# Influence of Temperature on the Life-Cycle Dynamics of Aedes albopictus Population Established at Temperate Latitudes: A Laboratory Experiment

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## Simple Summary

## Abstract

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Mosquito Colony

#### 2.2. Experimental Conditions

#### 2.3. Egg-Hatching Experiment

#### 2.4. Larval Survival and Developmental Time

#### 2.5. Adult Longevity and Gonotrophic Cycle

#### 2.6. Statistical Analysis

## 3. Results

#### 3.1. Survivorship and Length of Development of Eggs and Immature Stages

#### 3.2. Adult Life Expectancies

#### 3.3. Gonotrophic Cycles and Egg Laying

#### 3.4. Population Dynamics Simulation

## 4. Discussion

_{0}, which is defined as the expected number of secondary infections that arise when a single infective host is introduced into a fully susceptible host population through pathogen transmission by the vector (see, for instance, [41]). A higher biting rate translates into a larger R

_{0}, thus dramatically affecting for instance the probability of occurrence of an outbreak and its final size. Nonetheless, we need to remark that our experiment protocol was not exactly identical to the one followed by Delatte and coauthors. In fact, subtropical mosquitoes were offered a blood meal from an anesthetized mouse every day, while, due to logistic constraints, we offered cow blood twice a week via Hemotek. Moreover, we should note that adult survival under laboratory rather than natural conditions may have been inflated due to the availability of food and the absence of both predation and host defensive mechanisms against blood feeding.

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Appendix A

#### Appendix A.1. Bayesian Fitting of the Posterior Distributions of Life History Parameters

_{L}

_{1-A}(T)

_{i}, i = 1,…k(T), where k(T) is the number of emerging adults, which is different across the tested temperatures. Thus, the likelihood of recording our observations assuming they belong to a Poisson distribution with average λ is

_{i}(T) is the number of emerging adults in cup i. Thus, the likelihood of observing the recorded survivals assuming they belong to a binomial distribution with probability p is

_{L1-A}(25) and Λ

_{L1-A}(30), computed the differences x

_{i}, i.e., x

_{i}= (λ

_{i}(30) − λ

_{i}(25))

_{i = 1, …, 10,000}, and evaluated the probability for the two distributions to be similar as

_{L1-A}(25) as

**Figure A1.**Estimated posterior distributions of Λ

_{E}(T), the average length of time (days) between immersion of eggs in water and hatching response at 15, 25, and 30 °C. Dashed black lines represent the 2.5 and 97.5 quantiles. Solid red lines represent the average value for subtropical Ae. albopictus.

**Figure A2.**Estimated posterior distributions of P

_{E}(T), the egg hatching rate at 10, 15, 25, and 30 °C. Dashed black lines represent the 2.5 and 97.5 quantiles. Solid red lines represent the average value for subtropical Ae. albopictus.

**Figure A3.**Estimated posterior distributions of Λ

_{L1-A}(T), the average duration (days) of development from L1 to A at 15, 25, and 30 °C. Dashed black lines represent the 2.5 and 97.5 quantiles. Solid red lines represent the average value for subtropical Ae. albopictus.

**Figure A4.**Estimated posterior distributions of P

_{L1-A}(T), the survival rate from L1 to A at 15, 25, and 30 °C. Dashed black lines represent the 2.5 and 97.5 quantiles. Solid red lines represent the average value for subtropical Ae. albopictus.

**Figure A5.**Estimated posterior distributions of Λ

_{A}(T), the average adult female longevity (days) at 10, 15, 25, and 30 °C. Dashed black lines represent the 2.5 and 97.5 quantiles.

**Figure A6.**Estimated posterior distributions of Λ

_{G}(T), the average duration of gonotrophic cycle at 25 and 30 °C. Dashed black lines represent the 2.5 and 97.5 quantiles. Solid red lines represent the average value for subtropical Ae. albopictus.

**Figure A7.**Estimated posterior distributions of Λ

_{NG}(T), the number of gonotrophic cycles completed on average by a female mosquito at 25 and 30 °C. Dashed black lines represent the 2.5 and 97.5 quantiles. Solid red lines represent the average value for subtropical Ae. albopictus.

