The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cells, Viruses, and Mosquitoes
2.2. Intrathoracic Inoculation
2.3. Saliva Collection and Salivary Gland Dissections
2.4. Infectious Virus Titration by Plaque Assay
2.5. Quantitative Genetic Analyses
2.6. Statistical Analyses
3. Results
3.1. Infection Rates
3.2. Salivary Gland Infection Barrier (SGIB)
3.3. Salivary Gland Escape Barrier
3.4. Relationship between SGIB and SGEB
3.5. Relationship between Saliva Volume, Virus Titer, and Prevalence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kenney, J.L.; Brault, A.C. The role of environmental, virological and vector interactions in dictating biological trans-mission of arthropod-borne viruses by mosquitoes. Adv. Virus Res. 2014, 89, 39–83. [Google Scholar] [PubMed]
- Franz, A.W.; Kantor, A.M.; Passarelli, A.L.; Clem, R.J. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses 2015, 7, 3741–3767. [Google Scholar] [CrossRef] [PubMed]
- Vega-Rúa, A.; Schmitt, C.; Bonne, I.; Krijnse-Locker, J.; Failloux, A.-B. Chikungunya Virus Replication in Salivary Glands of the Mosquito Aedes albopictus. Viruses 2015, 7, 5902–5907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamberlain, R.W.; Sudia, W.D. Mechanism of Transmission of Viruses by Mosquitoes. Annu. Rev. Èntomol. 1961, 6, 371–390. [Google Scholar] [CrossRef] [PubMed]
- Murphy, F.A.; Whitfield, S.G.; Sudia, W.D.; Chamberlain, R.W. Invertebrate Immunity. In Interactions of Vector with Verte-Brate Pathogenic Viruses; Academic Press: Cambridge, MA, USA, 1975. [Google Scholar]
- Raquin, V.; Lambrechts, L. Dengue virus replicates and accumulates in Aedes aegypti salivary glands. Virology 2017, 507, 75–81. [Google Scholar] [CrossRef]
- Guedes, D.R.; Paiva, M.H.; Donato, M.M.; Barbosa, P.P.; Krokovsky, L.; Rocha, S.W.D.S.; La Saraiva, K.; Crespo, M.M.; Rezende, T.M.; Wallau, G.L.; et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg. Microbes Infect. 2017, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, M. Differential transmission efficiency for Japanese encephalitis virus among colonized strains of Culex tri-taeniorhynchus. Med. Entomol. Zool. 1982, 33, 325–333. [Google Scholar] [CrossRef] [Green Version]
- Beaty, B.J.; Holterman, M.; Tabachnick, W.; Shope, R.E.; Rozhon, E.J.; Bishop, D.H. Molecular basis of bunyavirus transmission by mosquitoes: Role of the middle-sized RNA segment. Science 1981, 211, 1433–1435. [Google Scholar] [CrossRef]
- Paulson, S.L.; Grimstad, P.R.; Craig, G.B. Midgut and salivary gland barriers to La Crosse virus dissemination in mosquitoes of the Aedes triseriatus group. Med. Vet. Èntomol. 1989, 3, 113–123. [Google Scholar] [CrossRef]
- Jupp, P.G. Culex theileri and Sindbis virus; salivary glands infection in relation to transmission. J. Am. Mosq. Control. Assoc. 1985, 1, 374–376. [Google Scholar]
- Grimstad, P.R.; Paulson, S.L.; Craig, G.B. Vector Competence of Aedes Hendersoni (Diptera: Culicidae) for La Crosse Virus and Evidence of a Salivary-Gland Escape Barrier1. J. Med. Èntomol. 1985, 22, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Romoser, W.S.; Turell, M.J.; Lerdthusnee, K.; Neira, M.; Dohm, D.; Ludwig, G.; Wasieloski, L. Pathogenesis of Rift Valley fever virus in mosquitoes—Tracheal conduits & the basal lamina as an extra-cellular barrier. Infect. Dis. Nat. Mech. Viral Emerg. Persistence 2005, 89–100. [Google Scholar] [CrossRef]
