Phenotypic Plasticity of Common Wasps in an Industrially Polluted Environment in Southwestern Finland
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Morphological Measurements
2.3. Analyses of Color Variation
2.4. Metal Analyses
2.5. Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray Analyses (EDX)
2.6. Statistical Methods
3. Results
3.1. Metal Concentrations in Wasps
3.2. Body Size & Weight
3.3. Color
3.4. Transmission Electron Microscopy (TEM) and Energy-Dispersive X-ray Analyses (EDX) Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butler, C.D.; Beckage, N.E.; Trumble, J.T. Effects of terrestrial pollutants on insect parasitoids. Environ. Toxicol. Chem. 2009, 28, 1111–1119. [Google Scholar] [CrossRef] [PubMed]
- Hillman, R.C.; Benton, A.W. Biological effects of air pollution on insects, emphasizing the reactions of the honeybee (Apis mellifera L.) to sulfur dioxide. J. Elisha Mitchel Sci. Soc. 1972, 88, 195. [Google Scholar]
- Selikhovin, A.V. Factors regulating population density of Lepidoptera in industrially polluted area. In Ecology and Protection of Forests: Interaction of Forest Ecosystem Components; Soloviev, V.A., Ed.; State Forest Technical Academy: Leningrad, Russia, 1985; pp. 123–127. [Google Scholar]
- Du, S.; Liu, Y.; Liu, J.; Zhao, J.; Champagne, C.; Tong, L.; Zhang, R.; Zhang, F.; Qin, C.-F.; Ma, P.; et al. Aedes mosquitoes acquire and transmit Zika virus by breeding in contaminated aquatic environments. Nat. Commun. 2019, 10, 1324. [Google Scholar] [CrossRef]
- Brodmann, J.; Twele, R.; Francke, W.; Hölzler, G.; Zhang, Q.; Ayasse, M. Orchids mimic green-leaf volatiles to attract prey-hunting wasps for pollination. Curr. Biol. 2008, 18, 740–744. [Google Scholar]
- Jules, E.S. Yellow jackets (Vespula vulgaris) as a second seed disperser for the myrmecochorous plant, Trillium ovatum. Am. Midl. Nat. 1996, 135, 367–369. [Google Scholar]
- Richter, M.R. Social wasp (Hymenoptera: Vespidea) foraging behaviour. Annu. Rev. Entomol. 2000, 45, 121–150. [Google Scholar] [PubMed]
- Feldhaar, H.; Otti, O. Pollutants and their interaction with diseases of social hymenoptera. Insects 2020, 11, 153. [Google Scholar] [CrossRef] [PubMed]
- Cancrini, G.; Magi, M.; Gabrielli, S.; Arispici, M.; Tolari, F.; Dell’Omodarme, M.; Prati, M.C. Natural vectors of dirofilariasis in rural and urban areas of the Tuscan region, central Italy. J. Med. Entomol. 2006, 43, 574–579. [Google Scholar]
- Nchoutpouen, E.; Talipouo, A.; Djiappi-Tchamen, B.; Djamouko-Djonkam, L.; Kopya, E.; Ngadjeu, C.S.; Doumbe-Belisse, P.; Awono-Ambene, P.; Kekeunou, S.; Wondji, C.S.; et al. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaounde, Cameroon. PLoS Negl. Trop. Dis. 2019, 13, e0007229. [Google Scholar]
- Rono, M.K.; Muturi, C.N.; Ochieng, R.; Mwakubabanya, R.; Wachira, F.N.; Mwangangi, J.; Kinyanjui, S.; Njunge, J.; Mireji, P.O. Cadmium tolerance pathway in Anopheles gambiae senso stricto. Acta Trop. 2019, 198, 105033. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, M.P.; Vimal, D.; Kumar, S.; Jha, R.R.; Chowdhuri, D.K. Benzene induced resistance in exposed Drosophila melanogaster: Outcome of improved detoxification and gene modulation. Chemosphere 2018, 201, 144–158. [Google Scholar] [PubMed]
- Daly, A.K.; Fairbrother, K.S.; Smart, J. Recent advances in understanding the molecular basis of polymorphisms in genes encoding cytochrome P450 enzymes. Toxicol. Lett. 1998, 102–103, 143–147. [Google Scholar]
