Recent Advancements in the Control of Cat Fleas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biological Control
3. Vaccines
4. Botanical Based Compounds
5. Chemical Treatments
5.1. Aminoglycosides
5.2. Insect Growth Regulators
5.3. Isoxazolines
5.3.1. Afoxolaner
5.3.2. Fluralaner
5.3.3. Lotilaner
5.3.4. Sarolaner
5.3.5. Additional Uses
5.4. Formulations
6. Insecticide Resistance
7. Control Strategies
8. Future Directions
9. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Dryden, M.W.; Rust, M.K. The cat flea: Biology, ecology and control. Vet. Parasitol. 1994, 52, 1–19. [Google Scholar] [CrossRef]
- Rust, M.K.; Dryden, M.W. The biology, ecology, and management of the cat flea. Annu. Rev. Entomol. 1997, 42, 451–473. [Google Scholar] [CrossRef] [PubMed]
- Blagburn, B.L.; Dryden, M.W. Biology, treatment, and control of flea and tick infestations. Vet. Clin. Small Anim. 2009, 39, 1173–1200. [Google Scholar] [CrossRef] [PubMed]
- Beugnet, F.; Franc, M. Insecticide and acaricide molecules and/or combinations to prevent pet infestation by ectoparasites. Trends Parasitol. 2012, 28, 267–279. [Google Scholar] [CrossRef]
- Boase, C.; Kocisova, A.; Rettich, F. Fleas and flea management. In Urban Insect Pests Sustainable Management Strategies; Dhang, P., Ed.; CAB Int.: Reading, UK, 2014; pp. 86–98. [Google Scholar]
- Rust, M.K. The biology and ecology of cat fleas and advancements in their pest management: A review. Insects 2017, 8, 118. [Google Scholar] [CrossRef] [Green Version]
- Hinkle, N.C.; Rust, M.K.; Reierson, D.A. Biorational approaches to flea (Siphonaptera: Pulicidae) suppression: Present and future. J. Agric. Entomol. 1997, 14, 309–321. [Google Scholar]
- Pittarate, S.; Thungrabeab, M.; Mekchay, S.; Krutmuang, P. Virulence of aerial conidia of Beauveria bassiana produced under LED light to Ctenocephalides felis (cat flea). J. Pathog. 2018, 2018. [Google Scholar] [CrossRef]
- De la Fuente, J.; Contreras, M.; Estrada-Peña, A.; Cabezas-Cruz, A. Targeting a global health problem: Vaccine design and challenges for the control of tick-borne diseases. Vaccine 2017, 35, 5089–5094. [Google Scholar] [CrossRef]
- Nesbit, A.J.; Huntly, J.F. Progress and opportunities in the development of vaccines against mites, fleas and myiasis-causing flies of veterinary importance. Parasite Immunol. 2006, 28, 165–172. [Google Scholar] [CrossRef]
- Gaines, P.J.; Brandt, K.S.; Eisele, A.M.; Wagner, W.P.; Bozic, C.M.; Wisnewski, N. Analysis of expressed sequence tags from subtracted and unsubtracted Ctenocephalides felis hindgut and Malpighian tubule cDNA libraries. Insect Mol. Biol. 2002, 11, 299–306. [Google Scholar] [CrossRef]
- Contreras, M.; Villar, M.; Artigas-Jerónimo, S.; Kornieieva, L.; Mytrofanov, S. A reverse vaccinology approach to the identification and characterization of Ctenocephalides felis candidate protective antigens for the control of cat flea infestations. Parasites Vectors 2017, 11, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Ding, Z.; Meng, F.; Liu, Q.; Ng, T.; Hu, Y.; Zhao, G.; Zhai, B.; Chu, H.-J.; Wang, B. An immunotherapeutic treatment against flea allergy dermatitis in cats by co-immunization of DNA and protein vaccines. Vaccine 2010, 28, 1997–2004. [Google Scholar] [CrossRef] [PubMed]
- Ellse, L.; Wall, R. The use of essential oils in veterinary ectoparasite control: A review. Med. Vet. Entomol. 2014, 28, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Panella, N.A.; Dolan, M.C.; Karchesy, J.J.; Xiong, Y.; Peralta-Cruz, J.; Khasawneh, M.; Montenieri, J.A.; Maupin, G.O. Use of novel compounds for pest control: Insecticidal and acaricidal activity of essential oils components from heartwood of Alaska yellow cedar. J. Med. Entomol. 2005, 42, 352–358. [Google Scholar] [CrossRef]
- Dolan, M.C.; Dietrich, G.; Panella, N.A.; Montenieri, J.A.; Karchesy, J.J. Biocidal activity of three wood essential oils against Ixodes scapularis (Acari: Ixodidae), Xenopsylla cheopis (Siphonaptera: Pulicidae), and Aedes aegypti (Diptera: Culicidae). J. Econ. Entomol. 2007, 100, 622–625. [Google Scholar] [CrossRef]
- Batista, L.C.; Cid, Y.P.; Almeda, A.P.; Prudêncio, E.R.; Riger, C.J.; Souza, M.A.A.; Coumendouros, K.; Chaves, D.S.A. In vitro efficacy of essential oils and extracts of Schinus molle L. against Ctenocephalides felis felis. Parasitology 2016, 143, 627–638. [Google Scholar] [CrossRef]
