DNA Barcoding Subtropical Aphids and Implications for Population Differentiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Collection and Identification
2.2. DNA Extraction, Polymerase Chain Reaction, and Sequencing
2.3. Sequence Analysis
2.4. Genetic Distance and Phylogenetic Analysis
2.5. Species Delimitation
3. Results
3.1. Genetic Distances and Species Delimitation
3.2. Species Divergence Related to Host Plant or Geography
3.3. Effect of Sampling Effort Related to Host Plant Coverage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hebert, P.D.N.; Cywinska, A.; Ball, S.L.; Dewaard, J.R. Biological identification through DNA barcodes. Proc. R. Soc. Lond. Ser. B Biol. Sci. 2003, 270, 313–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajibabaei, M.; Janzen, D.H.; Burns, J.M.; Hallwachs, W.; Hebert, P.D.N. DNA barcodes distinguish species of tropical Lepidoptera. Proc. Natl. Acad. Sci. USA 2006, 103, 968–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.Z.; Li, Z.Y.; Jin, X.H. DNA barcoding of invasive plants in China: A resource for identifying invasive plants. Mol. Ecol. Resour. 2017, 18, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Hebert, P.D.; Penton, E.H.; Burns, J.M.; Janzen, D.H.; Hallwachs, W. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc. Natl. Acad. Sci. USA 2004, 101, 14812–14817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peccoud, J.; Ollivier, A.; Plantegenest, M.; Simon, J.-C. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc. Natl. Acad. Sci. USA 2009, 106, 7495–7500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hrcek, J.; Miller, S.E.; Quicke, D.L.J.; Smith, M.A. Molecular detection of trophic links in a complex insect host-parasitoid food web. Mol. Ecol. Resour. 2011, 11, 786–794. [Google Scholar] [CrossRef]
- Santos, A.M.C.; Besnard, G.; Quicke, D.L.J. Applying DNA barcoding for the study of geographical variation in host-parasitoid interactions. Mol. Ecol. Resour. 2011, 11, 46–59. [Google Scholar] [CrossRef]
- Thomsen, P.F.; Willerslev, E. Environmental DNA–An emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 2015, 183, 4–18. [Google Scholar] [CrossRef]
- Bonants, P.; Groenewald, E.; Rasplus, J.Y.; Maes, M.; De Vos, P.; Frey, J.; Boonham, N.; Nicolaisen, M.; Bertacini, A.; Robert, V. QBOL: A new EU project focusing on DNA barcoding of Quarantine organisms. EPPO Bull. 2010, 40, 30–33. [Google Scholar] [CrossRef]
- Brodin, Y.; Ejdung, G.; Strandberg, J.; Lyrholm, T. Improving environmental and biodiversity monitoring in the Baltic Sea using DNA barcoding of Chironomidae (Diptera). Mol. Ecol. Resour. 2013, 13, 996–1004. [Google Scholar] [CrossRef]
- Kekkonen, M.; Hebert, P.D.N. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Mol. Ecol. Resour. 2014, 14, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Foottit, R.G.; Maw, H.E.; VON Dohlen, C.D.; Hebert, P.D. Species identification of aphids (Insecta: Hemiptera: Aphididae) through DNA barcodes. Mol. Ecol. Resour. 2008, 8, 1189–1201. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Chen, W.T.; Lu, H.S.; Cheng, F.; Xie, S.G. Developing a DNA barcode library for perciform fishes in the South China Sea: Species identification, accuracy, and cryptic diversity. Mol. Ecol. Resour. 2018, 18, 137–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raupach, M.J.; Astrin, J.J.; Hannig, K.; Peters, M.K.; Stoeckle, M.Y.; Wägele, J.W. Molecular species identification of Central European ground beetles (Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Front. Zool. 2010, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Magoga, G.; Sahin, D.C.; Fontaneto, D.; Montagna, M. Barcoding of Chrysomelidae of Euro-Mediterranean area: Efficiency and problematic species. Sci. Rep. 2018, 8, 13398. [Google Scholar] [CrossRef]