**Figure A8.**Estimated posterior distributions of Λ

_{NE}(T), the number of eggs laid on average by a female mosquito at 25 and 30 °C for each gonotrophic cycle. Dashed black lines represent the 2.5 and 97.5 quantiles. Solid red lines represent the average value for subtropical Ae. albopictus.

#### Appendix A.2. Adult Survival

#### Appendix A.3. Population Dynamics Simulation

_{E}(T) and Λ

_{E}(T), respectively. Subsequently, the number of emerging adults a (a ≤ e) and their time of development was drawn from P

_{L1-A}(T) and Λ

_{L1-A}(T). Finally, a/2 (only females) adults laid n eggs for each gonotrophic cycle c, with n and c drawn from Λ

_{NE}(T) and Λ

_{NG}(T) respectively, and they live for l days, with l extracted from Λ

_{A}(T).

**Figure A9.**Distributions of quantities of interest for simulated (1000 simulations) life history of 1000 initial eggs at 25 °C. (

**a**) Number of hatched eggs; (

**b**) time for egg development; (

**c**) number of emerging adults; (

**d**) time of development from the egg stage; (

**e**) adult longevity; (

**f**) total number of eggs laid by all females. Dashed red lines represent the 2.5 and 97.5 quantiles, solid red lines represent the average value.

**Figure A10.**Distributions of quantities of interest for simulated (1000 simulations) life history of 1000 initial eggs at 30 °C. (

**a**) Number of hatched eggs; (

**b**) time for egg development; (

**c**) number of emerging adults; (

**d**) time of development from the egg stage; (

**e**) adult longevity; (

**f**) total number of eggs laid by all females. Dashed red lines represent the 2.5 and 97.5 quantiles, solid red lines represent the average value.

