Bmapaf-1 is Involved in the Response against BmNPV Infection by the Mitochondrial Apoptosis Pathway
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Silkworm and BmNPV
2.2. Bioinformatics Analysis
2.3. Sample Preparation, RNA Extraction, and cDNA Synthesis
2.4. RT-qPCR
2.5. Synthesis of siRNA
2.6. Construction of pIZT-mCherry-Bmapaf-1 Overexpression Vector
2.7. BmN Cell Culture, Transfection, and Fluorescence Signal Acquisition
2.8. Inhibition and Induction of Apoptosis
3. Results
3.1. Characterization of the BmApaf-1 Sequence
3.2. The Spatiotemporal Expression Pattern of Bmapaf-1
3.3. Bmapaf-1 Showed Significant Response to BmNPV Infection in Different Tissues
3.4. Selected Downstream Genes Were Downregulated after Knockdown of Bmapaf-1 in BmN Cells
3.5. Knockdown of Bmapaf-1 Promoted BmNPV Infection in BmN Cells
3.6. Overexpression of Bmapaf-1 Upregulated the Expression of Its Downstream Genes in BmN Cells
3.7. Overexpression of Bmapaf-1 Inhibited BmNPV Infection in BmN Cells
3.8. Apoptosis Regulated by Bmapaf-1 Involved in Response against BmNPV ISnfection
4. Discussions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cheng, Y.; Wang, X.; Du, C.; Gao, J.; Xu, J. Expression Analysis of Several Antiviral Related Genes to BmNPV in Different Resistant Strains of Silkworm, Bombyx mori. J. Insect Sci. 2014, 14, 76. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Shao, Z.M.; Zhang, Y.J.; Vu, T.T.; Wu, Y.C.; Xu, J.P.; Deng, M.J. A (1)H NMR based study of hemolymph metabonomics in different resistant silkworms, Bombyx mori (Lepidotera), after BmNPV inoculation. J. Insect Physiol. 2019, 117, 103911. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Yu, H.Z.; Geng, L.; Xu, J.P.; Yu, D.; Zhang, S.Z.; Ma, Y.; Fei, D.Q. Comparative Transcriptome Analysis of Bombyx mori (Lepidoptera) Larval Midgut Response to BmNPV in Susceptible and Near-Isogenic Resistant Strains. PLoS ONE 2016, 11, e0155341. [Google Scholar] [CrossRef]
- Li, G.; Qian, H.; Luo, X.; Xu, P.; Yang, J.; Liu, M.; Xu, A. Transcriptomic analysis of resistant and susceptible Bombyx mori strains following BmNPV infection provides insights into the antiviral mechanisms. Int. J. Genom. 2016, 2016, 2086346. [Google Scholar]
- Yu, H.; Wang, X.; Xu, J.; Ma, Y.; Zhang, S.; Yu, D.; Fei, D.; Muhammad, A. iTRAQ-based quantitative proteomics analysis of molecular mechanisms associated with Bombyx mori (Lepidoptera) larval midgut response to BmNPV in susceptible and near-isogenic strains. J. Proteom. 2017, 165, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.Z.; Wang, J.; Zhu, L.B.; Toufeeq, S.; Xu, X.; You, L.L.; Li, B.; Hu, P.; Xu, J.P. Quantitative label-free proteomic analysis reveals differentially expressed proteins in the digestive juice of resistant versus susceptible silkworm strains and their predicted impacts on BmNPV infection. J. Proteom. 2020, 210, 103527. [Google Scholar] [CrossRef]
- Smith, C.A.; Williams, G.T.; Kingston, R.; Jenkinson, E.J.; Owen, J.J.T. Apoptosis. Nature 1989, 338, 10. [Google Scholar] [CrossRef]
- Kvansakul, M. Viral Infection and Apoptosis. Viruses 2017, 9, 356. [Google Scholar] [CrossRef]
- Pradelli, L.A.; Bénéteau, M.; Ricci, J.-E. Mitochondrial control of caspase-dependent and -independent cell death. Cell. Mol. Life Sci. 2010, 67, 1589–1597. [Google Scholar] [CrossRef]
- Hakem, R.; Hakem, A.; Duncan, G.S.; Henderson, J.T.; Mak, T.W. Differential Requirement for Caspase 9 in Apoptotic Pathways In Vivo. Cell 1998, 94, 339–352. [Google Scholar] [CrossRef]