- Dos Santos, J.V.B.; Siqueria, D.; Alves, M.A.; Riger, C.J.; Lambert, M.M.; Campos, D.R.; Moreira, L.O.; Conceicão, R.; Boylan, F.; Correia, T.R.; et al. In vitro activity of essential oils against adult and immature stages of Ctenocephalides felis felis. Parasitology 2020, 147, 340–347. [Google Scholar] [CrossRef]
- Lans, C.; Turner, N.; Khan, T. Medicinal plant treatments for fleas and ear problems of cats and dogs in British Columbia, Canada. Parasitol. Res. 2008, 103, 889–898. [Google Scholar] [CrossRef]
- Villar, D.; Knight, M.J. Toxicity of melaleuca oil and related essential oils applied topically on dogs and cats. Vet. Hum. Toxicol. 1994, 36, 139–142. [Google Scholar]
- Bischoff, K.; Guale, F. Australian tea tree (Melaleuca alternifolia) oil poisoning in three purebred cats. J. Vet. Diag. Investig. 1998, 10, 208–210. [Google Scholar] [CrossRef] [Green Version]
- Genovese, A.G.; McLean, M.K.; Khan, S.A. Adverse reactions from essential oil-containing natural flea products exempted from Environmental Protection Agency regulations in dogs and cats. J. Vet. Emerg. Crit. Care 2012, 22, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Addie, D.D.; Boucrant-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Horzinek, M.C.; Hosie, M.J.; Lioret, A.; Lutz, H.; et al. Disinfectant choices in veterinary practices, shelters and households ABCD guidelines on safe and effective disinfection for feline environments. J. Feline Med. Surg. 2015, 17, 594–605. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency (EMEA). Guideline for the Testing and Evaluation of the Efficacy of Antiparasitic Substances for the Treatment and Prevention of Tick and Flea Infestation in Dogs and Cats. 2016. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2016/07/WC500210927.pdf (accessed on 14 September 2020).
- Su, L.-C.; Huang, C.-G.; Chang, S.-T.; Yang, S.-H.; Hsu, S.-H.; Wu, W.-J.; Huang, R.-N. An improved bioassay facilitates the screening of repellents against cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Pest. Manag. Sci. 2014, 70, 264–270. [Google Scholar] [CrossRef] [PubMed]
- Mehlhorn, H.; Schmahl, G.; Schmidt, J. Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol. Res. 2005, 95, 363–365. [Google Scholar] [CrossRef] [PubMed]
- Sojka, P.A. Isoxazolines. J. Exot. Pet Med. 2018, 27, 118–122. [Google Scholar] [CrossRef]
- White, W.H.; Riggs, K.L.; Totten, M.L.; Snyder, D.E.; McCoy, C.M.; Young, D.R. Initial evaluations of the effectiveness of spinetoram as long-acting, oral systemic pulicide for controlling cat fleas (Ctenocephalides felis) infestations on dogs. Vet. Parasitol. 2017, 233, 25–31. [Google Scholar] [CrossRef]
- Wheeler, D.W.; Trout, C.M.; Thompson, C.M.; Winkle, J.R.; White, W.H. Evaluation of an 11.2% spinetoram topical spot-on solution for the control of experimental and natural flea (Ctenocephalides felis) infestations on cats in Europe. Vet. Parasitol. 2018, 258, 99–107. [Google Scholar] [CrossRef]
- Paarlberg, T.; Winkle, J.; Rumschlag, A.J.; Young, L.M.; Ryan, W.G.; Synder, D.E. Effectiveness and residual speed of flea kill of a novel spot on formulation of spinetoram (Cheristin®) for cats. Parasites Vectors 2017, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Osbrink, W.L.A.; Rust, M.K.; Reierson, D.A. Distribution and control of cat fleas in homes in southern California (Siphonaptera: Pulicidae). J. Econ. Entomol. 1986, 79, 135–140. [Google Scholar] [CrossRef]
- Dryden, M.W.; Perez, H.R.; Ulitchny, D.M. Control of fleas on pets and in homes by use of imidacloprid or lufenuron and a pyrethrin spray. JAVMA 1999, 215, 36–39. [Google Scholar]
- Rust, M.K.; Hemsarth, W.L.H. Intrinsic activity of IGRs against larval cat fleas. J. Med. Entomol. 2017, 54, 418–421. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.K.; Hemsarth, W.L.H. Synergism of the IGRs methoprene and pyriproxyfen against larval cat fleas (Siphonaptera: Pulicidae). J. Med. Entomol. 2016, 53, 629–633. [Google Scholar] [CrossRef] [PubMed]
- Rust, M.K.; Hemsarth, W.L.H. Synergism of adulticides and insect growth regulators against larval cat fleas (Siphonaptera: Pulicidae). J. Med. Entomol. 2019, 56, 790–795. [Google Scholar] [CrossRef] [PubMed]
- Lebon, W.; Franc, M.; Bouhsira, E.; Lienard, E.; Murray, M.; Carithers, D.; Beugnet, F. Prevention of flea egg development in a simulated home environment by Frontline® Gold (fipronil, (S)-methoprene, pyriproxyfen) applied topically to cats. Int. J. Appl. Res. Vet. Med. 2018, 16, 67–73. [Google Scholar]
- EPA. Notice of Pesticide Registration. 2013. Available online: https://www3.epa.gov/pesticides/chem_search/ppls/053883-00312-20130628.pdf (accessed on 28 September 2020).
