Hexokinase Is Required for Sex Pheromone Biosynthesis in Helicoverpa armigera
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Cell Culture
2.3. Chemicals
2.4. qRT-PCR
2.5. dsRNA Synthesis
2.6. Measurement of Z11-16:Ald Content
2.7. Mating Behavior
2.8. Female Ability to Attract Male
2.9. Measurement of Acetyl-CoA Content
2.10. Sugar Feeding
2.11. Subcellular Localization
2.12. Co-Immunoprecipitation (Co-IP)
2.13. Western Blot
2.14. HaHK Enzymatic Activity Measurement
3. Results
3.1. Expression Profile of HaHK in the PGs
3.2. Knockdown of HaHK Decreased Acetyl-CoA Content, Sex Pheromone Production, and Mating Behaviors
3.3. Sugar Feeding Increased the Transcription and Enzymatic Activity of HaHK
3.4. PBAN Activated Enzymatic Activity of HaHK via PKA
3.5. PBAN Induced the Phosphorylation and Activation of HaHK via PKA
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rafaeli, A.; Jurenka, R.A. PBAN regulation of pheromone biosynthesis in female moths. In Insect Pheromone Biochemistry and Molecular Biology; Academic Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Zhao, W.H.; Li, L.; Zhang, Y.; Liu, X.; Wei, J.Z.; Xie, Y.; Du, M.F.; An, S.H. Calcineurin is required for male sex pheromone biosynthesis and female acceptance. Insect Mol. Biol. 2008, 27, 373–382. [Google Scholar] [CrossRef]
- Ando, T.; Inomata, S.; Yamamoto, M. Lepidopteran sex pheromones. Top. Curr. Chem. 2004, 239, 51–96. [Google Scholar]
- Tillman, J.A.; Seybold, S.J.; Jurenka, R.A.; Blomquist, G.J. Insect pheromones—An overview of biosynthesis and endocrine regulation. Insect Biochem. Mol. Biol. 1999, 29, 481–514. [Google Scholar] [CrossRef]
- Raina, A.K.; Jaffe, H.; Kempe, T.G.; Keim, P.; Blacher, R.W.; Fales, H.M.; Riley, C.T.; Klun, J.A.; Ridgway, R.L.; Hayes, D.K. Identification of a neuropeptide hormone that regulates sex pheromone production in female moths. Science 1989, 244, 796–798. [Google Scholar] [CrossRef]
- Jurenka, R. Regulation of pheromone biosynthesis in moths. Curr. Opin. Insect Sci. 2017, 24, 29–35. [Google Scholar] [CrossRef]
- Du, M.F.; Liu, X.G.; Ma, N.N.; Liu, X.M.; Wei, J.Z.; Yin, X.M.; Zhou, S.T.; Rafaeli, A.; Song, Q.S.; An, S.H. Calcineurin-mediated dephosphorylation of acetyl-coa carboxylase is required for pheromone biosynthesis activating neuropeptide (PBAN)-induced sex pheromone biosynthesis in Helicoverpa armigera. Mol. Cell Proteom. 2017, 16, 2138–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herzig, S.; Raemy, E.; Montessuit, S.; Veuthey, J.L.; Zamboni, N.; Westermann, B.; Kunji, E.R.; Martinou, J.C. Identification and functional expression of the mitochondrial pyruvate carrier. Science 2012, 337, 93–96. [Google Scholar] [CrossRef] [PubMed]
- Morse, D.; Meighen, E. Pheromone biosynthesis: Enzymatic studies in lepidoptera. In Pheromone Biochemistry; Academic Press: Cambridge, MA, USA, 1987; pp. 121–158. [Google Scholar]
- Becker, A.; Schlöder, P.; Steele, J.E.; Wegener, G. The regulation of trehalose metabolism in insects. Experientia 1996, 52, 433–439. [Google Scholar] [CrossRef]