- Kuida, K.; Haydar, T.F.; Kuan, C.Y.; Gu, Y.; Flavell, R.A. Reduced Apoptosis and Cytochrome c–Mediated Caspase Activation in Mice Lacking Caspase 9. Cell 1998, 94, 325–337. [Google Scholar] [CrossRef]
- Li, K.; Li, Y.; Shelton, J.M.; Richardson, J.A.; Spencer, E.; Chen, Z.J.; Wang, X.; Williams, R.S. Cytochrome c Deficiency Causes Embryonic Lethality and Attenuates Stress-Induced Apoptosis. Cell 2000, 101, 389–399. [Google Scholar] [CrossRef]
- Clavier, A.; Rincheval-Arnold, A.; Colin, J.; Mignotte, B.; Guenal, I. Apoptosis in Drosophila: Which role for mitochondria? Apoptosis 2016, 21, 239–251. [Google Scholar] [CrossRef]
- Mohamad, N.; Gutierrez, A.; Nunez, M.; Cocca, C.; Martin, G.; Cricco, G.; Medina, V.; Rivera, E.; Bergoc, R. Mitochondrial apoptotic pathways. Biocell 2005, 29, 149–161. [Google Scholar] [CrossRef]
- Saleh, A. Negative regulation of the Apaf-1 apoptosome by Hsp70. Nat. Cell Biol. 2000, 2, 476–483. [Google Scholar] [CrossRef]
- Acehan, D.; Jiang, X.; Morgan, D.G.; Heuser, J.E.; Wang, X.; Akey, C.W. Three-Dimensional Structure of the Apoptosome: Implications for Assembly, Procaspase-9 Binding, and Activation. Mol. Cell 2002, 9, 423–432. [Google Scholar] [CrossRef]
- Adams, J.M.; Cory, S. Apoptosomes: Engines for caspase activation. Curr. Opin. Cell Biol. 2002, 14, 715. [Google Scholar] [CrossRef]
- Salvesen, G.S.; Abrams, J.M. Caspase activation-Stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 2004, 23, 2774–2784. [Google Scholar] [CrossRef]
- Wang, X. The expanding role of mitochondria in apoptosis. Genes Dev. 2001, 15, 2922–2933. [Google Scholar]
- Meyer, K.; Basu, A.; Saito, K.; Ray, R.B.; Ray, R. Inhibition of hepatitis C virus core protein expression in immortalized human hepatocytes induces cytochrome c-independent increase in Apaf-1 and caspase-9 activation for cell death. Virology 2005, 336, 198–207. [Google Scholar] [CrossRef]
- Wang, X.Y.; Shao, Z.M.; Chen, Q.Y.; Xu, J.P.; Sun, X.; Xu, Z.P.; Li, M.W.; Wu, Y.C. Knockdown of BmTCP-1beta Delays BmNPV Infection in vitro. Front. Microbiol. 2019, 10, 578. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, L.; Xia, Q. Selection of reference genes for analysis of stress-responsive genes after challenge with viruses and temperature changes in the silkworm Bombyx mori. Mol. Genet. Genom. 2015, 291, 999–1004. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, J.; Li, T.; Sun, X.; Li, M.-W. BmSd gene regulates the silkworm wing size by affecting the Hippo pathway. Insect Sci. 2019, 27, 655–664. [Google Scholar] [CrossRef]
- Ye, Y.; Liu, X.I.; Xiao, M.; Zhang, Z.I.; Li, M.A. A palmitoyltransferase Approximated gene Bm-app regulates wing development in Bombyx mori. Insect Sci. 2018, 27, 2–13. [Google Scholar]
- Wang, X.Y.; Wu, K.H.; Pang, H.L.; Xu, P.Z.; Li, M.W.; Zhang, G.Z. Study on the Role of Cytc in Response to BmNPV Infection in Silkworm, Bombyx mori (Lepidoptera). Int. J. Mol. Sci. 2019, 20, 4325. [Google Scholar] [CrossRef]
- Kang, L.; Shi, H.; Liu, X.; Zhang, C.; Yao, Q.; Wang, Y.; Chang, C.; Shi, J.; Cao, J.; Kong, J. Arginine kinase is highly expressed in a resistant strain of silkworm (Bombyx mori, Lepidoptera): Implication of its role in resistance to Bombyx mori nucleopolyhedrovirus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2011, 158, 230–234. [Google Scholar] [CrossRef]
- Duprez, L.; Wirawan, E.; Berghe, T.V.; Vandenabeele, P. Major cell death pathways at a glance. Microbes Infect. 2009, 11, 1050–1062. [Google Scholar] [CrossRef]