## References

- European Centre for Disease Prevention and Control. Guidelines for the Surveillance of Invasive Mosquitoes in Europe; ECDC: Stockholm, Sweden, 2012; ISBN 978-92-9193-378-5.
- Medlock, J.M.; Hansford, K.M.; Schaffner, F.; Versteirt, V.; Hendrickx, G.; Zeller, H.; Van Bortel, W. A review of the invasive mosquitoes in Europe: Ecology, public health risks, and control options. Vector Borne Zoonotic Dis.
**2012**, 12, 435–447. [Google Scholar] [CrossRef] [PubMed] [Green Version] - European Centre for Disease Prevention and Control Mosquito Maps. Available online: https://ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/mosquito-maps (accessed on 1 September 2020).
- Gasperi, G.; Bellini, R.; Malacrida, A.R.; Crisanti, A.; Dottori, M.; Aksoy, S. A New Threat Looming over the Mediterranean Basin: Emergence of Viral Diseases Transmitted by Aedes albopictus Mosquitoes. PLoS Negl. Trop. Dis.
**2012**, 6, e1836. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Pereira-dos-Santos, T.; Roiz, D.; Lourenço-de-Oliveira, R.; Paupy, C. A Systematic Review: Is Aedes albopictus an Efficient Bridge Vector for Zoonotic Arboviruses? Pathogens
**2020**, 9, 266. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Rezza, G.; Nicoletti, L.; Angelini, R.; Romi, R.; Finarelli, A.; Panning, M.; Cordioli, P.; Fortuna, C.; Boros, S.; Magurano, F.; et al. Infection with chikungunya virus in Italy: An outbreak in a temperate region. Lancet
**2007**, 370, 1840–1846. [Google Scholar] [CrossRef] - Venturi, G.; Luca, M.D.; Fortuna, C.; Remoli, M.E.; Riccardo, F.; Severini, F.; Toma, L.; Manso, M.D.; Benedetti, E.; Caporali, M.G.; et al. Detection of a chikungunya outbreak in Central Italy, August to September 2017. Eurosurveillance
**2017**, 22, 17–00646. [Google Scholar] [CrossRef] [Green Version] - Delisle, E.; Rousseau, C.; Broche, B.; Leparc-Goffart, I.; L’Ambert, G.; Cochet, A.; Prat, C.; Foulongne, V.; Ferré, J.B.; Catelinois, O.; et al. Chikungunya outbreak in Montpellier, France, September to October 2014. Eurosurveillance
**2015**, 20, 21108. [Google Scholar] [CrossRef] [Green Version] - Giron, S.; Franke, F.; Decoppet, A.; Cadiou, B.; Travaglini, T.; Thirion, L.; Durand, G.; Jeannin, C.; L’Ambert, G.; Grard, G.; et al. Vector-borne transmission of Zika virus in Europe, southern France, August 2019. Eurosurveillance
**2019**, 24, 1900655. [Google Scholar] [CrossRef] [Green Version] - Gjenero-Margan, I.; Aleraj, B.; Krajcar, D.; Lesnikar, V.; Klobučar, A.; Pem-Novosel, I.; Kurečić-Filipović, S.; Komparak, S.; Martić, R.; Đuričić, S.; et al. Autochthonous dengue fever in Croatia, August–September 2010. Eurosurveillance
**2011**, 16, 19805. [Google Scholar] [CrossRef] - Lazzarini, L.; Barzon, L.; Foglia, F.; Manfrin, V.; Pacenti, M.; Pavan, G.; Rassu, M.; Capelli, G.; Montarsi, F.; Martini, S.; et al. First autochthonous dengue outbreak in Italy, August 2020. Eurosurveillance
**2020**, 25, 2001606. [Google Scholar] [CrossRef] - Marchand, E.; Prat, C.; Jeannin, C.; Lafont, E.; Bergmann, T.; Flusin, O.; Rizzi, J.; Roux, N.; Busso, V.; Deniau, J.; et al. Autochthonous case of dengue in France, October 2013. Eurosurveillance
**2013**, 18, 20661. [Google Scholar] [CrossRef] [Green Version] - Monge, S.; García-Ortúzar, V.; López Hernández, B.; Lopaz Pérez, M.Á.; Delacour-Estrella, S.; Sánchez-Seco, M.P.; Fernández Martinez, B.; García San Miguel, L.; García-Fulgueiras, A.; Sierra Moros, M.J. Characterization of the first autochthonous dengue outbreak in Spain (August–September 2018). Acta Trop.
**2020**, 205, 105402. [Google Scholar] [CrossRef] [PubMed] - Brady, O.J.; Golding, N.; Pigott, D.M.; Kraemer, M.U.G.; Messina, J.P.; Reiner, R.C., Jr.; Scott, T.W.; Smith, D.L.; Gething, P.W.; Hay, S.I. Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Parasit. Vectors
**2014**, 7, 338. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Caminade, C.; Medlock, J.M.; Ducheyne, E.; McIntyre, K.M.; Leach, S.; Baylis, M.; Morse, A.P. Suitability of European climate for the Asian tiger mosquito Aedes albopictus: Recent trends and future scenarios. J. R. Soc. Interface
**2012**, 9, 2708–2717. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Fischer, D.; Thomas, S.M.; Neteler, M.; Tjaden, N.B.; Beierkuhnlein, C. Climatic suitability of Aedes albopictus in Europe referring to climate change projections: Comparison of mechanistic and correlative niche modelling approaches. Eurosurveillance
**2014**, 19, 20696. [Google Scholar] [CrossRef] [Green Version] - Kraemer, M.U.G.; Reiner, R.C.; Brady, O.J.; Messina, J.P.; Gilbert, M.; Pigott, D.M.; Yi, D.; Johnson, K.; Earl, L.; Marczak, L.B.; et al. Past and future spread of the arbovirus vectors Aedes aegypti and Aedes albopictus. Nat. Microbiol.
**2019**, 4, 854–863. [Google Scholar] [CrossRef] - Delatte, H.; Gimonneau, G.; Triboire, A.; Fontenille, D. Influence of temperature on immature development, survival, longevity, fecundity, and gonotrophic cycles of Aedes albopictus, vector of chikungunya and dengue in the Indian Ocean. J. Med. Entomol.
**2009**, 46, 33–41. [Google Scholar] [CrossRef] - Loetti, V.; Schweigmann, N.; Burroni, N. Development rates, larval survivorship and wing length of Culex pipiens (Diptera: Culicidae) at constant temperatures. J. Nat. Hist.
**2011**, 45, 2203–2213. [Google Scholar] [CrossRef] - Marini, G.; Arnoldi, D.; Baldacchino, F.; Capelli, G.; Guzzetta, G.; Merler, S.; Montarsi, F.; Rizzoli, A.; Rosà, R. First report of the influence of temperature on the bionomics and population dynamics of Aedes koreicus, a new invasive alien species in Europe. Parasit. Vectors
**2019**, 12, 524. [Google Scholar] [CrossRef] - Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the Environmental Temperature on Aedes aegypti and Aedes albopictus Mosquitoes: A Review. Insects
**2018**, 9, 158. [Google Scholar] [CrossRef] [Green Version] - Reuss, F.; Wieser, A.; Niamir, A.; Bálint, M.; Kuch, U.; Pfenninger, M.; Müller, R. Thermal experiments with the Asian bush mosquito (Aedes japonicus japonicus) (Diptera: Culicidae) and implications for its distribution in Germany. Parasit. Vectors
**2018**, 11, 81. [Google Scholar] [CrossRef] [Green Version] - Alto, B.W.; Juliano, S.A. Precipitation and Temperature Effects on Populations of Aedes albopictus (Diptera: Culicidae): Implications for Range Expansion. J. Med. Entomol.
**2001**, 38, 646–656. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Alto, B.W.; Juliano, S.A. Temperature Effects on the Dynamics of Aedes albopictus (Diptera: Culicidae) Populations in the Laboratory. J. Med. Entomol.
**2001**, 38, 548–556. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Monteiro, L.C.C.; de Souza, J.R.B.; de Albuquerque, C.M.R. Eclosion rate, development and survivorship of Aedes albopictus (Skuse) (Diptera: Culicidae) under different water temperatures. Neotrop. Entomol.
**2007**, 36, 966–971. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Brugueras, S.; Fernández-Martínez, B.; Martínez-de la Puente, J.; Figuerola, J.; Porro, T.M.; Rius, C.; Larrauri, A.; Gómez-Barroso, D. Environmental drivers, climate change and emergent diseases transmitted by mosquitoes and their vectors in southern Europe: A systematic review. Environ. Res.
**2020**, 191, 110038. [Google Scholar] [CrossRef] [PubMed] - Roche, B.; Léger, L.; L’Ambert, G.; Lacour, G.; Foussadier, R.; Besnard, G.; Barré-Cardi, H.; Simard, F.; Fontenille, D. The Spread of Aedes albopictus in Metropolitan France: Contribution of Environmental Drivers and Human Activities and Predictions for a Near Future. PLoS ONE
**2015**, 10, e0125600. [Google Scholar] [CrossRef] [Green Version] - Pluskota, B.; Jöst, A.; Augsten, X.; Stelzner, L.; Ferstl, I.; Becker, N. Successful overwintering of Aedes albopictus in Germany. Parasitol. Res.
**2016**, 115, 3245–3247. [Google Scholar] [CrossRef] - Brady, O.J.; Johansson, M.A.; Guerra, C.A.; Bhatt, S.; Golding, N.; Pigott, D.M.; Delatte, H.; Grech, M.G.; Leisnham, P.T.; Maciel-de-Freitas, R.; et al. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasit. Vectors
**2013**, 6, 351. [Google Scholar] [CrossRef] [Green Version] - Guzzetta, G.; Montarsi, F.; Baldacchino, F.A.; Metz, M.; Capelli, G.; Rizzoli, A.; Pugliese, A.; Rosà, R.; Poletti, P.; Merler, S. Potential Risk of Dengue and Chikungunya Outbreaks in Northern Italy Based on a Population Model of Aedes albopictus (Diptera: Culicidae). PLoS Negl. Trop. Dis.