- Rufener, L.; Danelli, V.; Bertrand, D.; Sager, H. The novel isooxazoline ectoparasiticide lotilaner (Credelio™): A non-competitive antagonist specific to invertebrates γ-aminobutyric acid-gated chloride channels (GABACIs). Parasites Vectors 2017, 10, 530. [Google Scholar] [CrossRef]
- Gassel, M.; Wolf, C.; Noack, S.; Williams, H.; Ilg, T. The novel isoxazoline ectoparasiticide fluralaner: Selective inhibition of arthropod γ-aminobutyric acid- and L-glutamate-gated chloride channels and insecticidal/acaricidal activity. Insect Biochem. Mol. Biol. 2014, 45, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.; Selzer, P.M. Isoxazolines: A novel chemotype highly effective on ectoparasites. ChemMedChem 2016, 11, 270–276. [Google Scholar] [CrossRef]
- Xu, M.; Long, J.K.; Lahm, G.P.; Shoop, W.L.; Cordova, D.; Wagerle, T.; Smith, B.K.; Pahutski, T.F.; Shapiro, R.; Mahaffey, M.; et al. The discovery of afoxolaner: A new ectoparasiticide for dogs. In Ectoparasites: Drug Discovery against Moving Targets, 1st ed.; Meng, C.Q., Sluder, A.E., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2018; pp. 259–827. [Google Scholar]
- Casida, J.E.; Durkin, K.A. Novel GABA receptor pesticide targets. Pest. Biochem. Physiol. 2015, 121, 22–30. [Google Scholar] [CrossRef] [Green Version]
- Casida, J.E. Golden age of RyR and GABA-R diamide and isoxazoline insecticides: Common genesis, serendipity, surprises, selectivity, and safety. Chem. Res. Toxicol. 2015, 28, 560–566. [Google Scholar] [CrossRef]
- Abbate, J.M.; Napoli, E.; Arfuso, F.; Gaglio, G.; Giannetto, S.; Halos, L.; Beugnet, F.; Brianti, E. Six-month field efficacy and safety study of combined treatment of dogs with Frontline Tri-Act® and NexGard Spectra®. Parasites Vectors 2018, 11, 425. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, V.; Dodds, W.J.; Morgan, J.; Carney, E.; Fritsche, H.A.; Jeffrey, J.; Bullock, R.; Kimball, J.P. Survey of canine use and safety of isoxazoline parasiticides. Vet. Med. Sci. 2020, 1–13. [Google Scholar] [CrossRef]
- Letendre, L.; Larsen, D.; Soll, D. Development of afoxolaner as a new ectoparasiticide for dogs. In Ectoparasites: Drug Discovery against Moving Targets, 1st ed.; Meng, C.Q., Sluder, A.E., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2018; pp. 273–294. [Google Scholar]
- Machado, M.A.; Campos, D.R.; Lopes, N.L.; Bastos, I.B.P.; Alves, M.S.R.; Correia, T.R.; Scott, F.B.; Fernandes, J.I. Efficacy of afoxolaner in the flea control in experimentally infested cats. Braz. J. Vet. Parasitol. 2019, 28, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Cvejić, D.; Schneider, C.; Neethling, W.; Hellmann, K.; Liebenberg, J.; Navarro, C. The sustained speed of kill of ticks (Rhipicephalus sanguineus) and fleas (Ctenocephalides felis felis) on dogs by a spot-on combination of fipronil and permethrin (Effitix®) compared with oral afoxolaner (NexGard®). Vet. Parasitol. 2017, 243, 52–57. [Google Scholar] [CrossRef]
- Becskei, C.; Fias, D.; Mahabir, S.P.; Farkas, R. Efficacy of a novel oral chewable tablet containing sarolaner, moxidectin and pyrantel (Simparica Trio™) against natural flea and tick infestations on dogs presented as veterinary patients in Europe. Parasites Vectors 2020, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Dryden, M.W.; Smith, V.; Chwala, M.; Jones, E.; Crevoiserat, L.; McGrady, J.C.; Foley, K.M.; Patton, P.R.; Hawkins, A.; Carithers, D. Evaluation of afoxolaner chewables to control flea populations in naturally infested dogs in private residences in Tampa, FL, USA. Parasites Vectors 2015, 8, 826. [Google Scholar] [CrossRef] [Green Version]
- Beugnet, F.; Lebon, W.; de Vos, C. Prevention of the transmission of Babesia rossi by Haemaphysalis elliptica in dogs treated with Nexgard®. Parasite 2019, 26, 49. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, S.; Young, D.; Sun, F. A single topical fluralaner application to cats and dogs controls fleas for 12 weeks in a simulated home environment. Parasites Vectors 2018, 11, 385. [Google Scholar] [CrossRef] [Green Version]
- Fisara, P.; Guerino, F.; Sun, F. Efficacy of a spot-on combinations of fluralaner plus moxidectin (Bravecto® Plus) in cats following repeated experimental challenge with a field isolate of Ctenocephalides felis. Parasites Vectors 2019, 12, 259. [Google Scholar] [CrossRef] [Green Version]