- Wang, Q.; Ju, X.; Chen, L.; Chen, K. Caspase-1 from the silkworm, Bombyx mori, is involved in Bombyx mori nucleopolyhedrovirus infection. Z. Nat. C J. Biosci. 2016, 72, 147–153. [Google Scholar] [CrossRef]
- Nagamine, T.; Sako, Y. A Role for the Anti-Viral Host Defense Mechanism in the Phylogenetic Divergence in Baculovirus Evolution. PLoS ONE 2016, 11, e0156394. [Google Scholar] [CrossRef]
- Long, G.; Pan, X.Y.; Kormelink, R.; Vlak, J.M. Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis. J. Virol. 2006, 80, 8830–8833. [Google Scholar] [CrossRef]
- Sedlic, F.; Wakatsuki, T.; Pravdic, D.; Bosnjak, Z. Mitochondrial membrane potential regulates production of reactive oxygen species and opening of mitochondrial permeability transition pore. FASEB J. 2009, 23, 576. [Google Scholar]
- Pan, M.H.; Chen, M.; Huang, S.J.; Yu, Z.S.; Lu, C. Cloning and protein release of cytochrome c in the apoptosis cells of silkworm. Sci. Agric. Sin. 2009, 42, 2546–2551. [Google Scholar]
Genes Name | Forward Primers (5′-3′) | Revers Primers (5′-3′) |
---|---|---|
Bmapaf-1 | TCACAACCCTCTAAAATCACACCAG | CGACAGCCAGTAATGGGTGTATGAG |
BmNc | GAGGACGATGTGAGCAGGGAT | TTCAGCAGGAACGAAATGTAGC |
Bmcas-1 | AACGGCAATGAAGACGAAGG | GGTGCCCGTGCGAGATTTTA |
BmGAPDH | CCGCGTCCCTGTTGCTAAT | CTGCCTCCTTGACCTTTTGC |
VP39 | CAACTTTTTGCGAAACGACTT | GGCTACACCTCCACTTGCTT |
Bmapaf-1 KE | GGGGTACCAGGAAGCTGCTGCAGCA | CGGAATTCTATGTTTTCGACTTCGTTGAC |
Primer Names | Sequences (5′-3′) |
---|---|
Bmapaf-1-1 Olig-1 | GATCACTAATACGACTCACTATAGGGGCTAATCTGGTCATAGTTATT |
Bmapaf-1-1 Olig-2 | AATAACTATGACCAGATTAGCCCCTATAGTGAGTCGTATTAGTGATC |
Bmapaf-1-1 Olig-3 | AAGCTAATCTGGTCATAGTTACCCTATAGTGAGTCGTATTAGTGATC |
Bmapaf-1-1 Olig-4 | GATCACTAATACGACTCACTATAGGGTAACTATGACCAGATTAGCTT |
Bmapaf-1-2 Olig-1 | GATCACTAATACGACTCACTATAGGGGCTAATTATCACCCGCAAATT |
Bmapaf-1-2 Olig-2 | AATTTGCGGGTGATAATTAGCCCCTATAGTGAGTCGTATTAGTGATC |
Bmapaf-1-2 Olig-3 | AAGCTAATTATCACCCGCAAACCCTATAGTGAGTCGTATTAGTGATC |
Bmapaf-1-2 Olig-4 | GATCACTAATACGACTCACTATAGGGTTTGCGGGTGATAATTAGCTT |
RFP-Olig-1 | GATCACTAATACGACTCACTATAGGGGCACCCAGACCATGAGAATTT |
RFP-Olig-2 | AAATTCTCATGGTCTGGGTGCCCCTATAGTGAGTCGTATTAGTGATC |
RFP-Olig-3 | AAGCACCCAGACCATGAGAATCCCTATAGTGAGTCGTATTAGTGATC |
RFP-Olig-4 | GATCACTAATACGACTCACTATAGGGATTCTCATGGTCTGGGTGCTT |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.-y.; Ding, X.-y.; Chen, Q.-y.; Zhang, K.-x.; Zhao, C.-x.; Tang, X.-d.; Wu, Y.-c.; Li, M.-w. Bmapaf-1 is Involved in the Response against BmNPV Infection by the Mitochondrial Apoptosis Pathway. Insects 2020, 11, 647. https://doi.org/10.3390/insects11090647
Wang X-y, Ding X-y, Chen Q-y, Zhang K-x, Zhao C-x, Tang X-d, Wu Y-c, Li M-w. Bmapaf-1 is Involved in the Response against BmNPV Infection by the Mitochondrial Apoptosis Pathway. Insects. 2020; 11(9):647. https://doi.org/10.3390/insects11090647
Chicago/Turabian StyleWang, Xue-yang, Xin-yi Ding, Qian-ying Chen, Kai-xiang Zhang, Chun-xiao Zhao, Xu-dong Tang, Yang-chun Wu, and Mu-wang Li. 2020. "Bmapaf-1 is Involved in the Response against BmNPV Infection by the Mitochondrial Apoptosis Pathway" Insects 11, no. 9: 647. https://doi.org/10.3390/insects11090647
APA StyleWang, X.-y., Ding, X.-y., Chen, Q.-y., Zhang, K.-x., Zhao, C.-x., Tang, X.-d., Wu, Y.-c., & Li, M.-w. (2020). Bmapaf-1 is Involved in the Response against BmNPV Infection by the Mitochondrial Apoptosis Pathway. Insects, 11(9), 647. https://doi.org/10.3390/insects11090647