Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Insect Rearing
2.2. Fatty Acid Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asplen, M.K.; Anfora, G.; Biondi, A.; Choi, D.-S.; Chu, D.; Daane, K.M.; Gibert, P.; Gutierrez, A.P.; Hoelmer, K.A.; Hutchison, W.D.; et al. Invasion biology of spotted wing Drosophila (Drosophila suzukii): A global perspective and future priorities. J. Pest Sci. 2015, 88, 469–494. [Google Scholar] [CrossRef]
- Atallah, J.; Teixeira, L.; Salazar, R.; Zaragoza, G.; Kopp, A. The making of a pest: The evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc. R. Soc. B Biol. Sci. 2014, 281, 20132840. [Google Scholar] [CrossRef] [Green Version]
- Bruck, D.J.; Bolda, M.; Tanigoshi, L.; Klick, J.; Kleiber, J.; DeFrancesco, J.; Gerdeman, B.; Spitler, H. Laboratory and field comparisons of insecticides to reduce infestation of Drosophila suzukii in berry crops. Pest Manag. Sci. 2011, 67, 1375–1385. [Google Scholar] [CrossRef] [PubMed]
- Van Timmeren, S.; Isaacs, R. Control of spotted wing drosophila, Drosophila suzukii, by specific insecticides and by conventional and organic crop protection programs. Crop Prot. 2013, 54, 126–133. [Google Scholar] [CrossRef]
- Lee, J.C.; Dreves, A.J.; Cave, A.M.; Kawai, S.; Isaacs, R.; Miller, J.C.; Van Timmeren, S.; Bruck, D.J. Infestation of wild and ornamental noncrop fruits by Drosophila suzukii (Diptera: Drosophilidae). Ann. Entomol. Soc. Am. 2015, 108, 117–129. [Google Scholar] [CrossRef]
- Arnó, J.; Solà, M.; Riudavets, J.; Gabarra, R. Population dynamics, non-crop hosts, and fruit susceptibility of Drosophila suzukii in Northeast Spain. J. Pest Sci. 2016, 89, 713–723. [Google Scholar] [CrossRef]
- Diepenbrock, L.M.; Swoboda-Bhattarai, K.A.; Burrack, H.J. Ovipositional preference, fidelity, and fitness of Drosophila suzukii in a co-occurring crop and non-crop host system. J. Pest Sci. 2016, 89, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Kenis, M.; Tonina, L.; Eschen, R.; van der Sluis, B.; Sancassani, M.; Mori, N.; Haye, T.; Helsen, H. Non-crop plants used as hosts by Drosophila suzukii in Europe. J. Pest Sci. 2016, 89, 735–748. [Google Scholar] [CrossRef] [Green Version]
- Pelton, E.; Gratton, C.; Isaacs, R.; Van Timmeren, S.; Blanton, A.; Guédot, C. Earlier activity of Drosophila suzukii in high woodland landscapes but relative abundance is unaffected. J. Pest Sci. 2016, 89, 725–733. [Google Scholar] [CrossRef]
- Ballman, E.S.; Drummond, F.A. Infestation of wild fruit by Drosophila suzukii surrounding maine wild blueberry fields. J. Agric. Urban Entomol. 2017, 33, 61–70. [Google Scholar] [CrossRef]
- Elsensohn, J.E.; Loeb, G.M. Non-crop host sampling yields insights into small-scale population dynamics of Drosophila suzukii (Matsumura). Insects 2018, 9, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tait, G.; Grassi, A.; Pfab, F.; Crava, C.M.; Dalton, D.T.; Magarey, R.; Ometto, L.; Vezzulli, S.; Rossi-Stacconi, M.V.; Gottardello, A.; et al. Large-scale spatial dynamics of Drosophila suzukii in Trentino, Italy. J. Pest Sci. 2018, 91, 1213–1224. [Google Scholar] [CrossRef]
- Shearer, P.W.; West, J.D.; Walton, V.M.; Brown, P.H.; Svetec, N.; Chiu, J.C. Seasonal cues induce phenotypic plasticity of Drosophila suzukii to enhance winter survival. BMC Ecol. 2016, 16, 11. [Google Scholar] [CrossRef] [Green Version]