- Sheffield, C.S.; Hebert, P.D.N.; Kevan, P.G.; Packer, L. DNA barcoding a regional bee (Hymenoptera: Apoidea) fauna and its potential for ecological studies. Mol. Ecol. Resour. 2009, 9, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Magnacca, K.N.; Brown, M.J.F. Mitochondrial heteroplasmy and DNA barcoding in Hawaiian Hylaeus (Nesoprosopis) bees (Hymenoptera: Colletidae). BMC Evol. Biol. 2010, 10, 174. [Google Scholar] [CrossRef] [Green Version]
- Virgilio, M.; Backeljau, T.; Nevado, B.; De Meyer, M. Comparative performances of DNA barcoding across insect orders. BMC Bioinform. 2010, 11, 206. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.B.; He, L.J.; Crozier, R.H.; Muster, C.; Zhu, C.D. Estimating sample sizes for DNA barcoding. Mol. Phylogenetics Evol. 2010, 54, 1035–1039. [Google Scholar] [CrossRef]
- Bergsten, J.; Bilton, D.T.; Fujisawa, T.; Elliott, M.; Monaghan, M.T.; Balke, M.; Hendrich, L.; Geijer, J.; Herrmann, J.; Foster, G.N. The Effect of Geographical Scale of Sampling on DNA Barcoding. Syst. Biol. 2012, 61, 851–869. [Google Scholar] [CrossRef] [Green Version]
- Favret, C. Aphid Species File. Version 5.0/5.0. Available online: http://Aphid.SpeciesFile.org (accessed on 31 October 2019).
- Eastop, V.F. Worldwide importance of aphids as virus vectors. In Aphids as Virus Vectors; Harris, K.F., Maramorosch, K., Eds.; Academic Press: Waltham, MA, USA, 1977; pp. 3–62. [Google Scholar]
- Andrews, G.L.; Kitten, W.F. How cotton yields are affected by aphid populations which occur during boll set. In Proceedings of Beltwide Cotton Conferences; National Cotton Council of America: Memphis, TN, USA, 2013; pp. 291–293. [Google Scholar]
- Devonshire, A.L.; Field, L.M.; Foster, S.P.; Moores, G.D.; Williamson, M.S.; Blackman, R.L. The evolution of insecticide resistance in the peach–potato aphid, Myzus persicae. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1998, 353, 1677–1684. [Google Scholar] [CrossRef] [Green Version]
- Nuessly, G.S.; Nagata, R.T.; Burd, J.D.; Hentz, M.G.; Carroll, A.S.; Halbert, S.E. Biology and biotype determination of greenbug, Schizaphis graminum (Hemiptera: Aphididae), on seashore paspalum turfgrass (Paspalum vaginatum). Environ. Entomol. 2008, 37, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Pike, K.S.; Schaffner, R.L. Development of Autumn Populations of Cereal Aphids., Rhopalosiphum padi (L.) and Schizaphis graminum (Rondani) (Homoptera: Aphididae) and Their Effects on Winter Wheat in Washington State. J. Econ. Entomol. 1985, 78, 676–680. [Google Scholar] [CrossRef]
- Bregitzer, P.; Mornhinweg, D.W.; Jones, B.L. Resistance to Russian wheat aphid damage derived from STARS 9301B protects agronomic performance and malting quality when transferred to adapted barley germplasm. Crop Sci. 2003, 43, 2050–2057. [Google Scholar] [CrossRef]
- Burd, J.D.; Burton, R.L.; Webster, J.A. Evaluation of Russian Wheat Aphid (Homoptera: Aphididae) Damage on Resistant and Susceptible Hosts with Comparisons of Damage Ratings to Quantitative Plant Measurements. J. Econ. Entomol. 1993, 86, 974–980. [Google Scholar] [CrossRef]
