Comparative Efficacy of Residual Insecticides against the Turkestan Cockroach, Blatta lateralis, (Blattodea: Blattidae) on Different Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cockroaches
2.2. Chemicals
2.3. Substrate
2.4. Residual Bioassay
2.5. Statistical Analysis
3. Results
3.1. Comparative Residual Toxicity of Insecticides on Individual Substrates
3.2. Comparison of Performance of Insecticides across Substrates
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alesho, N.A. Synathropic cockroaches of Russia. Proc. Int. Coll. Soc. Insects 1997, 34, 45–50. [Google Scholar]
- Caruba, A. Blatta lateralis found at Sharpe Army Depot. Pest Control 1979, 47, 16. [Google Scholar]
- Kassal, S.M.; Mohsen, Z.H. Species of peridomestic cockroach in Iraq. Dirasat 1994, 21, 7–13. [Google Scholar]
- Sandhu, G.S.; Sohi, A.H. Occurrence of different species of cockroaches at Ludhiana Punjab India. J. Bombay Nat. Hist. Soc. 1981, 78, 179–181. [Google Scholar]
- Spencer, C.B.; White, R.D.; Stover, L.C. Discovery and control of Turkestan cockroach. Pest Control 1979, 47, 14–45. [Google Scholar]
- Olson, C.A. Blatta (Shelfordella) lateralis, the Turkestan cockroach (Blattoidea: Blattidae) recorded from Arizona. Bull. Entomol. Soc. Am. 1985, 31, 30. [Google Scholar] [CrossRef]
- Gaire, S. Toxicity and repellency of essential oils on the Turkestan cockroach (Blattodea: Blattidae). Master’s Thesis, New Mexico State University, Las Cruces, NM, USA, 2016. [Google Scholar]
- USDA (U.S. Department of Agriculture). A cockroach (Blatta lateralis) Texas–new state record. Coop. Plant Pest Rep. 1980, 5, 74. [Google Scholar]
- Petersen, W.; Cobb, K. First record of the Turkestan cockroach, Blatta lateralis (Walker), in Georgia (USA). J. Entomol. Sci. 2009, 44, 415–416. [Google Scholar] [CrossRef]
- University of California. Effective bait-only control for outdoor cockroaches. UC IPM Green Bull. 2019, 9, 1–6. Available online: http://ipm.ucanr.edu/PDF/PUBS/greenbulletin.2019.summer.pdf (accessed on 10 April 2020).
- Kim, T.; Rust, M.K. Life history and biology of the invasive Turkestan cockroach (Dictyoptera: Blattidae). J. Econ. Entomol. 2013, 106, 2428–2432. [Google Scholar] [CrossRef] [Green Version]
- Pfliegler, W.P.; Báthori, F.; Wang, T.W.; Tartally, A.; Haelewaters, D. Herpomyces ectoparasitic fungi (Ascomycota, Laboulbeniales) are globally distributed by their invasive cockroach hosts and through the pet trade industry. Mycologia 2018, 110, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Fathpour, H.; Emtiazi, G.; Ghasemi, E. Cockroaches as reservoirs and vectors of drug resistant Salmonella spp. Iran. Biomed. J. 2003, 7, 35–38. [Google Scholar]
- Edrington, T.S.; Schultz, C.L.; Bischoff, K.M.; Callaway, T.R.; Looper, M.L.; Genovese, K.J.; Jung, Y.S.; McReynolds, J.L.; Anderson, R.C.; Nisbet, D.J. Antimicrobial resistance and serotype prevalence of Salmonella isolated from dairy cattle in the southwestern United States. Microb. Drug Resist. 2004, 10, 51–56. [Google Scholar] [PubMed] [Green Version]
- Smith II, L.; Appel, A.G.; Mack, T.P.; Keever, G.; Benson, E. Comparative effectiveness of all integrated pest-management system and an insecticidal perimeter spray for control of smokybrown cockroaches (Dictyoptera: Blattidae). J. Econ. Entomol. 1995, 88, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.M., II; Appel, A.G.; Mack, T.P.; Keever, G.J.; Benson, E.P. Evaluation of methods of insecticide application for control of smokybrown cockroaches (Dictyoptera: Blattidae). J. Econ. Entomol. 1997, 90, 1232–1242. [Google Scholar] [CrossRef] [PubMed]
- Bennett, G.W.; Owens, J.M.; Corrigan, R.M. Truman’s Scientific Guide to Pest Control Operations; Questex Media Group LLC: Cleveland, OH, USA, 2016. [Google Scholar]
