Evaluation of Exclusion Netting for Coffee Berry Borer (Hypothenemus Hampei) Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Experimental Design
2.3. Microclimate
2.4. CBB Infestation, Position, Population per Fruit, Sex Ratio, and Mortality
2.5. Coffee Fruit Size, Yield and Quality
2.6. Statistical Analysis
3. Results
3.1. Microclimate
3.2. CBB Infestation and Position
3.3. CBB Population per Fruit, Sex Ratio and Mortality
3.4. Coffee Maturation, Yield and Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Damon, A. A review of the biology and control of the coffee berry borer, Hypothenemus hampei (Coleoptera: Scolytidae). Bull. Entomol. Res. 2001, 90, 453–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ISO. International Standard ISO 10470. In Green Coffee-Defect Reference Chart; ISO: Geneva, Switzerland, 2004; p. 15. [Google Scholar]
- Bustillo, A.E.; Cardenas, M.R.; Villalba, D.; Orozco, J.; Benavides, M.P.; Posada, F.J. Manejo Integrado de la Broca del Café Hypothenemus Hampei (Ferrari) en Colombia; Cenicafé: Chinchiná, Colombia, 1998. [Google Scholar]
- Vega, F.E.; Infante, F.; Johnson, A.J. The genus Hypothenemus, with emphasis on H. Hampei, the coffee berry borer. In Bark Beetles, Biology and Ecology of Native and Invasive Species, 1st ed.; Vega, F.E., Hofstetter, R.W., Eds.; Elsevier: London, UK, 2015. [Google Scholar]
- Barrera, J.F. Dynamique des Populations du Scolyte des Fruits du Caféier, Hypothenemus Hampei (Coleoptera: Scolytidae), et Lutte Biologique Avec le Parasitoïde Cephalonomia Stephanoderis (Hymenoptera: Bethylidae), au Chiapas, Mexique. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France, 1994; p. 301. [Google Scholar]
- Baker, P.S.; Barrera, J.F.; Rivas, A. Life-history studies of the coffee berry borer (Hypothenemus hampei, Scolytidae) on coffee trees in southern Mexico. J. Appl. Entomol. 1992, 29, 656–662. [Google Scholar] [CrossRef]
- Jaramillo, J.; Chabi-Olaye, A.; Kamonjo, C.; Jaramillo, A.; Vega, F.E.; Poehling, H.M.; Borgemeister, C. Thermal tolerance of the coffee berry borer Hypothenemus hampei: Predictions of climate change on a tropical insect pest. PLoS ONE 2009, 4, e6487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauer, H.F.G.; Duval, G.; Falanghe, O. Combate á broca do café e a possibilidae do emprego de inseticidas. O Bioloǵico 1947, 13, 205–214. [Google Scholar]
- Mansingh, A. Limitations of insecticides in the management of the coffee berry borer. J. Coffee Res. 1991, 21, 67–98. [Google Scholar]
- Weber, J.; Halsall, C.J.; Muir, D.; Teixeira, C.; Small, J.; Solomon, K.; Hermanson, M.; Hung, H.; Bidleman, T. Endosulfan, a global pesticide: A review of its fate in the environment and occurrence in the Arctic. Sci. Total Environ. 2010, 408, 2966–2984. [Google Scholar] [CrossRef]
- Mascarelli, A. Growing Up with Pesticides. Science 2013, 341, 740–741. [Google Scholar] [CrossRef]
- Amarasekare, K.G.; Shearer, P.W.; Mills, N.J. Testing the selectivity of pesticide effects on natural enemies in laboratory bioassays. Biol. Control 2016, 102, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, B.A.; Bullock, J.M.; Shore, R.F.; Heard, M.S.; Pereira, M.G.; Redhead, J.; Ridding, L.; Dean, H.; Sleep, D.; Henrys, P.; et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 2017, 356, 1393–1395. [Google Scholar] [CrossRef] [Green Version]
- Das, S.; Hageman, K.J.; Taylor, M.; Michelsen-Heath, S.; Stewart, I. Fate of the organophosphate insecticide, chlorpyrifos, in leaves, soil, and air following application. Chemosphere 2020, 243, 125194. [Google Scholar] [CrossRef] [PubMed]