**2016**, 10, e0004762. [Google Scholar] [CrossRef] - Manica, M.; Guzzetta, G.; Poletti, P.; Filipponi, F.; Solimini, A.; Caputo, B.; Torre, A.d.; Rosà, R.; Merler, S. Transmission dynamics of the ongoing chikungunya outbreak in Central Italy: From coastal areas to the metropolitan city of Rome, summer 2017. Eurosurveillance
**2017**, 22, 17–00685. [Google Scholar] [CrossRef] - Marini, G.; Guzzetta, G.; Baldacchino, F.; Arnoldi, D.; Montarsi, F.; Capelli, G.; Rizzoli, A.; Merler, S.; Rosà, R. The effect of interspecific competition on the temporal dynamics of Aedes albopictus and Culex pipiens. Parasit. Vectors
**2017**, 10, 102. [Google Scholar] [CrossRef] [Green Version] - Pasquali, S.; Mariani, L.; Calvitti, M.; Moretti, R.; Ponti, L.; Chiari, M.; Sperandio, G.; Gilioli, G. Development and calibration of a model for the potential establishment and impact of Aedes albopictus in Europe. Acta Trop.
**2020**, 202, 105228. [Google Scholar] [CrossRef] [PubMed] - Poletti, P.; Messeri, G.; Ajelli, M.; Vallorani, R.; Rizzo, C.; Merler, S. Transmission Potential of Chikungunya Virus and Control Measures: The Case of Italy. PLoS ONE
**2011**, 6, e18860. [Google Scholar] [CrossRef] [PubMed] - Tran, A.; L’Ambert, G.; Lacour, G.; Benoît, R.; Demarchi, M.; Cros, M.; Cailly, P.; Aubry-Kientz, M.; Balenghien, T.; Ezanno, P. A Rainfall- and Temperature-Driven Abundance Model for Aedes albopictus Populations. Int. J. Environ. Res. Public. Health
**2013**, 10, 1698–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Roiz, D.; Rosà, R.; Arnoldi, D.; Rizzoli, A. Effects of Temperature and Rainfall on the Activity and Dynamics of Host-Seeking Aedes albopictus Females in Northern Italy. Vector Borne Zoonotic Dis.
**2010**, 10, 811–816. [Google Scholar] [CrossRef] [PubMed] - Rosso, F.; Tagliapietra, V.; Albanese, D.; Pindo, M.; Baldacchino, F.; Arnoldi, D.; Donati, C.; Rizzoli, A. Reduced diversity of gut microbiota in two Aedes mosquitoes species in areas of recent invasion. Sci. Rep.
**2018**, 8, 16091. [Google Scholar] [CrossRef] - Gilks, W.R.; Richardson, S.; Spiegelhalter, D. Markov Chain Monte Carlo in Practice; Chapman & Hall: London, UK, 1996; ISBN 0-412-05551-1. [Google Scholar]
- Cunze, S.; Kochmann, J.; Koch, L.K.; Klimpel, S. Aedes albopictus and Its Environmental Limits in Europe. PLoS ONE
**2016**, 11, e0162116. [Google Scholar] [CrossRef] [Green Version] - Meteotrentino Meteotrentino. Available online: www.meteotrentino.it (accessed on 31 August 2020).
- Mordecai, E.A.; Caldwell, J.M.; Grossman, M.K.; Lippi, C.A.; Johnson, L.R.; Neira, M.; Rohr, J.R.; Ryan, S.J.; Savage, V.; Shocket, M.S.; et al. Thermal biology of mosquito-borne disease. Ecol. Lett.
**2019**, 22, 1690–1708. [Google Scholar] [CrossRef] [Green Version] - European Centre for Disease Prevention and Control. Vector Control with a Focus on Aedes Aegypti and Aedes Albopictus Mosquitoes: Literature Review and Analysis of Information; ECDC: Stockholm, Sweden, 2017; ISBN 978-92-9498-095-3.
- Erguler, K.; Pontiki, I.; Zittis, G.; Proestos, Y.; Christodoulou, V.; Tsirigotakis, N.; Antoniou, M.; Kasap, O.E.; Alten, B.; Lelieveld, J. A climate-driven and field data-assimilated population dynamics model of sand flies. Sci. Rep.
**2019**, 9, 2469. [Google Scholar] [CrossRef] - Medley, K.A.; Westby, K.M.; Jenkins, D.G. Rapid local adaptation to northern winters in the invasive Asian tiger mosquito Aedes albopictus: A moving target. J. Appl. Ecol.
**2019**, 56, 2518–2527. [Google Scholar] [CrossRef] - Erguler, K.; Smith-Unna, S.E.; Waldock, J.; Proestos, Y.; Christophides, G.K.; Lelieveld, J.; Parham, P.E. Large-Scale Modelling of the Environmentally-Driven Population Dynamics of Temperate Aedes albopictus (Skuse). PLoS ONE
**2016**, 11, e0149282. [Google Scholar] [CrossRef] [Green Version] - Neteler, M.; Roiz, D.; Rocchini, D.; Castellani, C.; Rizzoli, A. Terra and Aqua satellites track tiger mosquito invasion: Modelling the potential distribution of Aedes albopictus in north-eastern Italy. Int. J. Health Geogr.
**2011**, 10, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**Comparison between temperate Ae. albopictus (black) and subtropical Ae. albopictus (orange) results for each tested temperature (10, 15, 25, and 20 °C). (