- Smith, L.M.; Appel, A.G.; Keever, G.J. Cockroach control methods can cause other pest problems. Highlights Agric. Res. 1996, 3, 5–6. [Google Scholar]
- Roush, R.T.; Tabashnik, B.E. Pesticide Resistance; Chapman & Hall: New York, NY, USA, 1990. [Google Scholar]
- Alkan, M.; Atay, T.; Ertürk, S.; Kepenekçi, I. Comparison of bioactivities of native diatomaceous earth against Turkestan cockroach [Blatta lateralis Walker (Blattodea: Blattidae)] nymphs. Appl. Ecol. Environ. Res. 2019, 17, 5897–5994. [Google Scholar] [CrossRef]
- Rust, M.K. Factors affecting control with residual insecticide deposits. In Understanding and Controlling the German Cockroach; Rust, M.K., Owens, J.M., Reierson, D.A., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 149–169. [Google Scholar]
- Finney, D.J. Probit Analysis; Cambridge University Press: Cambridge, UK, 1971. [Google Scholar]
- Minitab, Inc. MINITAB Statistical Software; release 14 for Windows; State College: Stetklic, PA, USA, 2005. [Google Scholar]
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Payton, M.E.; Greenstone, M.H.; Schenker, N. Overlapping confidence intervals or standard error intervals: What do they mean in terms of statistical significance? J. Insect Physiol. 2003, 34, 1–6. [Google Scholar]
- Mallis, A. Handbook of Pest Control, 10th ed.; Mallis Handbook Co.: Cleveland, OH, USA, 2011. [Google Scholar]
- Soderlund, D.M.; Bloomquist, J.R. Neurotoxic actions of pyrethroid insecticides. Annu. Rev. Entomol. 1989, 34, 77–96. [Google Scholar] [CrossRef]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.; Bonmatin, J.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2015, 22, 5–34. [Google Scholar] [CrossRef] [PubMed]
- Hollingworth, R.M. Mechanisms of action and toxicity of new pesticides that disrupt oxidative phosphorylation. Rev. Toxicol. 1998, 2, 253–266. [Google Scholar]
- Husen, T.J.; Narain, R.; Ab-Majid, A.H.; Kamble, S.T.; Davis, R.W. Bioefficacy of chlorfenapyr against American and Oriental cockroaches, and House flies on wood, concrete, and vinyl surfaces. In Proceedings of the Seven International Conference on Urban Pests, Ouro Pretto, Brazil, 16 August 2011; Robinson, W.H., Carvalho Campos, A.E., Eds.; Instituto Biológico: São Paulo, Brazil, 2011; pp. 89–98. [Google Scholar]
- Wickham, J.C. Conventional insecticides. In Understanding and Controlling the German Cockroach; Rust, M.K., Owens, J.M., Reierson, D.A., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 109–147. [Google Scholar]
- Chadwick, P.R. Surfaces and other factors modifying the effectiveness of pyrethroids against insects in public health. Pestic. Sci. 1985, 16, 383–391. [Google Scholar] [CrossRef]
- Rojas-de-Arias, A.; Lehane, M.; Schofield, C.; Fournet, A. Comparative evaluation of pyrethroid insecticide formulations against Triatoma infestans (Klug): Residual efficacy on four substrates. Mem. Inst. Oswaldo Cruz 2003, 98, 975–980. [Google Scholar] [CrossRef] [Green Version]
- Dang, K.; Singham, G.V.; Doggett, S.L.; Lilly, D.G.; Lee, C.-Y. Effects of different surfaces and insecticide carriers on residual insecticide bioassays against bed bugs, Cimex spp. (Hemiptera: Cimicidae). J. Econ. Entomol. 2017, 110, 558–566. [Google Scholar]
- Wege, P.J.; Hoppe, M.A.; Bywater, A.F.; Weeks, S.D.; Gallo, T.S. A microencapsulated formulation of lambda-cyhalothrin. In Proceedings of the Third International Conference on Urban Pests, Praga, Czech Republic, 19–22 July 1999; Robinson, W.H., Rettich, F., Rambo, W., Eds.; OOK-Press: Praga, Czech Republic, 1999; pp. 301–310. [Google Scholar]
