastern | Soeng Sang, Nakhon Ratchasima (9) | Buffalo | 50 | |
Southern | Mueang, Chumphon (5) | Beef cattle | 50 | |
T. striatus | Northeastern | Soeng Sang, Nakhon Ratchasima (9) | Buffalo | 55 |
Wang Nam Khiao, Nakhon Ratchasima (10) | Buffalo | 10 * | ||
Eastern | Watthana Nakhon, Sa Kaeo (11) | Buffalo | 30 | |
Total | 440 |
Species | T. megalops | T. rubidus | T. striatus |
---|---|---|---|
T. megalops | - | ||
T. rubidus | 7.29 | - | |
T. striatus | 4.12 | 6.19 | - |
Species | Accuracy (Assigned/Observed) |
---|---|
T. megalops | 94.38% (151/160) |
T. rubidus | 99.39% (164/165) |
T. striatus | 95.29% (81/85) |
Total performance | 96.59% (396/410) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Changbunjong, T.; Prakaikowit, N.; Maneephan, P.; Kaewwiset, T.; Weluwanarak, T.; Chaiphongpachara, T.; Dujardin, J.-P. Landmark Data to Distinguish and Identify Morphologically Close Tabanus spp. (Diptera: Tabanidae). Insects 2021, 12, 974. https://doi.org/10.3390/insects12110974
Changbunjong T, Prakaikowit N, Maneephan P, Kaewwiset T, Weluwanarak T, Chaiphongpachara T, Dujardin J-P. Landmark Data to Distinguish and Identify Morphologically Close Tabanus spp. (Diptera: Tabanidae). Insects. 2021; 12(11):974. https://doi.org/10.3390/insects12110974
Chicago/Turabian StyleChangbunjong, Tanasak, Nutnicha Prakaikowit, Photchanun Maneephan, Tipparat Kaewwiset, Thekhawet Weluwanarak, Tanawat Chaiphongpachara, and Jean-Pierre Dujardin. 2021. "Landmark Data to Distinguish and Identify Morphologically Close Tabanus spp. (Diptera: Tabanidae)" Insects 12, no. 11: 974. https://doi.org/10.3390/insects12110974
APA StyleChangbunjong, T., Prakaikowit, N., Maneephan, P., Kaewwiset, T., Weluwanarak, T., Chaiphongpachara, T., & Dujardin, J.-P. (2021). Landmark Data to Distinguish and Identify Morphologically Close Tabanus spp. (Diptera: Tabanidae). Insects, 12(11), 974. https://doi.org/10.3390/insects12110974