- Brun, L.O.; Marcillaud, C.; Gaudichon, V.; Suckling, D.M. Endosulfan resistance in Hypothenemus hampei (Coleoptera: Scolytidae) in New Caledonia. J. Econ. Entomol. 1989, 82, 1311–1316. [Google Scholar] [CrossRef]
- Góngora, B.; Posada, F.J.; Bustillo, A.E. Detección molecular de un gen de resistencia al insecticida endosulfan en una población de broca Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) en Colombia. In Resúmenes Congreso de la Sociedad Colombiana de Entomología, XXVIII; Socolen: Pereira, Colombia, 2001; pp. 47–48. [Google Scholar]
- Lubick, N. Endosulfan’s Exit: US EPA Pesticide Review Leads to a Ban. Science 2010, 328, 1466. [Google Scholar] [CrossRef] [PubMed]
- Janssen, M.P.M. Endosulfan: A Closer Look at the Arguments Against a Worldwide Phase Out; RIVM Letter Report 601356002/2011; National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport: Bilthoven, The Netherlands, 2011. [Google Scholar]
- Pesticide Action Network International. PAN International Consolidated List of Banned Pesticides—4th Edition. Available online: http://pan-international.org/pan-international-consolidated-list-of-banned-pesticides/ (accessed on 16 March 2020).
- Vega, F.E.; Infante, F.; Castillo, A.; Jaramillo, J. The coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Curculionidae): A short review, with recent findings and future research directions. Terr. Arthropod Rev. 2009, 2, 129–147. [Google Scholar]
- Kawabata, A.M.; Nakamoto, S.T.; Curtiss, R.T. Recommendations for Coffee Berry Borer Integrated Pest Management in Hawaii 2015. In Insect Pests-33; University of Hawaii at Manoa College of Tropical Agriculture and Human Resources: Honolulu, HI, USA, 2015. [Google Scholar]
- Aristizábal, L.F.; Bustillo, A.E.; Arthurs, S.P. Integrated pest management of coffee berry borer: Strategies from Latin America that could be useful for coffee farmers in Hawaii. Insects 2016, 7, 6. [Google Scholar] [CrossRef] [Green Version]
- Aristizábal, L.F.; Johnson, M.; Shriner, S.; Hollingsworth, R.; Manoukis, N.C.; Myers, R.; Bayman, P.; Arthurs, S.P. Integrated pest management of coffee berry borer in Hawaii and Puerto Rico: Current status and prospects. Insects 2017, 8, 123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Infante, F. Pest management strategies against the coffee berry borer (Coleoptera: Curculionidae: Scolytinae). J. Agric. Food Chem. 2018, 66, 5275–5280. [Google Scholar] [CrossRef] [PubMed]
- Sauphanor, B.; Sévérac, G.; Maugin, S.; Toubon, J.F.; Capowiez, Y. Exclusion netting may alter reproduction of the codling moth (Cydia pomonella) and prevent associated fruit damage to apple orchards. Entomol. Exp. Appl. 2012, 145, 134–142. [Google Scholar] [CrossRef]
- Chouinard, G.; Veilleux, J.; Pelletier, F.; Larose, M.; Philion, V.; Cormier, D. Impact of exclusion netting row covers on arthropod presence and crop damage to ‘Honeycrisp’apple trees in North America: A five-year study. Crop Prot. 2017, 98, 248–254. [Google Scholar] [CrossRef]
- Lloyd, A.; Hamacek, E.; George, A.; Nissen, R.; Waite, G. Evaluation of exclusion netting for insect pest control and fruit quality enhancement in tree crops. Acta Hortic. 2005, 694, 253–258. [Google Scholar] [CrossRef]
- Leach, H.; Van Timmeren, S.; Isaacs, R. Exclusion netting delays and reduces Drosophila suzukii (Diptera: Drosophilidae) infestation in raspberries. J. Econ. Entomol. 2016, 109, 2151–2158. [Google Scholar] [CrossRef]
- Ebbenga, D.N.; Burkness, E.C.; Hutchison, W.D. Evaluation of exclusion netting for spotted-wing drosophila (Diptera: Drosophilidae) management in Minnesota wine grapes. J. Econ. Entomol. 2019, 112, 2287–2294. [Google Scholar] [CrossRef] [PubMed]