**a**): Fraction of hatched eggs; (

**b**): fraction of L1 larvae that successfully reached the adult stage; (

**c**): length of time between immersion of eggs in water and hatching response; (

**d**): duration of development from L1 to adult. Points: average values. Vertical lines: 95% Confidence Intervals (average ±1.96∙SE).

**Figure 2.**Survival rate of Ae. albopictus females adjusted to the Weibull’s model at temperatures of 15, 25, and 30 °C.

**Table 1.**Temperate Ae. albopictus immature survival. Survival rate (as fraction), with standard error, from hatching to emergence of temperate (TE) and subtropical (ST) Ae. albopictus maintained at four constant temperatures: 10, 15, 25, and 30 °C.

T (°C) | Eggs (n) | Egg-L1 | L1 (n) | L1-L2 | L2-L3 | L3-L4 | L4-Pupae | Pupae-Adult | L1-Adult | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

TE | ST | TE | ST | TE | ST | TE | ST | TE | ST | TE | ST | TE | ST | TE | ST | TE | ST | |

10 | 120 | 100 | 0 | 0.04 ± 0.02 | 100 | 80 | 0.38 ± 0.05 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

15 | 120 | 110 | 0.02 ± 0.01 | 0.08 ± 0.03 | 100 | 80 | 0.98 ± 0.01 | 0.89 ± 0.04 | 0.99 ± 0.01 | 0.93 ± 0.03 | 1 | 0.86 ± 004 | 0.98 ± 0.01 | 0.84 ± 0.05 | 0.77 ± 0.04 | 0.83 ± 0.05 | 0.73 ± 0.04 | 0.5 ± 0.06 |

25 | 120 | 130 | 0.23 ± 0.04 | 0.49 ± 0.04 | 100 | 80 | 0.97 ± 0.02 | 0.93 ± 0.03 | 0.99 ± 0.01 | 0.95 ± 0.03 | 0.99 ± 0.01 | 0.96 ± 0.02 | 0.99 ± 0.01 | 0.97 ± 0.02 | 0.86 ± 0.04 | 0.94 ± 0.03 | 0.81 ± 0.04 | 0.76 ± 0.05 |

30 | 120 | 140 | 0.44 ± 0.05 | 0.51 ± 0.04 | 100 | 80 | 0.97 ± 0.02 | 0.88 ± 0.04 | 0.99 ± 0.01 | 0.99 ± 0.01 | 0.98 ± 0.01 | 0.96 ± 0.02 | 0.9 ± 0.03 | 0.91 ± 0.04 | 0.84 ± 0.04 | 0.9 ± 0.04 | 0.71 ± 0.05 | 0.68 ± 0.05 |

**Table 2.**Temperate Ae. albopictus developmental time. Length of time between immersion of eggs in water and hatching response and duration of development (mean and standard error in days) of each stage of temperate (TE) and subtropical (ST) Ae. albopictus maintained at four constant temperatures: 10, 15, 25, and 30 °C.

T (°C) | Eggs-L1 | L1-L2 | L2-L3 | L3-L4 | L4-Pupae | Pupae-Adult | L1-Adult | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

TE | ST | TE | ST | TE | ST | TE | ST | TE | ST | TE | ST | TE | ST | |

10 | 2.0 ± 0.0 | 37.4 ± 0.7 | ||||||||||||

15 | 2.0 ± 0.1 | 7.4 ± 1.8 | 5.8 ± 0.1 | 5.6 ± 0.3 | 5.1 ± 0.2 | 3.3 ± 0.2 | 7.0 ± 0.1 | 4.6 ± 0.2 | 16.7 ± 0.4 | 13.4 ± 0.8 | 10.7 ± 0.3 | 8.7 ± 0.6 | 36.8 ± 0.5 | 35 ± 0.9 |

25 | 3.8 ± 0.4 | 4.5 ± 0.7 | 2.5 ± 0.1 | 2.1 ± 0.2 | 2.0 ± 0.1 | 1.2 ± 0.2 | 2.4 ± 0.1 | 1.2 ± 0.1 | 5.0 ± 0.1 | 3.3 ± 0.2 | 3.5 ± 0.1 | 2.7 ± 0.1 | 12.7 ± 0.2 | 10.4 ± 0.7 |