- Turell, M.J.; Britch, S.C.; Aldridge, R.L.; Kline, D.L.; Boohene, C.; Linthicum, K.J. Potential for Mosquitoes (Diptera: Cu-licidae) From Florida to Transmit Rift Valley Fever Virus. J. Med. Entomol. 2013, 50, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Salazar, M.I.; Richardson, J.H.; Sánchez-Vargas, I.; Olson, K.E.; Beaty, B.J. Dengue virus type 2: Replication and tropisms in orally infected Aedes aegypti mosquitoes. BMC Microbiol. 2007, 7, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowers, D.F.; Abell, B.A.; Brown, D.T. Replication and tissue tropism of the alphavirus Sindbis in the mosquito Aedes al-bopictus. Virology 1995, 212, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Raquin, V.; Wannagat, M.; Zouache, K.; Legras-Lachuer, C.; Moro, C.V.; Mavingui, P. Detection of dengue group viruses by fluorescence in situ hybridization. Parasites Vectors 2012, 5, 243. [Google Scholar] [CrossRef] [Green Version]
- Janzen, H.G.; Rhodes, A.J.; Doane, F.W. Chikungunya virus in salivary glands of Aedes aegypti (L.): An electron microscope study. Can. J. Microbiol. 1970, 16, 581–586. [Google Scholar] [CrossRef]
- Gaidamovich, S.Y.; Khutoretskaya, N.V.; Lvova, A.I.; Sveshnikova, N.A. Immunofluorescent staining study of the salivary glands of mosquitoes infected with group A arboviruses. Intervirology 1973, 1, 193–200. [Google Scholar]
- Tchankouo-Nguetcheu, S.; Bourguet, E.; Lenormand, P.; Rousselle, J.-C.; Namane, A.; Choumet, V. Infection by chikungunya virus modulates the expression of several proteins in Aedes aegypti salivary glands. Parasites Vectors 2012, 5, 264. [Google Scholar] [CrossRef] [Green Version]
- Ciano, K.A.; Saredy, J.J.; Bowers, D.F. Heparan Sulfate Proteoglycan: An Arbovirus Attachment Factor Integral to Mosquito Salivary Gland Ducts. Viruses 2014, 6, 5182–5197. [Google Scholar] [CrossRef] [Green Version]
- Girard, Y.A.; Schneider, B.S.; McGee, C.E.; Wen, J.; Han, V.C.; Popov, V.; Mason, P.W.; Higgs, S. Salivary gland morphol-ogy and virus transmission during long-term cytopathologic West Nile virus infection in Culex mosquitoes. Am. J. Trop. Med. Hyg. 2007, 76, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Barreau, C.; Conrad, J.; Fischer, E.; Lujan, H.D.; Vernick, K.D. Identification of surface molecules on salivary glands of the mosquito, Aedes aegypti, by a panel of monoclonal antibodies. Insect Biochem. Mol. Biol. 1999, 29, 515–526. [Google Scholar] [CrossRef]
- Juhn, J.; Naeem-Ullah, U.; Guedes, B.A.M.; Majid, A.; Coleman, J.; Pimenta, P.F.P.; Akram, W.; James, A.A.; Marinotti, O. Spatial mapping of gene expression in the salivary glands of the dengue vector mosquito, Aedes aegypti. Parasites Vectors 2011, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickson, L.B.; Campbell, C.L.; Juneja, P.; Jiggins, F.M.; Sylla, M.; Black, W.C., 4th. Exon-Enriched Libraries Reveal Large Genic Differences Between Aedes aegypti from Senegal, West Africa, and Populations Outside Africa. G3 (Bethesda) 2017, 7, 571–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubrulle, M.; Mousson, L.; Moutailler, S.; Vazeille, M.; Failloux, A.-B. Chikungunya Virus and Aedes Mosquitoes: Saliva Is Infectious as soon as Two Days after Oral Infection. PLoS ONE 2009, 4, e5895. [Google Scholar] [CrossRef] [PubMed]