- Kuhar, T.P.; Short, B.D.; Krawczyk, G.; Leskey, T.C. Deltamethrin-incorporated nets as an integrated pest management tool for the invasive Halyomorpha halys (Hemiptera: Pentatomidae). J. Econ. Entomol. 2017, 110, 543–545. [Google Scholar] [CrossRef] [PubMed]
- Candian, V.; Pansa, M.G.; Briano, R.; Peano, C.; Tedeschi, R.; Tavella, L. Exclusion nets: A promising tool to prevent Halyomorpha halys from damaging nectarines and apples in NW Italy. Bull. Insectol. 2018, 71, 21–30. [Google Scholar]
- Merrill, H.A. Control of nuisance pests in suburbia. In Proceedings of the 3rd Vertebrate Pest Conference, San Francisco, CA, USA, 7–9 March 1967; pp. 65–78. [Google Scholar]
- Chouinard, G.; Firlej, A.; Cormier, D. Going beyond sprays and killing agents: Exclusion, sterilization and disruption for insect pest control in pome and stone fruit orchards. Sci. Hortic. 2016, 208, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Rigden, P. To Net or Not to Net, 3rd ed.; Queensland Department of Primary Industries and Fisheries: Queensland, Australia, 2008; p. 64.
- Alaphilippe, A.; Capowiez, Y.; Severac, G.; Simon, S.; Saudreau, M.; Caruso, S.; Vergnani, S. Codling moth exclusion netting: An overview of French and Italian experiences. IOBC-WPRS Bull. 2016, 112, 31–35. [Google Scholar]
- Marliac, G.; Penvern, S.; Barbier, J.M.; Lescourret, F.; Capowiez, Y. Impact of crop protection strategies on natural enemies in organic apple production. Agron. Sustain. Dev. 2015, 35, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Green, T.; Wright, S.E.; Aluja, M.; Leskey, T.C.; Vincent, C. Speciation, consumers, and the market: Profit with a conscience. In Biorational Tree-Fruit Pest Management; CABI Press: Oxfordshire, UK, 2009; pp. 253–284. [Google Scholar]
- Enserink, M.; Hines, P.J.; Vignieri, S.N.; Wigginton, N.S.; Yeston, J.S. The pesticide paradox. Science 2013, 341, 728–729. [Google Scholar] [CrossRef] [Green Version]
- Ben-Yakir, D.; Antignus, Y.; Offir, Y.; Shahak, Y. Colored shading nets impede insect invasion and decrease the incidences of insect-transmitted viral diseases in vegetable crops. Entomol. Exp. Appl. 2012, 144, 249–257. [Google Scholar] [CrossRef]
- Graf, B.; Höpli, H.; Rauscher, S.; Höhn, H. Hail nets influence the migratory behaviour of codling moth and leaf roller. Obst Weinbau 1999, 135, 289–292. [Google Scholar]
- Alnajjar, G.; Collins, J.; Drummond, F.A. Behavioral and preventative management of Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Maine wild blueberry (Vaccinium angustifolium Aiton) through attract and kill trapping and insect exclusion-netting. Int. J. Entomol. Nematol. 2017, 3, 51–61. [Google Scholar]
- Kuesel, R.; Scott Hicks, D.; Archer, K.; Sciligo, A.; Bessin, R.; Gonthier, D. Effects of fine-mesh exclusion netting on pests of blackberry. Insects 2019, 10, 249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taber, M.R.; Martin, L.R. The use of netting as a bird management tool in vineyards. In Proceedings of the Vertebrate Pest Conference, Costa Mesa, CA, USA, 2–5 March 1998. [Google Scholar]
- Tillman, E.A.; Van Doom, A.; Avery, M.L. Bird damage to tropical fruit in south Florida. In Proceedings of the Wildlife Damage Management Conference, State College, PA, USA, 5–8 October 2000; Brittingham, M.C., Kays, J., McPeake, R., Eds.; College of Agricultural Sciences: State College, PA, USA, 2000; p. 13. [Google Scholar]
- Koopman, M.E.; Pitt, W.C. Crop diversification leads to diverse bird problems in Hawaiian agriculture. Human-Wildl. Confl. 2007, 1, 235–243. [Google Scholar]