30 | 3.2 ± 0.3 | 6.7 ± 0.7 | 2.0 ± 0.0 | 1.4 ± 0.1 | 1.1 ± 0.0 | 1.3 ± 0.1 | 1.4 ± 0.1 | 1.4 ± 0.2 | 3.5 ± 0.1 | 3.0 ± 0.3 | 1.9 ± 0.0 | 1.9 ± 0.1 | 7.6 ± 0.1 | 8.8 ± 0.6 |

**Table 3.**Temperate Ae. albopictus adult longevity. Longevity (days) of Ae. albopictus temperate adult females maintained at four constant temperatures: 10, 15, 25, and 30 °C.

T (°C) | Mean ± SE (Days) | Range (min–max) (Days) |
---|---|---|

10 | 5.7 ± 0.4 | 2–10 |

15 | 27.9 ± 2.0 | 8–45 |

25 | 64.5 ± 3.8 | 32–92 |

30 | 53.5 ± 4.7 | 14–86 |

**Table 4.**Temperate Ae. albopictus fecundity. Duration of gonotrophic cycle (mean and standard error in days) and number of eggs (mean and standard error) for temperate Ae. albopictus at 25 and 30 °C.

25 °C | 30 °C | |||||||
---|---|---|---|---|---|---|---|---|

n | Duration (Mean ± SE) | Minimum Duration | Number of Eggs (Mean ± SE) | n | Mean | Minimum Duration | Number of Eggs (Mean ± SE) | |

Cycle 1 | 20 | 4.2 ± 0.1 | 4 | 31.7 ± 2.0 | 20 | 3.1 ± 0.1 | 2 | 55.9 ± 4.0 |

Cycle 2 | 20 | 4.0 ± 0.0 | 3 | 40.1 ± 2.3 | 12 | 3.3 ± 0.2 | 2 | 55.0 ± 8.2 |

Cycle 3 | 20 | 3.0 ± 0.0 | 3 | 40.8 ± 2.1 | 3 | 4.3 ± 0.9 | 3 | 60.7 ± 13.2 |

Cycle 4 | 20 | 4.0 ± 0.0 | 4 | 40.4 ± 2.3 | ||||

Cycle 5 | 17 | 3.0 ± 0.0 | 3 | 39.4 ± 2.5 | ||||

Cycle 6 | 16 | 3.6 ± 0.2 | 3 | 31.6 ± 4.7 | ||||

Cycle 7 | 16 | 3.9 ± 0.1 | 3 | 30.0 ± 3.5 | ||||

Cycle 8 | 13 | 4.2 ± 0.4 | 3 | 25.4 ± 5.0 | ||||

Cycle 9 | 9 | 4.1 ± 0.1 | 4 | 29.4 ± 8.3 | ||||

Cycle 10 | 5 | 4.2 ± 0.2 | 4 | 19.0 ± 0.4 | ||||

Cycle 11 | 2 | 7.5 ± 2.5 | 5 | 6.0 ± 3.0 | ||||

Mean | 3.8 ± 0.1 | 34.3 ± 1.2 | 3.3 ± 0.1 | 56.0 ± 3.7 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Marini, G.; Manica, M.; Arnoldi, D.; Inama, E.; Rosà, R.; Rizzoli, A.
Influence of Temperature on the Life-Cycle Dynamics of *Aedes albopictus* Population Established at Temperate Latitudes: A Laboratory Experiment. *Insects* **2020**, *11*, 808.
https://doi.org/10.3390/insects11110808

**AMA Style**

Marini G, Manica M, Arnoldi D, Inama E, Rosà R, Rizzoli A.
Influence of Temperature on the Life-Cycle Dynamics of *Aedes albopictus* Population Established at Temperate Latitudes: A Laboratory Experiment. *Insects*. 2020; 11(11):808.
https://doi.org/10.3390/insects11110808

**Chicago/Turabian Style**

Marini, Giovanni, Mattia Manica, Daniele Arnoldi, Enrico Inama, Roberto Rosà, and Annapaola Rizzoli.
2020. "Influence of Temperature on the Life-Cycle Dynamics of *Aedes albopictus* Population Established at Temperate Latitudes: A Laboratory Experiment" *Insects* 11, no. 11: 808.
https://doi.org/10.3390/insects11110808