- Vatta, A.F.; King, V.L.; Young, D.R.; Chapin, S. Efficacy of three consecutive monthly doses of a topical formulation of selamectin and sarolaner (Revolution® Plus/Stronghold® Plus) compared with a single dose of fluralaner (Bravecto® for cats) against induced infestations of Ctenocephalides felis on cats. Vet. Parasitol. 2019, 270, S52–S57. [Google Scholar] [CrossRef]
- Meadows, C.; Guerino, F.; Sun, F. A randomized, blinded, controlled USA field study to assess the use of fluralaner topical solution in controlling feline flea infestations. Parasites Vectors 2017, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Meadows, C.; Guerino, F.; Sun, F. A randomized, blinded, controlled USA field study to assess the use of fluralaner topical solution in controlling canine flea infestations. Parasites Vectors 2017, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosco, A.; Leone, F.; Vascone, R.; Pennacchio, S.; Ciuca, L.; Cringoli, G.; Rinaldi, L. Efficacy of fluralaner spot-on solution for the treatment of Ctenocephalides felis and Otodectus cynotis mixed infestation in naturally infested cats. BMC Vet. Res. 2019, 15, 28. [Google Scholar] [CrossRef]
- Rohdich, N.; Zschiesche, E.; Wolf, O.; Loehlein, W.; Pobel, T.; Gil, M.J.; Roepke, R.K.A. Field effectiveness and safety of fluralaner plus moxidectin (Bravecto® Plus) against ticks and fleas: A European randomized, blinded, multicenter field study in naturally-infested client-owned cats. Parasites Vectors 2018, 11, 598. [Google Scholar] [CrossRef] [PubMed]
- Young, L.; Karadzovska, D.; Wiseman, S.; Helbig, R. Efficacy of lotilaner (Credelio™) against the adult cat flea, Ctenocephalides felis and flea eggs following oral administration to dogs. Parasites Vectors 2020, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Cavalleri, D.; Murphy, M.; Seewald, W.; Nanchen, S. Laboratory evaluation of the efficacy and speed of kill of lotilaner (Credelio™) against Ctenocephalides felis on cats. Parasites Vectors 2018, 11, 408. [Google Scholar] [CrossRef]
- Cavalleri, D.; Murphy, M.; Seewald, W.; Drake, J.; Nanchen, S. Assessment of the onset of lotilaner (Credelio™) speed of kill of fleas on dogs. Parasites Vectors 2017, 10, 521. [Google Scholar] [CrossRef] [Green Version]
- Cavalleri, D.; Murphy, M.; Seewald, M.; Drake, J.; Nanchen, S. Assessment of the speed of flea kill of lotilaner (Credelio™) throughout the month following oral administration to dogs. Parasites Vectors 2017, 10, 539. [Google Scholar] [CrossRef]
- Karadzovska, D.; Chappell, K.; Coble, S.; Murphy, M.; Cavalleri, D.; Wiseman, S.; Drake, J.; Nanchen, S. A randomized, controlled field study to assess the efficacy and safety of lotilaner flavored chewable tablets (Credelio™) in eliminating fleas in client-owned dogs in the USA. Parasites Vectors 2017, 10, 528. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; Cavalleri, D.; Seewald, W.; Drake, J.; Nanchen, S. Laboratory evaluation of the speed of kill of lotilaner (Credelio™) against Ixodes ricinus ticks on dogs. Parasites Vectors 2017, 10, 541. [Google Scholar] [CrossRef]
- Murphy, M.; Garcia, R.; Karadzovska, D.; Cavalleri, D.; Snyder, D.; Seewald, W.; Real, T.; Drake, J.; Wiseman, S.; Nanchen, S. Laboratory evaluations of the immediate and sustained efficacy of lotilaner (Credelio™) against four common species of ticks affecting dogs in North America. Parasites Vectors 2017, 10, 523. [Google Scholar] [CrossRef] [Green Version]
- Cavalleri, D.; Murphy, M.; Gorbea, R.L.; Seewald, W.; Drake, J.; Nanchen, S. Laboratory evaluations of the immediate and sustained effectiveness of lotilaner (Credelio™) against three common species of ticks affecting dogs in Europe. Parasites Vectors 2017, 10, 527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otaki, H.; Sonobe, J.; Murphy, M.; Cavalleri, D.; Seewald, W.; Drake, J.; Nanchen, S. Laboratory evaluation of the efficacy of lotilaner (Credelio™) against Haemaphysalis longicornis infestations of dogs. Parasites Vectors 2018, 11, 448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woods, D.J.; McTier, T.L. Discovery, development, and commercialization of sarolaner (Simparica®), a novel oral isooxazoline ectoparasiticide for dogs. In Ectoparasites: Drug Discovery Against Moving Targets, 1st ed.; Meng, C.Q., Sluder, A.E., Eds.; Wiley-VCH Verlag: Weinheim, Germany, 2018; pp. 295–318. [Google Scholar]