- Steele, L.D.; Muir, W.M.; Seong, K.M.; Valero, M.C.; Rangesa, M.; Sun, W.; Clark, J.M.; Coates, B.; Pittendrigh, B.R. Genome-wide sequencing and an open reading frame analysis of dichlorodiphenyltrichloroethane (DDT) susceptible (91-C) and resistant (91-R) Drosophila melanogaster laboratory populations. PLoS ONE 2014, 9, e98584. [Google Scholar] [CrossRef][Green Version]
- Mukhtorova, D.; Hlava, J.; Száková, J.; Kubík, S.; Vrabec, V.; Tlustoš, P. Risk element accumulation in Coleoptera and Hymenoptera (Formicidae) living in an extremely contaminated area—A preliminary study. Environ. Monit. Assess. 2019, 191, 32. [Google Scholar] [CrossRef] [PubMed]
- Talarico, F.; Brandmayr, P.; Giulianini, P.G.; Ietto, F.; Naccarato, A.; Perrotta, E.; Tagarelli, A.; Giglio, A. Effects of metal pollution on survival and physiological responses in Carabus (Chaetocarabus) lefebvrei (Coleoptera, Carabidae). Eur. J. Soil Biol. 2014, 61, 80–89. [Google Scholar] [CrossRef]
- Ballan-Dufrançais, C. Localization of metals in cells of pterygote insects. Microsc. Res. Tech. 2002, 56, 403–420. [Google Scholar] [CrossRef] [PubMed]
- Fedorka, K.M.; Copeland, E.K.; Winterhalter, W.E. Seasonality influences cuticle melanization and immune defense in a cricket: Support for a temperature-dependent immune investment hypothesis in insects. J. Exp. Biol. 2013, 216, 4005–4010. [Google Scholar] [CrossRef] [PubMed]
- Eeva, T.; Sorvari, J.; Koivunen, V. Effects of heavy metal pollution on red wood ant (Formica s. str.) populations. Environ. Pollut. 2004, 132, 533–539. [Google Scholar]
- Sorvari, J.; Rantala, L.M.; Rantala, M.J.; Hakkarainen, H.; Eeva, T. Heavy metal pollution disturbs immunity: Toxic effects in wild ant populations. Environ. Pollut. 2007, 145, 324–328. [Google Scholar] [PubMed]
- Belskaya, E.; Gilev, A.; Belskii, E. Ant (Hymenoptera, Formicidae) diversity along a pollution gradient near the Middle Ural Copper Smelter, Russia. Environ. Sci. Pollut. Res. 2017, 24, 10768–10777. [Google Scholar] [CrossRef]
- Skaldina, O.; Ciszek, R.; Peräniemi, S.; Kolehmainen, M.; Sorvari, J. Facing the threat: Common yellowjacket wasps as indicators of heavy metal pollution. Environ. Sci. Pollut. Res. 2020, 27, 29031–29042. [Google Scholar] [CrossRef] [PubMed]
- Skaldina, O.; Sorvari, J. Not simply red: Colouration of red wood ant Formica rufa (Hymenoptera: Formicidae) is polymorphic, modular and size-dependent. Eur. J. Entomol. 2017, 114, 317–324. [Google Scholar] [CrossRef]
- Görür, G. Effects of heavy metal accumulation in host plants to cabbage aphid (Brevicoryne brassicae)–morphology. Ekol. Bratisl. 2006, 25, 314–321. [Google Scholar]
- Osman, W.; El-Samad, L.M.; Mokhamer, E.-H.; El-Touhamy, A.; Shonouda, M. Ecological, morphological and histological studies on Blaps polycresta (Coleoptera: Tenebrionidae) as biomonitors of cadmium soil pollution. Environ. Sci. Pollut. Res. 2015, 22, 14104–14115. [Google Scholar] [CrossRef]
- Kraus, J.M.; Schmidt, T.S.; Walters, D.M.; Wanty, R.B.; Zuellig, R.E.; Wolf, R.E. Cross-ecosystem impacts of stream pollution reduce resource and contaminant flux to riparian food webs. Ecol. Appl. 2014, 24, 235–243. [Google Scholar] [CrossRef]
- Stanković, J.; Milošević, D.; Savić-Zdraković, D.; Yalçın, G.; Yildiz, D.; Beklioğlu, M.; Jovanović, B. Exposure to a microplastic mixture is altering the life traits and is causing deformities in the non-biting midge Chironomus riparius Meigen (1804). Environ. Pollut. 2020, 262, 114248. [Google Scholar] [CrossRef]