- Tollington, S.; Kareemun, Z.; Augustin, A.; Lallchand, K.; Tatayah, V.; Zimmermann, A. Quantifying the damage caused by fruit bats to backyard lychee trees in Mauritius and evaluating the benefits of protective netting. PLoS ONE 2019, 14, e0220955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalcsits, L.; Musacchi, S.; Layne, D.R.; Schmidt, T.; Mupambi, G.; Serra, S.; Mendoza, M.; Asteggiano, L. Above and below-ground environmental changes associated with the use of photoselective protective netting to reduce sunburn in apple. Agric. For. Meteorol. 2017, 238, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Iglesias, I.; Alegre, S. The effect of anti-hail nets on fruit protection, radiation, temperature, quality and profitability of ‘Mondial Gala’apples. J. Appl. Hortic. 2006, 8, 91–100. [Google Scholar] [CrossRef]
- Bastías, R.M.; Losciale, P.; Chieco, C.; Rossi, F.; Corelli-Grappadelli, L. Physiological Aspects Affected by Photoselective Nets in Apples: Preliminary Studies. Acta Hortic. 2011, 907, 217–220. [Google Scholar] [CrossRef]
- Willey, N. Environmental Plant Physiology; Garland Science: New York, NY, USA, 2016. [Google Scholar]
- Kalcsits, L.; Asteggiano, L.; Schmidt, T.; Musacchi, S.; Serra, S.; Layne, D.; Mupambi, G. Shade Netting Reduces Sunburn Damage and Soil Moisture Depletion in ‘Granny Smith’Apples. Acta Hortic. 2018, 1228, 85–90. [Google Scholar] [CrossRef]
- Mupambi, G.; Anthony, B.M.; Layne, D.R.; Musacchi, S.; Serra, S.; Schmidt, T.; Kalcsits, L.A. The influence of protective netting on tree physiology and fruit quality of apple: A review. Sci. Hortic. 2018, 236, 60–72. [Google Scholar] [CrossRef]
- Basile, B.; Giaccone, M.; Cirillo, C.; Ritieni, A.; Graziani, C.; Shahak, Y.; Florani, M. Photo-selective hail nets affect fruit size and quality in hayward kiwifruit. Sci. Hortic. 2012, 141, 91–97. [Google Scholar] [CrossRef]
- Chouinard, G.; Veilleux, J.; Pelletier, F.; Larose, M.; Philion, V.; Joubert, V.; Cormier, D. Impact of exclusion netting row covers on ‘Honeycrisp’apple trees grown under northeastern North American conditions: Effects on photosynthesis and fruit quality. Insects 2019, 10, 214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burbano, E.; Wright, M.; Bright, D.E.; Vega, F.E. New record for the coffee berry borer, Hypothenemus hampei, in Hawaii. J. Insect Sci. 2011, 11, 117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kinro, G. A Cup of Aloha: The Kona Coffee Epic; University of Hawaii Press: Honolulu, HI, USA, 2003. [Google Scholar]
- Hamilton, L.J.; Hollingsworth, R.G.; Sabado-Halpern, M.; Manoukis, N.C.; Follett, P.A.; Johnson, M.A. Coffee berry borer (Hypothenemus hampei) (Coleoptera: Curculionidae) development across an elevational gradient on Hawai’i Island: Applying laboratory degree-day predictions to natural field populations. PLoS ONE 2019, 14, e0218321. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.A.; Manoukis, N.C. Abundance of coffee berry borer in feral, abandoned and managed coffee on Hawaii Island. J. Appl. Entomol. under review.
- Leung, P.S.; Kawabata, A.M.; Nakamoto, S.T. Estimated Economy-Wide Impact of CBB for the Crop Years 2011/12 and 2012/13; Brief Report at Request of Hawaii Congressional Delegation; College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2014; p. 2. [Google Scholar]
- Johnson, M.A.; Hollingsworth, R.; Fortna, S.; Aristizábal, L.F.; Manoukis, N.C. The Hawaii Protocol for Scientific Monitoring of Coffee Berry Borer: A Model for Coffee Agroecosystems Worldwide. J. Vis. Exp. 2018, 133, e57204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 1 March 2020).