- McTier, T.L.; Chubb, N.; Curtis, M.P.; Hedges, L.; Inskeep, G.A.; Knauer, C.S.; Menon, S.; Mills, B.; Pullins, A.; Zinser, E.; et al. Discovery of sarolaner: A novel, orally administered, broad-spectrum, isoxazoline ectoparasiticide for dogs. Vet. Parasitol. 2016, 222, 3–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carithers, D.; Everett, W.R.; Gross, S.; Crawford, J. Comparative efficacy of fipronil/(S)-methoprene/pyriproxyfen (FRONTLINE® Gold) and sarolaner (SIMPARICA®) against Ctenocephalides felis flea infestations on dogs. Int. J. Appl. Res. Vet. Med. 2018, 16, 28–32. [Google Scholar]
- Cherni, J.A.; Mahabir, S.P.; Six, R.H. Efficacy and safety of sarolaner (Simparica™) against fleas on dogs presented as veterinary patients in the United States. Vet. Parasitol. 2016, 222, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dryden, M.W.; Canfield, M.S.; Niedfeldt, E.; Kinnon, A.; Kalosy, K.; Smith, A.; Foley, K.M.; Smith, V.; Bress, T.S.; Smith, N.; et al. Evaluation of sarolaner and spinosad oral treatments to eliminate fleas, reduce dermatologic lesions and minimize pruritus in naturally infested dogs in west Central Florida, USA. Parasites Vectors 2017, 10, 389. [Google Scholar] [CrossRef] [Green Version]
- Geurden, T.; Becskei, C.; Farkas, R.; Lin, D.; Rugg, D. Efficacy and safety of a new spot-on formulation of selamectin plus sarolaner in the treatment of naturally occurring flea and tick infestations in cats presented as veterinary patients in Europe. Vet. Parasitol. 2017, 238, S12–S17. [Google Scholar] [CrossRef]
- Vatta, A.F.; Myers, M.R.; Rugg, J.J.; Chapin, S.; Pullins, A.; King, V.L.; Rugg, D. Efficacy and safety of a combination of selamectin plus sarolaner for the treatment and prevention of flea infestations and the treatment of ear mites in cats presented as veterinary patients in the United States. Vet. Parasitol. 2019, 270, S3–S11. [Google Scholar] [CrossRef]
- Yonetake, W.; Fujii, T.; Naito, M.; Hodge, A.; Maeder, S.; Rugg, D. Efficacy of a new topical formulation of selamectin plus sarolaner for the control of fleas and ticks infesting cats in Japan. Vet. Parasitol. 2019, 270, S12–S18. [Google Scholar] [CrossRef]
- Packianathan, R.; Pittorino, M.; Hodge, A.; Bruellke, N.; Graham, K. Safety and efficacy of a new spot-on formulation of selamectin plus sarolaner in the treatment and control of naturally occurring flea infestations in cats presented as veterinary patients in Australia. Parasites Vectors 2020, 13, 227. [Google Scholar] [CrossRef]
- Packianathan, R.; Hodge, A.; Bruellke, N.; Davis, K.; Maeder, S. Comparative speed of kill of sarolaner (Simparica®) and afoxolaner (NexGard®) against induced infestations of Ixodes holocyclus on dogs. Parasites Vectors 2017, 19, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryda, K.; Mahabir, S.P.; Carter, L.; Everett, W.R.; Young, D.R.; Meyer, L.; Thys, M.; Chapin, S.; Holzmer, S.J.; Becskei, C. Laboratory studies evaluating the efficacy of a novel orally administered combination product containing sarolaner, moxidectin and pyrantel (Simparica Trio™) for the treatment and control of flea infestations on dogs. Parasites Vectors 2020, 13, 57. [Google Scholar] [CrossRef]
- Beckei, C.; Kydra, K.; Fias, D.; Follis, S.L.; Wozniakiewicz, M.; Mahabir, S.P. Field efficacy and safety of a novel oral chewable tablet containing sarolaner, moxidectin and pyrantel (Simparica Trio™) against naturally acquired gastrointestinal nematode infections in dogs presented as veterinary patients in Europe and the USA. Parasites Vectors 2020, 13, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryda, K.; Mahabir, S.P.; Inskeep, T.; Rugg, J. Safety and efficacy of a novel oral chewable combination tablet containing sarolaner, moxidectin and pyrantel (Simparica Trio™) against natural flea infestations in client-owned dogs in the USA. Parasites Vectors 2020, 13, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kryda, K.; Mahabir, S.P.; Chapin, S.; Holzmer, S.J.; Bowersock, L.; Everett, W.R.; Riner, J.; Carter, L.; Young, D. Efficacy of a novel orally administered combination product containing sarolaner, moxidectin and pyrantel (Simparica Trio™) against induced infestations of five common tick species infesting dogs in the USA. Parasites Vectors 2020, 13, 77. [Google Scholar] [CrossRef] [Green Version]
- Fourie, J.J.; Liebenberg, J.E.; Crafford, D.; Six, R. Immediate and persistent efficacy of sarolaner (Simparica™) against Haemaphysalis elliptica on dogs. Parasites Vectors 2019, 12, 431. [Google Scholar] [CrossRef] [Green Version]