- McElroy, K.L.; Girard, Y.A.; McGee, C.E.; Tsetsarkin, K.A.; Vanlandingham, D.L.; Higgs, S. Characterization of the anti-gen distribution and tissue tropisms of three phenotypically distinct yellow fever virus variants in orally infected Aedes ae-gypti mosquitoes. Vector Borne Zoonotic Dis. 2008, 8, 675–687. [Google Scholar] [CrossRef]
- Chouin-Carneiro, T.; Vega-Rua, A.; Vazeille, M.; Yebakima, A.; Girod, R.; Goindin, D.; Dupont-Rouzeyrol, M.; Louren-ço-de-Oliveira, R.; Failloux, A.B. Differential Susceptibilities of Aedes aegypti and Aedes albopictus from the Americas to Zika Virus. PLoS Negl. Trop. Dis. 2016, 10, e0004543. [Google Scholar] [CrossRef]
- Richardson, J.; Molina-Cruz, A.; Salazar, M.I.; Black, W., 4th. Quantitative analysis of dengue-2 virus RNA during the extrin-sic incubation period in individual Aedes aegypti. Am. J. Trop. Med. Hyg. 2006, 74, 132–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, K.E.; Olson, K.E.; Muñoz Mde, L.; Fernandez-Salas, I.; Farfan-Ale, J.A.; Higgs, S.; Black, W.C., 4th; Beaty, B.J. Variation in vector competence for dengue 2 virus among 24 collections of Aedes aegypti from Mexico and the United States. Am. J. Trop. Med. Hyg. 2002, 67, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Myles, K.M.; Pierro, D.J.; Olson, K.E. Comparison of the Transmission Potential of Two Genetically Distinct Sindbis Viruses after Oral Infection ofAedes aegypti (Diptera: Culicidae). J. Med. Èntomol. 2004, 41, 95–106. [Google Scholar] [CrossRef] [Green Version]
- Coffey, L.L.; Failloux, A.-B.; Weaver, S.C. Chikungunya Virus–Vector Interactions. Viruses 2014, 6, 4628–4663. [Google Scholar] [CrossRef] [PubMed]
- Khoo, C.C.H.; Doty, J.B.; Held, N.L.; Olson, K.E.; Franz, A.W. Isolation of midgut escape mutants of two American genotype dengue 2 viruses from Aedes aegypti. Virol. J. 2013, 10, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabachnick, W.J. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence. Int. J. Environ. Res. Public Health 2013, 10, 249–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falconer, D.S. Introduction to Quantitative Genetics; Longmans Green: Harlow, Essex, UK, 1996. [Google Scholar]
- Chen, W.-J.; Wei, H.L.; Hsu, E.L.; Chen, E.R. Vector competence of Aedes albopictus and Ae. aegypti (Diptera: Culicidae) to dengue 1 virus on Taiwan: Development of the virus in orally and parenterally infected mosquitoes. J. Med. Èntomol. 1993, 30, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Styer, L.M.; Kent, K.A.; Albright, R.G.; Bennett, C.J.; Kramer, L.D.; Bernard, K.A. Mosquitoes Inoculate High Doses of West Nile Virus as They Probe and Feed on Live Hosts. PLoS Pathog. 2007, 3, 1262–1270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gubler, D.J.; Rosen, L. A Simple Technique for Demonstrating Transmission of Dengue Virus by Mosquitoes without the Use of Vertebrate Hosts. Am. J. Trop. Med. Hyg. 1976, 25, 146–150. [Google Scholar] [CrossRef]
- Phillips, A.; Mossel, E.; Sanchez-Vargas, I.; Foy, B.; Olson, K. Alphavirus transducing system: Tools for visualizing infection in mosquito vectors. J. Vis. Exp. 2010, 45, 2363. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Vargas, I.; Harrington, L.C.; Black, W.C.; Olson, K.E. Analysis of Salivary Glands and Saliva from Aedes albopic-tus and Aedes aegypti Infected with Chikungunya Viruses. Insects 2019, 10, 39. [Google Scholar] [CrossRef] [Green Version]