- Silva, M.C.; Ribeiro, A.F.; Terra, W.R.; Ferreira, C. Sequencing of Spodoptera frugiperda midgut trehalases and demonstration of secretion of soluble trehalase by midgut columnar cells. Insect Mol. Biol. 2009, 18, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Wegener, G.; Tschiedel, V.; Schlöder, P.; Ando, O. The toxic and lethal effects of the trehalase inhibitor trehazolin in locusts are caused by hypoglycaemia. J. Exp. Biol. 2003, 206, 1233–1240. [Google Scholar] [CrossRef] [Green Version]
- Piomboni, P.; Focarelli, R.; Stendardi, A.; Ferramosca, A.; Zara, V. The role of mitochondria in energy production for human sperm motility. Int. J. Androl. 2012, 35, 109–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foster, S. Sugar feeding via trehalose haemolymph concentration affects sex pheromone production in mated Heliothis virescens moths. J. Exp. Biol. 2009, 212, 2789–2794. [Google Scholar] [CrossRef] [Green Version]
- Foster, S.P.; Anderson, K.G. Sex pheromones in mate assessment: Analysis of nutrient cost of sex pheromone production by females of the moth Heliothis virescens. J. Exp. Biol. 2015, 218, 1252–1258. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Zhang, Y.C.; Yao, S.Y.; Wang, G.P.; Wei, J.Z.; Du, M.F.; An, S.H.; Yin, X. Supplemental sugar is required for sex pheromone biosynthesis in Mythimna separata. Front. Physiol. 2020, 11, 605145. [Google Scholar] [CrossRef] [PubMed]
- Yao, S.Y.; Zhang, Y.H.; Chang, Y.P.; Xiang, L.; Zhao, W.L.; An, S.H. Pyruvate kinase is required for sex pheromone biosynthesis in Helicoverpa armigera. Front. Physiol. 2021, 12, 707389. [Google Scholar] [CrossRef] [PubMed]
- Tan, V.P.; Miyamoto, S. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy 2015, 11, 963–964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okar, D.A.; Manzano, A.; Navarro-Sabatè, A.; Riera, L.; Bartrons, R.; Lange, A.J. PFK-2/FBPase-2: Maker and breaker of the essential biofactor fructose-2,6-bisphosphate. Trends Biochem Sci. 2001, 26, 30–35. [Google Scholar] [CrossRef]
- Harris, I.; Mccracken, S.; Mak, T.W. PKM2: A gatekeeper between growth and survival. Cell Res. 2012, 22, 447–449. [Google Scholar] [CrossRef] [Green Version]
- Shaw, R. Glucose metabolism and cancer. Biochemistry 2006, 18, 598–608. [Google Scholar] [CrossRef]
- Roberts, D.J.; Miyamoto, S. Hexokinase II integrates energy metabolism and cellular protection: Akting on mitochondria and TORCing to autophagy. Cell Death Differ. 2015, 22, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Wilson, J.E. Isozymes of mammalian hexokinase: Structure, subcellular localization and metabolic function. J. Exp. Biol. 2003, 206, 2049–2057. [Google Scholar] [CrossRef] [Green Version]
- Fraga, A.; Ribeiro, L.; Lobato, M.; Santos, V.; Silva, J.R.; Gomes, H.; da Cunha Moraes, J.L.; de Souza Menezes, J.; de Oliveira, C.J.; Campos, E.; et al. Glycogen and glucose metabolism are essential for early embryonic development of the red flour beetle Tribolium castaneum. PLoS ONE 2013, 8, e65125. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.Q.; Gu, H.T.; Li, X.; Zheng, S.; Zhou, Z.; Miao, H.; Wu, J.C. Silencing of triazophos-induced Hexokinase-1-like reduces fecundity in Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Pestic. Biochem. Physiol. 2019, 153, 176–184. [Google Scholar] [CrossRef]