- Oda, K.; Yonetake, W.; Fujii, T.; Hodge, A.; Six, R.H.; Maeder, S. Efficacy of sarolaner (Simparica®) against induced infestations of Haemaphysalis longicornis on dogs. Parasites Vectors 2019, 12, 509. [Google Scholar] [CrossRef] [Green Version]
- Holzmer, S.; Kydra, K.; Mahabir, S.P.; Everett, W. Evaluation of the speed of kill of a novel orally administered combination product containing sarolaner, moxidectin and pyrantel (Simparica Trio™) against induced infestations of Ixodes scapularis on dogs. Parasites Vectors 2020, 13, 76. [Google Scholar] [CrossRef] [Green Version]
- Becskei, C.; Liebenberg, J.; Thys, M.; Mahabir, S.P. Efficacy of a novel chewable tablet containing sarolaner, moxidectin and pyrantel (Simparica Trio™) against four common tick species infesting dogs in Europe. Parasites Vectors 2020, 13, 100. [Google Scholar] [CrossRef]
- Zhou, X.; Hohman, A.; Hsu, W.H. Review of extralabel use of isoxazolines for treatment of demodicosis in dogs and cats. JAVMA 2020, 256, 1342–1346. [Google Scholar] [CrossRef]
- Lebon, W.; Beccati, M.; Bourdeau, P.; Brement, T.; Bruet, V.; Cekiera, A.; Crosaz, O.; Darmon, C.; Guillot, J.; Mosca, M.; et al. Efficacy of two formulations of afoxolaner (NexGard® and NexGard Spectra®) for the treatment of generalized demodicosis in dogs, in veterinary dermatology referral centers in Europe. Parasites Vectors 2018, 11, 506. [Google Scholar] [CrossRef] [PubMed]
- Romero-Núñez, C.; Sheinberg, G.; Martin, A.; Romero, A.; Flores, A.; Heredia, R.; Miranda, L. Efficacy of afoxolaner plus milbemycin oxime in the treatment of canine demodicosis. Int. J. Appl. Res. Vet. Med. 2019, 17, 35–41. [Google Scholar]
- Zewe, C.M.; Altet, L.; Lam, A.T.H.; Ferrer, L. Afoxolaner and fluralaner treatment do not impact on cutaneous Demodex populations of healthy dogs. Vet. Dermatol. 2017, 28, 468-e107. [Google Scholar] [CrossRef] [PubMed]
- Carithers, D.; Crawford, J.; de Vos, C.; Lotriet, A.; Fourie, J. Assessment of afoxolaner efficacy against Otodectes cynotis infestations of dogs. Parasites Vectors 2016, 9, 635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machado, M.A.; Campos, D.R.; Lopes, N.L.; Bastos, I.P.B.; Botelho, C.B.; Correia, T.R.; Scott, F.B.; Fernandes, J.L. Efficacy of afoxolaner in the treatment of otodectic mange in naturally infested cats. Vet. Parasitol. 2018, 256, 29–31. [Google Scholar] [CrossRef]
- Hampel, V.; Knaus, M.; Schäfer, J.; Beugnet, F.; Rehbein, S. Treatment of canine sarcoptic mange with afoxolaner (NexGard®) and afoxolaner plus milbemycin oxime (NexGard Spectra®) chewable tablets: Efficacy under field conditions in Portugal and Germany. Parasite 2018, 25, 63. [Google Scholar] [CrossRef] [Green Version]
- Loza, A.; Talaga, A.; Herbas, G.; Canaviri, R.J.; Cahuasin, T.; Luck, L.; Guibarra, A.; Goncalves, R.; Pereira, J.A.; Gomez, S.A.; et al. Systemic insecticide treatment of the canine reservoir of Trypanosoma cruzi induces high levels of lethality in Triatoma infestans, a principal vector of Chagas disease. Parasites Vectors 2017, 10, 344. [Google Scholar] [CrossRef] [Green Version]
- Liebenberg, J.; Fourie, J.; Lebon, W.; Larsen, D.; Halos, L.; Beugnet, F. Assessment of the insecticidal activity of afoxolaner against Aedes aegypti in dogs treated with NexGard®. Parasite 2017, 24, 39. [Google Scholar] [CrossRef] [Green Version]
- Gomez, S.A.; Picado, A. Systemic insecticides used in dogs: Potential candidates for phlebotomine vector control? Trop. Med. Int. Health 2017, 22, 755–764. [Google Scholar] [CrossRef]
- Gomez, S.A.; Curdi, J.L.; Hernandez, J.A.C.; Peris, P.P.; Gil, A.E.; Velasquez, R.V.O.; Hernandez, P.O.; Picado, A. Phlebotomine mortality effect of systemic insecticides administered to dogs. Parasites Vectors 2018, 11, 230. [Google Scholar] [CrossRef]
- Perier, N.; Lebon, W.; Meyer, L.; Lekouch, N.; Aouiche, N.; Beugnet, F. Assessment of the insecticidal activity of oral afoxolaner against Phlebotomus perniciosus in dogs. Parasite 2019, 26, 63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beugnet, F.; Meyer, L.; Fourie, F.; Larsen, D. Preventive efficacy of NexGard Spectra® against Dipylidium caninum infection in dogs using a natural flea (Ctenocephalides felis) infestation model. Parasite 2017, 24, 16. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, D.; Meyer, L.; Smith, J.; Armstrong, R. Topical or oral fluralaner efficacy against flea (Ctenocephalides felis) transmission of Dipylidium caninum infection to dogs. Parasites Vectors 2018, 11, 557. [Google Scholar] [CrossRef] [PubMed]