- Kiikkilä, O. Heavy-metal pollution and remediation of forest soil around the Harjavalta Cu-Ni smelter, in SW Finland. Silva Fenn. 2003, 37, 497. [Google Scholar] [CrossRef]
- Sorvari, J. Social wasp (Hymenoptera: Vespidae) beer trapping in Finland 2008-2012: A German surprise. Entomol. Fenn. 2013, 24, 156–164. [Google Scholar] [CrossRef][Green Version]
- Kaisai, I.; Hunt, J.H. Food quantity affect traits of offspring in the paper wasp Polistes metricus (Hymenoptera: Vespidae). Environ. Entomol. 2002, 31, 99–106. [Google Scholar]
- Badejo, O.; Leskinen, J.T.T.; Koistinen, A.; Sorvari, J. Urban environment and climate condition-related phenotypic plasticity of the common wasp Vespula vulgaris. Bull Insectol 2020, 73, 285–294. [Google Scholar]
- Clapperton, B.K.; Lo, P.L.; Moller, H.; Sandlant, G.R. Variation in colour markings of German wasps Vespula germanica (F.) and common wasps Vespula vulgaris (L.) (Hymenoptera: Vespidae) in New Zealand. N. Zeal. J. Zool. 1989, 16, 303–313. [Google Scholar] [CrossRef]
- Rako, L.; Anderson, A.R.; Sgrò, C.M.; Stocker, A.J.; Hoffmann, A.A. The association between inversion In(3R)Payne and clinally varying traits in Drosophila melanogaster. Genetica 2006, 128, 373–384. [Google Scholar] [CrossRef] [PubMed]
- Schielzeth, H.; Dieker, P. The green-brown polymorphism of the club-legged grasshopper Gomphocerus sibiricus is heritable and appears genetically simple. BMC Evol. Biol. 2020, 20, 63. [Google Scholar] [CrossRef]
- Noh, P.; Oh, S.; Park, S.; Kwon, T.; Kim, Y.; Choe, J.C.; Jeong, G. Association between host wing morphology polymorphism and Wolbachia infection in Vollenhovia emeryi (Hymenoptera: Myrmicinae). Ecol. Evol. 2020, 10, 8827–8837. [Google Scholar] [CrossRef]
- Roff, D.A. The evolution of wing dimorphism in insects. Evolution 1986, 40, 1009–1020. [Google Scholar] [CrossRef] [PubMed]
- Zera, A.J.; Sall, J.W.; Grudzinski, K. Flight-muscle polymorphism in the cricket Gryllus firmus: Muscle characteristics and their influence on the evolution of flightlessness. Physiol. Zool. 1997, 70, 519–529. [Google Scholar] [CrossRef]
- Busso, J.P.; Blankckenhorn, W.U.; Gonzáles-Tokman, D. Healthier or bigger? Trade-off mediating male dimorphism in the black scavenger fly Sepsis thoracica (Diptera: Sepsidae). Ecol. Entomol. 2017, 42, 517–525. [Google Scholar] [CrossRef]
- Butovsky, R.O. Heavy metals in carabids (Coleoptera, Carabidae). ZooKeys 2011, 100, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Mielczarek, A.; Wojciechowicz-Żytko, E. Bioaccumulation of heavy metals (Zn, Pb, Cd) in Polistes nimphus (Christ, 1791) (Hymenoptera, Vespidae) living on contaminated sites. Pol. J. Environ. Stud. 2020, 29, 4249–4256. [Google Scholar] [CrossRef]
- Urbini, A.; Sparvoli, E.; Turillazzi, S. Social paper wasps as bioindicators: A preliminary research with Polistes dominulus (Hymenoptera Vespidae) as a trace metal accumulator. Chemosphere 2006, 64, 697. [Google Scholar] [CrossRef] [PubMed]
- Andreani, G.; Ferlizza, E.; Cabbri, R.; Bellei, E.; Isani, G. Essential (Mg, Fe, Zn and Cu) and non-essential (Cd and Pb) elements in predatory insects (Vespa crabro and Vespa velutina): A molecular perspective. Int. J. Mol. Sci. 2021, 22, 228. [Google Scholar] [CrossRef]
- Kheirallah, D.A.M.; El-Samad, L.M. Histological and ultrastructure alterations in the midgut of Blaps polycresta and Trachyderma hispida (coleoptera: Tenebrionidae) induced by heavy metals pollution. Asian J. Biol. Sci. 2019, 12, 637–647. [Google Scholar] [CrossRef]