- Lin, X.W.; Xu, W.H. Hexokinase is a key regulator of energy metabolism and ROS activity in insect lifespan extension. Aging 2016, 8, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.C.; Ma, B.W.; Berg, B.G.; Xie, G.Y.; Tang, Q.B.; Guo, X.R. A global-wide search for sexual dimorphism of glomeruli in the antennal lobe of female and male Helicoverpa armigera. Sci. Rep. 2016, 6, 35204. [Google Scholar] [CrossRef] [PubMed]
- Du, M.F.; Zhao, W.H.; Jurenka, R.; Liu, X.G.; Yin, X.M.; Song, Q.S.; An, S.H. Transcriptome analysis of Helicoverpa armigera male hairpencils: Alcohol biosynthesis and requirement for mating success. Insect Biochem. Mol. Biol. 2017, 87, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.M.; Tan, W.; Guo, Y. Improvement of artificial breeding techniques for cotton bollworm, Helicoverpa armigera. J. Plant Protect. 1999, 25, 15–17. [Google Scholar]
- Southern, P.J.; Berg, P. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1982, 1, 327–341. [Google Scholar] [PubMed]
- Hong, X.H.; Huang, H.; Qiu, X.F.; Ding, Z.J.; Feng, X.; Zhu, Y.K.; Zhuo, H.Q.; Hou, J.J.; Zhao, J.B.; Cai, W.Y.; et al. Targeting posttranslational modifications of RIOK1 inhibits the progression of colorectal and gastric cancers. Elife 2018, 7, e29511. [Google Scholar] [CrossRef]
- Shakeel, M.; Du, J.; Li, S.W.; Zhou, Y.J.; Sarwar, N.; Bukhari, S.A.H. Characterization, knockdown and parental effect of hexokinase gene of Cnaphalocrocis medinalis (Lepidoptera: Pyralidae) revealed by RNA interference. Genes 2020, 11, 1258. [Google Scholar] [CrossRef]
- Moon, J.S.; Jin, W.J.; Kwak, J.H.; Kim, H.J.; Yun, M.J.; Kim, J.W.; Park, S.W.; Kim, K.S. Androgen stimulates glycolysis for de novo lipid synthesis by increasing the activities of hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 2 in prostate cancer cells. Biochem. J. 2011, 433, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Culbert, A.A.; Tavare, J.M. Multiple signalling pathways mediate insulin-stimulated gene expression in 3T3-L1 adipocytes. Biochim. Biophys. Acta. 2002, 1578, 43–50. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, S.L.; Jiang, B.; Huang, L.H.; Ji, Z.L.; Li, X.T.; Zhou, H.M.; Han, A.D.; Chen, A.; Wu, Y.N.; et al. c-Src phosphorylation and activation of hexokinase promotes tumorigenesis and metastasis. Nat. Commun. 2017, 8, 13732. [Google Scholar] [CrossRef]
- Yang, T.T.; Ren, C.E.; Qiao, P.Y.; Han, X.; Wang, L.; Lv, S.J.; Sun, Y.H.; Liu, Z.J.; Du, Y.; Yu, Z.H. PIM2-mediated phosphorylation of hexokinase 2 is critical for tumor growth and paclitaxel resistance in breast cancer. Oncogene 2018, 37, 5997–6009. [Google Scholar] [CrossRef]
- Childers, C.L.; Storey, K.B. Post-translational regulation of hexokinase function and protein stability in the aestivating frog Xenopus laevis. Protein J. 2016, 35, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, P.; Peláez, R.; Herrero, P.; Moreno, F. Phosphorylation of yeast hexokinase 2 regulates its nucleocytoplasmic shuttling. J. Biol. Chem. 2012, 287, 42151–42164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonagy, A.; Yokoyama, N.; Ozawa, R.; Okano, K.; Tatsuki, S.; Maeda, S.; Matsumoto, S. Involvement of calcineurin in the signal transduction of PBAN in the silkworm, Bombyx mori (Lepidoptera). Comp. Biochem. Physiol. B Biochem. Mol. Biol. 1999, 124, 51–60. [Google Scholar] [CrossRef]