- Sladowski, D.; Steer, S.J.; Clothier, R.H.; Balls, M. An improved MTT assay. J. Immunol. Methods 1993, 157, 203–207. [Google Scholar] [CrossRef]
- Takeuchi, H.; Baba, M.; Shigeta, S. An application of tetrazolium (MTT) colorimetric assay for the screening of anti-herpes simplex virus compounds. J. Virol. Methods 1991, 33, 61–71. [Google Scholar] [CrossRef]
- Becker, W.A. Manual of Quantitative Genetics; Academic Enterprises: Pullman, WA, USA, 1992; pp. 55–66. [Google Scholar]
- Lynch, M.; Walsh, B. Genetics and Analysis of Quantitative Traits; Sinauer Associates: Sunderland, MA, USA, 1998. [Google Scholar]
- Shaw, R.G. Maximum-Likelihood Approaches Applied to Quantitative Genetics of Natural-Populations. Evolution 1987, 41, 812–826. [Google Scholar]
- Mathur, G.; Sanchez-Vargas, I.; Alvarez, D.; Olson, K.E.; Marinotti, O.; James, A.A. Transgene-mediated suppression of dengue viruses in the salivary glands of the yellow fever mosquito, Aedes aegypti. Insect Mol. Biol. 2010, 19, 753–763. [Google Scholar] [CrossRef] [Green Version]
- Devine, T.L.; Venard, C.E.; Myser, W.C. Measurement of salivation by Aedes aegypti (L.) feeding on a living host. J. Insect Physiol. 1965, 11, 347–353. [Google Scholar] [CrossRef]
- Hurlbut, H.S. Mosquito Salivation and Virus Transmission. Am. J. Trop. Med. Hyg. 1966, 15, 989–993. [Google Scholar] [CrossRef]
- Evans, B.R.; Gloria-Soria, A.; Hou, L.; McBride, C.; Bonizzoni, M.; Zhao, H.; Powell, J.R. A Multipurpose, High-Throughput Single-Nucleotide Polymorphism Chip for the Dengue and Yellow Fever Mosquito, Aedes aegypti. G3-Genes Genomes Genet. 2015, 5, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Black, W.C., 4th; Bennett, K.E.; Gorrochótegui-Escalante, N.; Barillas-Mury, C.V.; Fernández-Salas, I.; de Lourdes Muñoz, M.; Farfán-Alé, J.A.; Olson, K.E.; Beaty, B.J. Flavivirus susceptibility in Aedes aegypti. Arch. Med. Res. 2002, 33, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.; Johansson, M.A. The Incubation Periods of Dengue Viruses. PLoS ONE 2012, 7, e50972. [Google Scholar] [CrossRef] [PubMed]
- Winokur, O.C.; Main, B.J.; Nicholson, J.; Barker, C.M. Impact of temperature on the extrinsic incubation period of Zika virus in Aedes aegypti. PLoS Negl. Trop. Dis. 2020, 14, e0008047. [Google Scholar] [CrossRef] [Green Version]
- Lambrechts, L. Quantitative genetics of Aedes aegypti vector competence for dengue viruses: Towards a new paradigm? Trends Parasitol. 2011, 27, 111–114. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Sunil, S.; Sirisena, P.; Dubey, S.K.; Kumar, R.; Shrinet, J.; Sunil, S. Mosquito Innate Immunity. Insects 2018, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Prasad, A.N.; Brackney, D.E.; Ebel, G.D. The Role of Innate Immunity in Conditioning Mosquito Susceptibility to West Nile Virus. Viruses 2013, 5, 3142–3170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan, X.L.; Pike, A.; Joshi, D.; Bian, G.W.; McFadden, M.J.; Lu, P.; Liang, X.; Zhang, F.R.; Raikhel, A.S.; Xi, Z.Y. The bacte-rium Wolbachia exploits host innate immunity to establish a symbiotic relationship with the dengue vector mosquito Ae-des aegypti. ISME J. 2018, 12, 277–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Viral Species | DENV2 Qro94 | DENV2 Guerrero | DENV2 Merida | CHIKV LR 2006-OPY1 | CHIKV R99659 | ZIKV PRVABC-59 | ZIKV Dakar 41525 |