- McTier, T.L.; Pullins, A.; Chapin, S.; Rugg, J.; von Reitzenstein, M.; McCall, J.W.; King, V.L.; Vatta, A.F. The efficacy of a novel topical formulation of selamectin plus sarolaner (Revolution®/Stronghold® Plus) in preventing the development of Dirofilaria immitis in cats. Vet. Parasitol. 2019, 270, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Chen, C.; Schievano, C.; Noli, C. The comparative efficacy of afoxolaner, spinosad, milbemycin, spinosad plus milbemycin, and nitenpyram for the treatment of canine cutaneous myiasis. Vet. Dermatol. 2018, 29, 312-e109. [Google Scholar] [CrossRef]
- Dryden, M.W.; Canfield, M.S.; Kalosy, K.; Smith, A.; Crevoiserat, L.; McGrady, J.C.; Foley, K.M.; Green, K.; Tebaldi, C.; Smith, V.; et al. Evaluation of fluralaner and afoxolaner treatments to control flea populations, reduce pruritus and minimize dermatologic lesions in naturally infested dogs in private residences in west central Florida USA. Parasites Vectors 2016, 9, 365. [Google Scholar] [CrossRef] [Green Version]
- Crosaz, O.; Chapelle, E.; Cochet-Faivre, N.; Ka, D.; Hubinois, C.; Guiliot, J. Open field study on the efficacy of oral fluralaner for long-term control of flea allergy dermatitis in client-owned dogs in Lle-de-France region. Parasites Vectors 2016, 9, 174. [Google Scholar] [CrossRef] [Green Version]
- Briand, A.; Cochet-Faivre, N.; Prélaud, P.; Armstrong, R.; Hubinois, C. Open field study on the efficacy of fluralaner topical solution for long-term control of flea bite allergy dermatitis in client owned cats in Lle-de-France region. BMC Vet. Res. 2019, 15, 337. [Google Scholar] [CrossRef]
- Stanneck, D.; Kruedewagen, E.M.; Fourie, J.J.; Horak, I.G.; Davis, W.; Krieger, K.J. Efficacy of an imidacloprid/flumethrin collar against fleas and ticks on cats. Parasites Vectors 2012, 5, 82. [Google Scholar] [CrossRef] [Green Version]
- Stanneck, D.; Kruedewagen, E.M.; Fourie, J.J.; Horak, I.G.; Davis, W.; Krieger, K.J. Efficacy of an imidacloprid/flumethrin collar against fleas, ticks, mites and lice on dogs. Parasites Vectors 2012, 5, 102. [Google Scholar] [CrossRef] [Green Version]
- Stanneck, D.; Rass, J.; Radeloff, I.; Kruedewagen, E.; Sueur, C.L.; Hellmann, K.; Krieger, K. Evaluation of the long-term efficacy and safety of an imidacloprid 10%/flumethrin 4.5% polymer matrix collar (Seresto®®) in dogs and cats naturally infested with fleas and/or ticks in multicentre clinical field studies in Europe. Parasites Vectors 2012, 5, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dryden, M.W.; Smith, V.; Davis, W.L.; Settje, T.; Hostetler, J. Evaluation and comparison of a flumethrin-imidacloprid collar and repeated monthly treatments of fipronil/(s)-methoprene to control flea, Ctenocephalides f. felis, infestations on cats for eight months. Parasites Vectors 2016, 9, 287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanneck, D.; Ebbinghaus-Kintscher, U.; Schoenhense, E.; Krudewagen, E.M.; Turberg, A.; Leisewitz, A.; Jiritschka, W.; Krieger, K.J. The synergistic action of imidacloprid and flumethrin and their release kinetics from collars applied for ectoparasite control in dogs and cats. Parasites Vectors 2012, 5, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brianti, E.; Napoli, E.; Gaglio, G.; Falsone, L.; Giannetto, S.; Basano, F.S.; Nazzari, R.; Latrofa, M.S.; Annoscia, G.; Tarallo, V.D.; et al. Field evaluation of two different treatment approaches and their ability to control fleas and prevent canine leishmaniosis in a highly endemic area. PLOS Negl. Trop. Dis. 2016, 10, e0004987. [Google Scholar] [CrossRef]
- Otranto, D.; Dantas-Torres, F.; Napoli, E.; Basano, F.S.; Deuster, K.; Pollmeier, M.; Capelli, G.; Brianti, E. Season-long control of flea and tick infestations in a population of cats in the Aeolian archipelago using a collar containing 10% imidacloprid and 4.5% flumethrin. Vet. Parasitol. 2017, 248, 80–83. [Google Scholar] [CrossRef]
- Brianti, E.; Falsone, L.; Napoli, E.; Gagilo, G.; Giannetto, S.; Pennisi, M.G.; Priolo, V.; Latrofa, M.S.; Tarallo, V.D.; Basano, F.S.; et al. Prevention of feline leishmaniosis with an imidacloprid 10%/flumethrin 4.5% polymer matric collar. Parasites Vectors 2017, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Greco, G.; Brianti, E.; Buonavoglia, C.; Carelli, G.; Pollmeier, M.; Schunack, B.; Dowgier, G.; Capelli, G.; Dantas-Torres, F.; Otranto, D. Effectiveness of a 10% imidacloprid/4.5% flumethrin polymer matrix collar on reducing the risk of Bartonella spp. infection in privately owned cats. Parasites Vectors 2019, 12, 69. [Google Scholar] [CrossRef] [Green Version]