- Johnson, M.A.; Fortna, S.; Hollingsworth, R.G.; Manoukis, N.C. Post-harvest population reservoirs of Coffee Berry Borer (Coleoptera: Curculionidae) on Hawai’i Island. J. Econ. Entomol. 2019, 112, 2833–2841. [Google Scholar] [CrossRef] [PubMed]
- Mariño, Y.A.; Pérez, M.-E.; Gallardo, F.; Trifilio, M.; Cruz, M.; Bayman, P. Sun vs. shade affects infestation, total population and sex ratio of the coffee berry borer (Hypothenemus hampei) in Puerto Rico. Agric. Ecosyst. Environ. 2016, 222, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Cormier, D.; Veilleux, J.; Firlej, A. Exclusion net to control spotted wing Drosophila in blueberry fields. IOBC-WPRS Bull. 2015, 109, 181–184. [Google Scholar]
- Grasswitz, T.R. Integrated Pest Management (IPM) for Small-Scale Farms in Developed Economies: Challenges and Opportunities. Insects 2019, 10, 179. [Google Scholar] [CrossRef] [Green Version]
- Manja, K.; Aoun, M. The use of nets for tree fruit crops and their impact on the production: A review. Sci. Hortic. 2019, 246, 110–122. [Google Scholar] [CrossRef]
- USDA. Sunn Hemp: A Cover Crop for Southern and Tropical Farming Systems; Agronomy Technical Note No. 10; USDA-NRCS, Soil Quality Institute: Auburn, AL, USA, 1999; pp. 1–4.
- Björkman, T.; Shail, J.W. Cornell Cover Crop Guide for Sudangrass; Ver. 1.100716; Cornell University: Ithaca, NY, USA, 2010; p. 2. [Google Scholar]
Microclimate Variable | Farm 1 | Farm 2 | ||
---|---|---|---|---|
Control | Exclusion | Control | Exclusion | |
Mean Temp (°C) | 22.47 ± 0.10 | 22.50 ± 0.10 | 22.11 ± 0.09 | 22.46 ± 0.09 |
Max Temp (°C) | 28.29 ± 0.14 | 29.36 ± 0.16 | 27.62 ± 0.13 | 29.03 ± 0.17 |
Min Temp (°C) | 17.90 ± 0.15 | 17.50 ± 0.15 | 17.68 ± 0.14 | 18.02 ± 0.12 |
Mean RH (%) | 84.30 ± 0.61 | 83.92 ± 0.59 | 84.35 ± 0.59 | 82.32 ± 0.58 |
Max RH (%) | 96.04 ± 0.54 | 96.60 ± 0.54 | 95.58 ± 0.53 | 94.81 ± 0.53 |
Min RH (%) | 64.91 ± 0.76 | 61.78 ± 0.73 | 64.01 ± 0.77 | 59.39 ± 0.75 |
Mean Solar (Lux) | 7212.78 ± 525 | 4430.95 ± 290 | 23,196.38 ± 884 | 11,311.71 ± 532 |
Max Solar (Lux) | 43,075.87 ± 3064 | 27,304.94 ± 1818 | 142,875.07 ± 5130 | 65,473.95 ± 2867 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, M.A.; Fortna, S.; Manoukis, N.C. Evaluation of Exclusion Netting for Coffee Berry Borer (Hypothenemus Hampei) Management. Insects 2020, 11, 364. https://doi.org/10.3390/insects11060364
Johnson MA, Fortna S, Manoukis NC. Evaluation of Exclusion Netting for Coffee Berry Borer (Hypothenemus Hampei) Management. Insects. 2020; 11(6):364. https://doi.org/10.3390/insects11060364
Chicago/Turabian StyleJohnson, Melissa A., Samuel Fortna, and Nicholas C. Manoukis. 2020. "Evaluation of Exclusion Netting for Coffee Berry Borer (Hypothenemus Hampei) Management" Insects 11, no. 6: 364. https://doi.org/10.3390/insects11060364
APA StyleJohnson, M. A., Fortna, S., & Manoukis, N. C. (2020). Evaluation of Exclusion Netting for Coffee Berry Borer (Hypothenemus Hampei) Management. Insects, 11(6), 364. https://doi.org/10.3390/insects11060364