- Matsumoto, S.; Ozawa, R.; Uchiumi, K.; Kurihar, M.; Mitsui, T. Intracellular signal transduction of PBAN action in the common cutworm, Spodoptera litura: Effects of pharmacological agents on sex pheromone production in vitro. Insect Biochem. Mol. Biol. 1995, 25, 1055–1059. [Google Scholar] [CrossRef]
- Ma, P.W.; Roelofs, W.L. Sex pheromone gland of the female European corn borer moth, Ostrinia nubilalis (Lepidoptera, Pyralidae): Ultrastructural and biochemical evidences. Zool. Sci. 2002, 19, 501–511. [Google Scholar] [CrossRef] [Green Version]
- Hull, J.J.; Kajigaya, R.; Imai, K.; Matsumoto, S. The Bombyx mori sex pheromone biosynthetic pathway is not mediated by cAMP. J. Insect. Physiol. 2007, 53, 782–793. [Google Scholar] [CrossRef]
- Jurenka, R.A.; Jacquin, E.; Roelofs, W.L. Stimulation of pheromone biosynthesis in the moth Helicoverpa zea: Action of a brain hormone on pheromone glands involves Ca2+ and cAMP as second messengers. Proc. Natl. Acad. Sci. USA 1991, 88, 8621–8625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurenka, R.A.; Fabriás, G.; Devoe, L.; Roelofs, W.L. Action of PBAN and related peptides on pheromone biosynthesis in isolated pheromone glands of the redbanded leafroller moth, Argyrotaenia velutinana. Comp. Biochem. Physiol. Pharmacol. Toxicol. Endocrinol. 1994, 108, 153–160. [Google Scholar] [CrossRef]
- Jurenka, R.A. Signal transduction in the stimulation of sex pheromone biosynthesis in moths. Arch. Insect Biochem. Physio. 1996, 33, 245–258. [Google Scholar] [CrossRef]
- Rafaeli, A. Pheromonotropic stimulation of moth pheromone gland cultures in vitro. Arch. Insect Biochem. Physiol. 2010, 25, 287–299. [Google Scholar] [CrossRef]
- Hosoi, R.; Matsumura, A.; Mizokawa, S.; Tanaka, M.; Nakamura, F.; Kobayashi, K.; Watanabe, Y.; Inoue, C. MicroPET detection of enhanced 18F-FDG utilization by PKA inhibitor in awake rat brain. Brain Res. 2005, 1039, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Roux, A.E.; Leroux, A.; Alaamery, M.A.; Hoffman, C.S.; Chartrand, P.; Ferbeyre, G.; Rokeach, L.A. Pro-aging effects of glucose signaling through a G protein-coupled glucose receptor in fission yeast. PLoS Genet. 2009, 5, e1000408. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Zhang, Y.; Geng, Z.; Yao, S.; Zhao, W.; Yin, X.; An, S. Hexokinase Is Required for Sex Pheromone Biosynthesis in Helicoverpa armigera. Insects 2021, 12, 889. https://doi.org/10.3390/insects12100889
Chang Y, Zhang Y, Geng Z, Yao S, Zhao W, Yin X, An S. Hexokinase Is Required for Sex Pheromone Biosynthesis in Helicoverpa armigera. Insects. 2021; 12(10):889. https://doi.org/10.3390/insects12100889
Chicago/Turabian StyleChang, Yanpeng, Yunhui Zhang, Zichen Geng, Shuangyan Yao, Wenli Zhao, Xinming Yin, and Shiheng An. 2021. "Hexokinase Is Required for Sex Pheromone Biosynthesis in Helicoverpa armigera" Insects 12, no. 10: 889. https://doi.org/10.3390/insects12100889
APA StyleChang, Y., Zhang, Y., Geng, Z., Yao, S., Zhao, W., Yin, X., & An, S. (2021). Hexokinase Is Required for Sex Pheromone Biosynthesis in Helicoverpa armigera. Insects, 12(10), 889. https://doi.org/10.3390/insects12100889