- Rust, M.K. Insecticide resistance in fleas. Insects 2016, 7, 10. [Google Scholar] [CrossRef] [Green Version]
- Rust, M.K.; Blagburn, B.L.; Denholm, I.; Dryden, M.W.; Payne, P.; Hinkle, N.C.; Koop, S.; Williamson, M. International program to monitor cat flea populations for susceptibility to imidacloprid. J. Med. Entomol. 2019, 55, 1245–1253. [Google Scholar] [CrossRef] [Green Version]
- Carithers, D.; Dryden, M.; Everett, W.R.; Gross, S.; Crawford, J. Assessment of FRONTLINE® Plus efficacy at 24-hour counts against Tampa 2014 Isolate Ctenocephalides felis flea infestations on cats and dogs on days 1, 7, 14, 21, and 28. Int. J. Appl. Res. Vet. Med. 2018, 16, 52–58. [Google Scholar]
- Alak, S.E.; Köseoğlu, A.E.; Kandemir, C.; Taşkin, T.; Demir, S.; Döşkaya, M.; Űn, C.; Can, H. High frequency of knockdown resistance mutations in the para gene of cat flea (Ctenocephalides felis) samples collected from goats. Parasitol. Res. 2020, 119, 2067–2073. [Google Scholar] [CrossRef] [PubMed]
- Dryden, M.W.; Broce, A.B. Integrated flea control for the 21st Century. Compend. Contin. Educ. Pract. Vet. 2002, 24, 36–40. [Google Scholar]
- Dryden, M.W. Flea and tick control in the 21st century: Challenges and opportunities. Vet. Dermatol. 2009, 20, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Peribáñez, M.A.; Calvete, C.; Gracia, M.J. Preferences of pet owners in regard to the use of insecticides for flea control. J. Med. Entomol. 2018, 55, 1254–1263. [Google Scholar] [CrossRef] [PubMed]
- Lavan, R.P.; Tunceli, K.; Zhang, D.; Normile, D.; Armstrong, R. Assessment of dog owner adherence to veterinarians’ flea and tick prevention recommendations in the United States using a cross-sectional survey. Parasites Vectors 2017, 10, 284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavan, R.; Armstrong, R.; Tunceli, K.; Normile, D. Dog owner flea/tick medication purchases in the USA. Parasites Vectors 2018, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Pfister, K.; Armstrong, R. Systemically and cutaneously distributed ectoparasiticides: A review of the efficacy against ticks and fleas in dogs. Parasites Vectors 2018, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Dryden, M.W.; Denenberg, T.M.; Bunch, S. Control of fleas on naturally infested dogs and cats and in private residences with topical spot applications of fipronil or imidacloprid. Vet. Parasitol. 2000, 93, 69–75. [Google Scholar] [CrossRef]
- Miller, P.F.; Peters, B.A.; Holt, C.A. A field study to evaluate integrated flea control using lufenuron and nitenpyram compared to imidacloprid used alone. Aust. Vet. Practit. 2001, 31, 60–66. [Google Scholar]
- Dryden, M.W.; Payne, P.A.; Smith, V.; Chwala, M.; Jones, E.; Davenport, J.; Fadl, G.; Martinez-Perez de Zeiders, M.F.; Heaney, K. Evaluation of indoxacarb and fipronil (s)-methoprene topical spot-on formulations to control flea populations in naturally infested dogs and cats in private residences in Tampa FL. USA. Parasites Vectors 2013, 6, 366. [Google Scholar] [CrossRef] [Green Version]
- Dryden, M.W.; Canfield, M.S.; Bocon, C.; Phan, L.; Niedfeldt, E.; Kinnon, A.; Warcholek, S.A.; Smith, V.; Bress, T.S.; Smith, N.; et al. In-home assessment of either topical fluralaner or topical selamectin for flea control in naturally infested cats in West Central Florida, USA. Parasites Vectors 2018, 11, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edwards, C.H.; Baird, J.; Zinser, E.; Woods, D.J.; Shaw, S.; Campbell, E.M.; Bowman, A.S. RNA interference in the cat flea, Ctenocephalides felis: Approaches for sustained gene knockdown and evidence of involvement of Dicer-2 and Argonaute2. Int. J. Parasitol. 2018, 48, 993–1002. [Google Scholar] [CrossRef] [PubMed]
- Whitten, M.M.A. Novel RNAi delivery systems in the control of medical and veterinary pests. Curr. Opin. Insect Sci. 2019, 34, 1–6. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rust, M.K. Recent Advancements in the Control of Cat Fleas. Insects 2020, 11, 668. https://doi.org/10.3390/insects11100668
Rust MK. Recent Advancements in the Control of Cat Fleas. Insects. 2020; 11(10):668. https://doi.org/10.3390/insects11100668
Chicago/Turabian StyleRust, Michael K. 2020. "Recent Advancements in the Control of Cat Fleas" Insects 11, no. 10: 668. https://doi.org/10.3390/insects11100668