- Toxopeus, J.; Jakobs, R.; Ferguson, L.V.; Gariepy, T.D.; Sinclair, B.J. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii. J. Insect Physiol. 2016, 89, 37–51. [Google Scholar] [CrossRef] [Green Version]
- Wallingford, A.K.; Loeb, G.M. Developmental acclimation of Drosophila suzukii (Diptera: Drosophilidae) and its effect on diapause and winter stress tolerance. Environ. Entomol. 2016, 45, 1081–1089. [Google Scholar] [CrossRef]
- Wiman, N.G.; Walton, V.M.; Dalton, D.T.; Anfora, G.; Burrack, H.J.; Chiu, J.C.; Daane, K.M.; Grassi, A.; Miller, B.; Tochen, S.; et al. Integrating Temperature-Dependent Life Table Data into a Matrix Projection Model for Drosophila suzukii Population Estimation. PLoS ONE 2014, 9, e106909. [Google Scholar] [CrossRef] [PubMed]
- Hamby, K.A.; Bellamy, D.E.; Chiu, J.C.; Lee, J.C.; Walton, V.M.; Wiman, N.G.; York, R.M.; Biondi, A. Biotic and abiotic factors impacting development, behavior, phenology, and reproductive biology of Drosophila suzukii. J. Pest Sci. 2016, 89, 605–619. [Google Scholar] [CrossRef]
- Klick, J.; Yang, W.Q.; Walton, V.M.; Dalton, D.T.; Hagler, J.R.; Dreves, A.J.; Lee, J.C.; Bruck, D.J. Distribution and activity of Drosophila suzukii in cultivated raspberry and surrounding vegetation. J. Appl. Entomol. 2016, 140, 37–46. [Google Scholar] [CrossRef]
- Leach, H.; Hagler, J.R.; Machtley, S.A.; Isaacs, R. Spotted wing Drosophila (Drosophila suzukii) utilization and dispersal from the wild host Asian bush honeysuckle (Lonicera spp.). Agric. For. Entomol. 2019, 21, 149–158. [Google Scholar] [CrossRef]
- Vacas, S.; Primo, J.; Manclús, J.J.; Montoya, Á.; Navarro-Llopis, V. Survey on Drosophila suzukii natural short-term dispersal capacities using the mark−release−recapture technique. Insects 2019, 10, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkpatrick, D.M.; Gut, L.J.; Miller, J.R. Estimating monitoring trap plume reach and trapping area for Drosophila suzukii (Diptera: Drosophilidae) in Michigan tart cherry. J. Econ. Entomol. 2018, 111, 1285–1289. [Google Scholar] [CrossRef]
- Briem, F.; Zeisler, C.; Guenay, Y.; Staudacher, K.; Vogt, H.; Traugott, M. Identifying plant DNA in the sponging–feeding insect pest Drosophila suzukii. J. Pest Sci. 2018, 91, 985–994. [Google Scholar] [CrossRef]
- Diepenbrock, L.M.; Lundgren, J.G.; Sit, T.L.; Burrack, H.J. Detecting specific resource use by Drosophila suzukii (Diptera: Drosophilidae) using gut content analysis. J. Econ. Entomol. 2018, 111, 1496–1500. [Google Scholar] [CrossRef]
- Moss, G.P.; Smith, P.a.S.; Tavernier, D. Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995). Pure Appl. Chem. 1995, 67, 1307–1375. [Google Scholar] [CrossRef]
- Arrese, E.L.; Soulages, J.L. Insect fat body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 2010, 55, 207–225. [Google Scholar] [CrossRef] [Green Version]
- Gilby, A.R. Lipids and Their Metabolism in Insects. Annu. Rev. Entomol. 1965, 10, 141–160. [Google Scholar] [CrossRef]
- Stott, A.W.; Davies, E.; Evershed, R.P.; Tuross, N. Monitoring the routing of dietary and biosynthesised lipids through compound–specific stable isotope (δ13C) measurements at natural abundance. Naturwissenschaften 1997, 84, 82–86. [Google Scholar] [CrossRef]