- Polidori, C.; Pastor, A.; Jorge, A.; Pertusa, J. Ultrastructural alterations of midgut epithelium, but not greater wing fluctuating asymmetry, in paper wasps (Polistes dominula) from urban environments. Microsc. Microanal. 2018, 24, 183–192. [Google Scholar] [CrossRef]
- Rodriguez, P.; Reynoldson, T.B. Bioaccumulation and trophic transfer. In The pollution biology of aquatic Oligochaetes; Rodriguez, P., Reynoldson, T.B., Eds.; Springer: Dordrecht, The Netherlands, 2011. [Google Scholar] [CrossRef]
- Naslund, L.C.; Gerson, J.R.; Brooks, A.C.; Walters, D.M.; Bernhardt, E.S. Contaminant subsidies to riparian food webs in appalachian streams impacted by mountaintop removal coal mining. Environ. Sci. Technol. 2020, 54, 3951–3959. [Google Scholar] [CrossRef] [PubMed]
- Hillyer, J.F. Insect immunology and hematopoiesis. Dev. Comp. Immunol. 2016, 58, 102–118. [Google Scholar] [CrossRef] [PubMed]
- Badejo, O.; Skaldina, O.; Gilev, A.; Sorvari, J. Benefits of insect colours: A review from social insect studies. Oecologia 2020, 194, 27–40. [Google Scholar] [CrossRef]
- Badejo, O.; Skaldina, O.; Sorvari, J. Spatial and temporal variation in thermal melanism in the aposematic common wasp (Vespula vulgaris) in northern Europe. Ann. Zool. Fenn. 2018, 55, 67–78. [Google Scholar] [CrossRef]
Polluted Zone (N = 62) | Intermediate Zone (N = 36) | Reference Zone (N = 52) | Test Result | |
---|---|---|---|---|
Fe | 233.18 ± 1.20 | 202.63 ± 1.19 | 186.77 ± 1.10 | F2,6.75 = 2.85, p = 0.13 |
Co | 1.41 ± 1.25 a | 0.51 ± 1.29 b | 0.39 ± 1.26 b | F2,88.9 = 35.39, p < 0.0001 |
Ni | 11.25 ± 1.78 a | 9.21 ± 3.67 a | 3.43 ± 1.54 b | F2,3.72 = 9.61, p = 0.034 |
Cu | 84.24 ± 1.23 a | 56.34 ± 1.25 b | 46.05 ± 1.13 b | F2,6.49 = 16.82, p = 0.0027 |
Zn | 544.63 ± 1.61 | 352.45 ± 1.83 | 531.74 ± 1.35 | F2,6.54 = 1.52, p = 0.29 |
As | 6.98 ± 1.45 a | 3.97 ± 1.73 a | 1.63 ± 1.33 b | F2,6.53 = 25.60, p = 0.0008 |
Cd | 1.60 ± 1.29 a | 0.41 ± 1.28 b | 0.34 ± 1.22 b | F2,89.4 = 50.72, p < 0.0001 |
Pb | 1.26 ± 1.81 a | 0.82 ± 2.42 a | 0.20 ± 1.60 b | F2,8.87 = 16.05, p = 0.0011 |
Factor Pattern | ||
---|---|---|
PC1 | PC2 | |
Fe | 0.615 | −0.221 |
Co | 0.840 | 0.317 |
Ni | 0.722 | −0.380 |
Cu | 0.916 | −0.087 |
Zn | 0.303 | 0.907 |
As | 0.845 | −0.153 |
Cd | 0.859 | 0.076 |
Pb | 0.831 | 0.016 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badejo, O.; Skaldina, O.; Peräniemi, S.; Carrasco-Navarro, V.; Sorvari, J. Phenotypic Plasticity of Common Wasps in an Industrially Polluted Environment in Southwestern Finland. Insects 2021, 12, 888. https://doi.org/10.3390/insects12100888
Badejo O, Skaldina O, Peräniemi S, Carrasco-Navarro V, Sorvari J. Phenotypic Plasticity of Common Wasps in an Industrially Polluted Environment in Southwestern Finland. Insects. 2021; 12(10):888. https://doi.org/10.3390/insects12100888
Chicago/Turabian StyleBadejo, Oluwatobi, Oksana Skaldina, Sirpa Peräniemi, Victor Carrasco-Navarro, and Jouni Sorvari. 2021. "Phenotypic Plasticity of Common Wasps in an Industrially Polluted Environment in Southwestern Finland" Insects 12, no. 10: 888. https://doi.org/10.3390/insects12100888
APA StyleBadejo, O., Skaldina, O., Peräniemi, S., Carrasco-Navarro, V., & Sorvari, J. (2021). Phenotypic Plasticity of Common Wasps in an Industrially Polluted Environment in Southwestern Finland. Insects, 12(10), 888. https://doi.org/10.3390/insects12100888