Next Article in Journal
Intraguild Predation between Chrysoperla carnea (Neuroptera: Chrysopidae) and Hippodamia variegata (Coleoptera: Coccinellidae) at Various Extraguild Prey Densities and Arena Complexities
Previous Article in Journal
Functional Identification of Px-fringe and Px-engrailed Genes under Heat Stress in Chlorpyrifos-Resistant and -Susceptible Plutela xylostella (Lepidoptera: Plutellidae)
Open AccessArticle

First Report Using a Native Lacewing Species to Control Tuta absoluta: From Laboratory Trials to Field Assessment

CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Chinese Academy of Sciences, Ürümqi 830011, China
University of Chinese Academy of Sciences, Beijing 100049, China
Institute of Zoology and Parasitology, Academy of Sciences of the Republic of Tajikistan, Dushanbe 734025, Tajikistan
School of Life Sciences, Henan University, Kaifeng 475004, China
Author to whom correspondence should be addressed.
These authors contributed equally to the study.
Insects 2020, 11(5), 286;
Received: 8 April 2020 / Revised: 23 April 2020 / Accepted: 24 April 2020 / Published: 7 May 2020
The South American tomato pinworm, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), a destructive pest on tomato, has invaded most Afro-Eurasian countries. Recently invaded by the pest, most tomato crops in greenhouses and open fields in Tajikistan are currently suffering major damage. While failure in management using chemical insecticide has been frequently observed, alternative options such as biological control is urgently needed. In this study, we evaluated the effectiveness of the common green lacewing Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) against T. absoluta. In controlled laboratory conditions, C. carnea showed high predation rate on both T. absoluta eggs (i.e., 36 ± 2 eggs within 24 h and 72 ± 4 eggs within 48 h) and larvae, especially it can attack the larvae both inside and outside the leaf galleries (i.e., an average of 22% of the larvae was killed inside, and an average of 35% was killed outside). In a cage exclusion experiment, T. absoluta showed relatively low larval density in the cages with pre-fruiting release of C. carnea, whereas the larval density was four to six times higher in the “no release” cages. In the “post-fruiting release” cages, the pest population that had already built up during the pre-fruiting stage eventually crashed. In an open-field experiment, the tomato crops in control plots were fully destroyed, whereas low levels of larvae density and damage were observed in the biocontrol plots. Moreover, the field release of C. carnea resulted in significantly higher tomato yield than those without release, despite no differences between the “pre-fruiting release” and “post-fruiting release” treatments. We conclude that the local commercial biocontrol agent C. carnea could be promising for the management of T. absoluta in Tajikistan. It is also one of the first reports showing the management of T. absoluta using a lacewing species. The effectiveness should be validated by further field trials in larger area of commercial crops and various locations. View Full-Text
Keywords: invasive pest; biological control; IPM; exclusion cage; predation rate invasive pest; biological control; IPM; exclusion cage; predation rate
Show Figures

Figure 1

MDPI and ACS Style

Ismoilov, K.; Wang, M.; Jalilov, A.; Zhang, X.; Lu, Z.; Saidov, A.; Sun, X.; Han, P. First Report Using a Native Lacewing Species to Control Tuta absoluta: From Laboratory Trials to Field Assessment. Insects 2020, 11, 286.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

Search more from Scilit
Back to TopTop