- Sinclair, B.J.; Marshall, K.E. The many roles of fats in overwintering insects. J. Exp. Biol. 2018, 221. [Google Scholar] [CrossRef] [Green Version]
- Ruess, L.; Müller-Navarra, D.C. Essential Biomolecules in Food Webs. Front. Ecol. Evol. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Bayes, S.K.; Hellerstein, M.K.; Fitch, M.; Mills, N.J.; Welter, S.C. You are what you eat: Fatty acid profiles as a method to track the habitat movement of an insect. Oecologia 2014, 175, 1073–1080. [Google Scholar] [CrossRef]
- Woltz, J.M.; Donahue, K.M.; Bruck, D.J.; Lee, J.C. Efficacy of commercially available predators, nematodes and fungal entomopathogens for augmentative control of Drosophila suzukii. J. Appl. Entomol. 2015, 139, 759–770. [Google Scholar] [CrossRef]
- Dunkelblum, E.; Tan, S.H.; Silk, P.J. Double-bond location in monounsaturated fatty acids by dimethyl disulfide derivatization and mass spectrometry: Application to analysis of fatty acids in pheromone glands of four Lepidoptera. J. Chem. Ecol. 1985, 11, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Ichihara, K.; Fukubayashi, Y. Preparation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 2010, 51, 635–640. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 25 October 2020).
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 25 October 2020).
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. Dordr. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Pennanec’h, M.; Bricard, L.; Kunesch, G.; Jallon, J.-M. Incorporation of fatty acids into cuticular hydrocarbons of male and female Drosophila melanogaster. J. Insect Physiol. 1997, 43, 1111–1116. [Google Scholar] [CrossRef]
- Jurenka, R.A.; Holland, D.; Krafsur, E.S. Hydrocarbon profiles of diapausing and reproductive adult face flies (Musca autumnalis). Arch. Insect Biochem. Physiol. 1998, 37, 206–214. [Google Scholar] [CrossRef]
- Dallerac, R.; Labeur, C.; Jallon, J.-M.; Knipple, D.C.; Roelofs, W.L.; Wicker-Thomas, C. A Δ9 desaturase gene with a different substrate specificity is responsible for the cuticular diene hydrocarbon polymorphism in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2000, 97, 9449–9454. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Tsaur, S.-C.; Coyne, J.A.; Wu, C.-I. The nucleotide changes governing cuticular hydrocarbon variation and their evolution in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 2001, 98, 3920–3925. [Google Scholar] [CrossRef] [Green Version]
- Billeter, J.-C.; Atallah, J.; Krupp, J.J.; Millar, J.G.; Levine, J.D. Specialized cells tag sexual and species identity in Drosophila melanogaster. Nature 2009, 461, 987–991. [Google Scholar] [CrossRef]
- Ingleby, F.C. Insect Cuticular Hydrocarbons as Dynamic Traits in Sexual Communication. Insects 2015, 6, 732–742. [Google Scholar] [CrossRef] [Green Version]
- Schlesener, D.C.H.; Wollmann, J.; Krüger, A.P.; Nunes, A.M.; Bernardi, D.; Garcia, F.R.M. Biology and fertility life table of Drosophila suzukii on artificial diets. Entomol. Exp. Et Appl. 2018, 166, 932–936. [Google Scholar] [CrossRef]
- Aguila, J.R.; Suszko, J.; Gibbs, A.G.; Hoshizaki, D.K. The role of larval fat cells in adult Drosophila melanogaster. J. Exp. Biol. 2007, 210, 956–963. [Google Scholar] [CrossRef] [Green Version]