---|---|---|---|---|---|---|---|
Genotype | American | Asian | Cosmopolitan | ECSA-IOL | Asian | Asian | African |
Number of sire families | 24 | 21 | 21 | 22 | 22 | 21 | 21 |
Number paired samples | 691 | 667 | 681 | 686 | 735 | 783 | 623 |
Uninfected Glands | 38 | 5 | 4 | 0 | 0 | 0 | 0 |
SGIB% | 5.50% | 0.75% | 0.59% | 0.00% | 0.00% | 0.00% | 0.00% |
Uninfected Saliva | 578 | 480 | 404 | 327 | 452 | 408 | 200 |
Infected Saliva | 113 | 187 | 277 | 358 | 282 | 375 | 423 |
SGEB% | 88.5% | 72.5% | 59.7% | 47.7% | 61.5% | 52.1% | 32.1% |
Transmission | 11.5% | 27.5% | 40.3% | 52.3% | 38.5% | 47.9% | 67.9% |
SGIB | ||||
---|---|---|---|---|
Virus | Strain | Genotype | h2 | σ2s |
DENV-2 | Qro94 | American | 0.8103 *** | 0.2700 ** |
Guerrero C932 | Asian | 0.5799 ** | 0.1029 * | |
Merida BC17 | Cosmopolitan | 0.0685 | 0.0082 | |
CHIKV | LR2006-OPY-1 | ECSA-IOL | 0.5174 *** | 0.0337 ** |
R99659 | Asian | 0.0385 | 0.0012 | |
ZIKV | PRVABC59 | Asian | 0.1526 * | 0.0077 |
Dakar 42525 | African | 0.9808 *** | 0.0762 ** |
SGEB | ||||
---|---|---|---|---|
Virus | Strain | Genotype | h2 | σ2s |
DENV-2 | Qro94 | American | 0.3186 | 0.0287 |
Guerrero C932 | Asian | 0.16 | 0.0110 | |
Merida BC17 | Cosmopolitan | 0.2888 | 0.0258 | |
CHIKV | LR2006-OPY-1 | ECSA-IOL | 0.4611 *** | 0.0914 * |
R99659 | Asian | 0.4372 *** | 0.1025 * | |
ZIKV | PRVABC59 | Asian | 0.3286 *** | 0.0839 * |
Dakar 42525 | African | 0.4050 | 0.1569 |
Virus Strain | Genotype | Corr. Coeff. (R) | Prob. (p) |
---|---|---|---|
DENV2 Qro94 | American | −0.0503 | 0.6003 |
DENV2 GuerreroC932 | Asian | 0.1444 | 0.0487 |
DENV2 Merida BC17 | Cosmopolitan | 0.0255 | 0.6726 |
CHIKV R99659 | Asian | 0.0649 | 0.2774 |
CHIKV LR2006OPY-1 | ECSA-IOL | 0.1591 | 0.0026 |
ZIKV PRVABC59 | Asian | −0.0453 | 0.2118 |
ZIKV Dakar | African | 0.1947 | <0.0001 |
Virus Strain | Genotype | Corr. Coeff. (R) | Prob. (p) |
---|---|---|---|
DENV2 Qro94 | American | 0.1258 | 0.5001 |
DENV2 GuerreroC932 | Asian | 0.1528 | 0.3596 |
DENV2 Merida BC17 | Cosmopolitan | 0.1570 | 0.3466 |
CHIKV R99659 | Asian | 0.1856 | 0.1876 |
CHIKV LR2006OPY-1 | ECSA-IOL | 0.0924 | 0.4981 |
ZIKV PRVABC59 | Asian | −0.0384 | 0.7728 |
ZIKV Dakar | African | 0.1506 | 0.0018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez-Vargas, I.; Olson, K.E.; Black, W.C. The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission. Insects 2021, 12, 73. https://doi.org/10.3390/insects12010073
Sanchez-Vargas I, Olson KE, Black WC. The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission. Insects. 2021; 12(1):73. https://doi.org/10.3390/insects12010073
Chicago/Turabian StyleSanchez-Vargas, Irma, Ken E. Olson, and William C. Black. 2021. "The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission" Insects 12, no. 1: 73. https://doi.org/10.3390/insects12010073
APA StyleSanchez-Vargas, I., Olson, K. E., & Black, W. C. (2021). The Genetic Basis for Salivary Gland Barriers to Arboviral Transmission. Insects, 12(1), 73. https://doi.org/10.3390/insects12010073