- Mutagahywa, J.; Ijumba, J.N.; Pratap, H.B.; Molteni, F.; Mugarula, F.E.; Magesa, S.M.; Ramsan, M.M.; Kafuko, J.M.; Nyanza, E.C.; Mwaipape, O.; et al. The impact of different sprayable surfaces on the effectiveness of indoor residual spraying using a micro encapsulated formulation of lambda-cyhalothrin against Anopheles gambiae s.s. Parasites Vectors 2015, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- Koehler, P.G.; Patterson, R.S. Suppression of German cockroach (Orthoptera: Blattellidae) populations with cypermethrin and two chlorpyrifos formulations. J. Econ. Entomol. 1988, 81, 845–849. [Google Scholar] [CrossRef]
- Gaire, S.; O’Connell, M.; Holguin, F.O.; Amatya, A.; Bundy, S.; Romero, A. Insecticidal properties of essential oils and some of their constituents on the Turkestan Cockroach (Blattodea: Blattidae). J. Econ. Entomol. 2017, 110, 584–592. [Google Scholar] [CrossRef]
Trade Name | Formulation | Manufacturer | Concentration of Active Ingredients (AI) in Spray Solution | Amount of AI Sprayed per Meter Square Area (mg/m2) |
---|---|---|---|---|
Tandem | Emulsifiable concentration | Syngenta Crop Protection Inc., Greensboro, NC, USA | 0.10% thiamethoxam, 0.03% lambda-cyhalothrin | thiamethoxam (40.7) lambda-cyhalothrin (12.21) |
Transport GHP | Wettable powder | FMC Corporation, Philadelphia, PA, USA | 0.05% acetamiprid, 0.06% bifenthrin | acetamiprid (20.35) bifenthrin (24.42) |
Temprid SC | Suspension concentrate | Bayer Crop Science LP, Research Triangle Park, NC, USA | 0.10% imidacloprid, 0.05% beta-cyfluthrin | imidacloprid (40.70) beta-cyfluthrin (20.35) |
Demand CS | Capsulated suspension | Syngenta Crop Protection Inc., Fulbourn, Cambridge, UK | 0.06% lambda cyhalothrin | lambda cyhalothrin (24.42) |
Phantom | Suspension concentrate | BASF Corporation, Florham, PA, USA | 0.5% chlorfenapyr | chlorfenapyr (203.5) |
Talstar P | Suspension concentrate | FMC Corporation, Philadelphia, PA, USA | 0.06% bifenthrin | Bifenthrin (24.42) |
Substrates | Insecticides | Lethal Time (LT)50 II, Hours (CI 95%) | Slope ± SE | Percent Mortality III (%) | χ2,IV | df | p-Value |
---|---|---|---|---|---|---|---|
Concrete | Tandem | 11.3 (9.1–14.0) a | 1.49 ± 0.17 | 100 | 7.29 | 8 | 0.505 |
Transport GHP | 20.4 (16.3–25.2) b | 1.28 ± 0.14 | 100 | 6.74 | 8 | 0.565 | |
Temprid SC | 19.2 (15.1–24.3) b | 1.0 ± 0.10 | 100 | 13.43 | 8 | 0.098 | |
Demand CS | 15.0 (12.0–18.8) ab | 1.19 ± 0.12 | 100 | 6.28 | 8 | 0.616 | |
Phantom I | – | 10 | |||||
Talstar P I | – | 0 | |||||
Tile | Tandem | 18.1 (14.4–22.5) a | 1.26 ± 0.13 | 100 | 1.19 | 8 | 0.997 |
Transport GHP | 10.5 (8.30–13.3) b | 1.02 ± 0.09 | 100 | 3.71 | 8 | 0.882 | |
Temprid SC | 12.6 (9.3–17.0) ab | 0.62 ± 0.05 | 89 | 5.61 | 8 | 0.690 | |
Demand CS | 11.3 (8.3–15.5) ab | 0.87 ± 0.1 | 100 | 6.82 | 8 | 0.556 | |
Phantom I | – | 20 | |||||
Talstar P I | – | 43 | |||||
Wood | Tandem | 17.3 (13.9–21.3) ac | 1.45 ± 0.16 | 100 | 7.67 | 8 | 0.466 |
Transport GHP | 26.7 (20.6–34.7) ab | 0.82 ± 0.09 | 80 | 3.05 | 8 | 0.931 | |
Temprid SC | 28.6 (21.6–38.4) b | 0.71 ± 0.07 | 77 | 5.79 | 8 | 0.670 | |
Demand CS | 17.2 (13.7–21.2) ac | 1.45 ± 0.17 | 100 | 2.58 | 8 | 0.886 | |
Phantom I | – | 0 | |||||
Talstar P I | – | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaire, S.; Romero, A. Comparative Efficacy of Residual Insecticides against the Turkestan Cockroach, Blatta lateralis, (Blattodea: Blattidae) on Different Substrates. Insects 2020, 11, 477. https://doi.org/10.3390/insects11080477
Gaire S, Romero A. Comparative Efficacy of Residual Insecticides against the Turkestan Cockroach, Blatta lateralis, (Blattodea: Blattidae) on Different Substrates. Insects. 2020; 11(8):477. https://doi.org/10.3390/insects11080477
Chicago/Turabian StyleGaire, Sudip, and Alvaro Romero. 2020. "Comparative Efficacy of Residual Insecticides against the Turkestan Cockroach, Blatta lateralis, (Blattodea: Blattidae) on Different Substrates" Insects 11, no. 8: 477. https://doi.org/10.3390/insects11080477