- Tochen, S.; Walton, V.M.; Lee, J.C. Impact of floral feeding on adult Drosophila suzukii survival and nutrient status. J. Pest Sci. 2016, 89, 793–802. [Google Scholar] [CrossRef]
- Levin, E.; McCue, M.D.; Davidowitz, G. More than just sugar: Allocation of nectar amino acids and fatty acids in a lepidopteran. Proc. R. Soc. B Biol. Sci. 2017, 284, 20162126. [Google Scholar] [CrossRef] [PubMed]
- Plantamp, C.; Estragnat, V.; Fellous, S.; Desouhant, E.; Gibert, P. Where and what to feed? Differential effects on fecundity and longevity in the invasive Drosophila suzukii. Basic Appl. Ecol. 2017, 19, 56–66. [Google Scholar] [CrossRef]
- Sitepu, I.R.; Sestric, R.; Ignatia, L.; Levin, D.; German, J.B.; Gillies, L.A.; Almada, L.A.G.; Boundy-Mills, K.L. Manipulation of culture conditions alters lipid content and fatty acid profiles of a wide variety of known and new oleaginous yeast species. Bioresour. Technol. 2013, 144, 360–369. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.T.; Hamby, K.A. Differential impacts of yeasts on feeding behavior and development in larval Drosophila suzukii (Diptera:Drosophilidae). Sci. Rep. 2019, 9, 13370. [Google Scholar] [CrossRef] [Green Version]
Model | Source | df | Deviance | Residual df | Residual Dev | p Value |
---|---|---|---|---|---|---|
Tetradecanoic acid (14:Acid) | Null | 190 | 5.034 | |||
Host | 4 | 2.555 | 186 | 2.478 | <0.0001 | |
9-hexadecanoic acid (9-16:Acid) | Null | 190 | 1.317 | |||
Host | 4 | 7.563 | 186 | 8.880 | <0.0001 | |
Hexadecanoic acid (16:Acid) | Null | 190 | 1.464 | |||
Host | 4 | 0.529 | 186 | 0.935 | <0.0001 | |
9,12-octadecadienoic acid (9, 12-18:Acid) | Null | 190 | 4.813 | |||
Host | 4 | 2.691 | 186 | 2.122 | <0.0001 | |
9,12,15-octadecatrienoic acid (9,12,15-18:Acid) | Null | 190 | 6.656 | |||
Host | 4 | 4.534 | 186 | 2.123 | <0.0001 | |
Octadecanoic acid (18:Acid) | Null | 190 | 1.872 | |||
Host | 4 | 0.490 | 186 | 1.382 | <0.0001 |
Predicted | ||||||
---|---|---|---|---|---|---|
Observed | Blackberry | Blueberry | Artificial | Raspberry | Strawberry | Error |
Blackberry | 13 (93%) | 0 (0%) | 0 (0%) | 1 (7%) | 0 (0%) | 1 (7%) |
Blueberry | 0 (0%) | 19 (95%) | 0 (0%) | 0 (0%) | 1 (5%) | 1 (5%) |
Artificial | 0 (0%) | 2 (10%) | 16 (80%) | 0 (0%) | 2 (10%) | 4 (20%) |
Raspberry | 0 (0%) | 1 (25%) | 0 (0%) | 1 (25%) | 2 (50%) | 3 (75%) |
Strawberry | 0 (0%) | 2 (10%) | 0 (0%) | 0 (0%) | 18 (90%) | 2 (10%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiman, N.G.; Andrews, H.; Rudolph, E.; Lee, J.; Choi, M.-Y. Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii. Insects 2020, 11, 752. https://doi.org/10.3390/insects11110752
Wiman NG, Andrews H, Rudolph E, Lee J, Choi M-Y. Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii. Insects. 2020; 11(11):752. https://doi.org/10.3390/insects11110752
Chicago/Turabian StyleWiman, Nik G., Heather Andrews, Erica Rudolph, Jana Lee, and Man-Yeon Choi. 2020. "Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii" Insects 11, no. 11: 752. https://doi.org/10.3390/insects11110752
APA StyleWiman, N. G., Andrews, H., Rudolph, E., Lee, J., & Choi, M.-Y. (2020). Fatty Acid Profile as an Indicator of Larval Host for Adult Drosophila suzukii. Insects, 11(11), 752. https://doi.org/10.3390/insects11110752