- Kerns, D.L.; Gaylor, M.J. Insecticide Resistance in Field Populations of the Cotton Aphid (Homoptera: Aphididae). J. Econ. Entomol. 1992, 85, 1–8. [Google Scholar] [CrossRef]
- Clark, A.J.; Perry, K.L. Transmissibility of Field Isolates of Soybean Viruses by Aphis glycines. Plant Dis. 2007, 86, 1219–1222. [Google Scholar] [CrossRef] [Green Version]
- Pitrat, M.; Lecoq, H. Inheritance of resistance to cucumber mosaic virus transmission by Aphis gossypii in Cucumis melo. Phytopathology 1980, 70, 958–961. [Google Scholar] [CrossRef] [Green Version]
- Cockbain, A.J.; Gibbs, A.J.; Heathcote, G.D. Some factors affecting the transmission of sugar-beet mosaic and pea mosaic viruses by Aphis fubue and Myzus persicae. Ann. Appl. Biol. 1963, 52, 133–143. [Google Scholar] [CrossRef]
- Huang, X.L.; Xiang Yu, J.G.; Ren, S.S.; Zhang, R.L.; Zhang, Y.P.; Qiao, G.X. Molecular phylogeny and divergence times of Hormaphidinae (Hemiptera: Aphididae) indicate Late Cretaceous tribal diversification. Zool. J. Linn. Soc. 2012, 165, 73–87. [Google Scholar] [CrossRef] [Green Version]
- Hille Ris Lambers, D. Polymorphism in Aphididae. Annu. Rev. Entomol. 1966, 11, 47–78. [Google Scholar] [CrossRef]
- Li, Q.; Yao, J.; Zeng, L.; Lin, X.; Huang, X. Molecular and morphological evidence for the identity of two nominal species of Astegopteryx (Hemiptera, Aphididae, Hormaphidinae). ZooKeys 2019, 833, 59–74. [Google Scholar] [CrossRef] [PubMed]
- Moran, N.A. Phenotype fixation and genotypic diversity in the complex life cycle of the aphid Pemphigus betae. Evolution 1991, 45, 957–970. [Google Scholar] [CrossRef] [PubMed]
- Mondor, E.B.; Rosenheim, J.A.; Addicott, J.F. Predator-induced transgenerational phenotypic plasticity in the cotton aphid. Oecologia 2005, 142, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Wool, D.; Hales, D.F. Phenotypic plasticity in Australian cotton aphid (Homoptera: Aphididae): Host plant effects on morphological variation. Ann. Entomol. Soc. Am. 1997, 90, 316–328. [Google Scholar] [CrossRef]
- Margaritopoulos, J.T.; Tsitsipis, J.A.; Zintzaras, E.; Blackman, R.L. Host-correlated morphological variation of Myzus persicae (Hemiptera: Aphididae) populations in Greece. Bull. Entomol. Res. 2000, 90, 233–244. [Google Scholar] [CrossRef]
- Roger, L.; Jennifer, M. The effects of temperature on aphid morphology, using a multivariate approach. Eur. J. Entomol. 1994, 91, 7–22. [Google Scholar]
- Zhu, X.C.; Chen, J.; Chen, R.; Jiang, L.Y.; Qiao, G.X. DNA barcoding and species delimitation of Chaitophorinae (Hemiptera, Aphididae). Zookeys 2017, 656, 25–50. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Qiao, G.X. DNA barcoding of genus Toxoptera Koch (Hemiptera: Aphididae): Identification and molecular phylogeny inferred from mitochondrial COI sequences. Insect. Sci. 2009, 16, 475–484. [Google Scholar] [CrossRef]
- Rebijith, K.B.; Asokan, R.; Kumar, N.K.K.; Krishna, V.; Chaitanya, B.N.; Ramamurthy, V.V. DNA barcoding and elucidation of cryptic aphid species (Hemiptera: Aphididae) in India. Bull. Entomol. Res. 2013, 103, 601–610. [Google Scholar] [CrossRef]
- Lee, W.; Kim, H.; Lim, J.; Choi, H.R.; Kim, Y.; Kim, Y.S.; Ji, J.Y.; Foottit, R.G.; Lee, S. Barcoding aphids (Hemiptera: Aphididae) of the Korean Peninsula: Updating the global data set. Mol. Ecol. Resour. 2011, 11, 32–77. [Google Scholar] [CrossRef] [PubMed]
- Foottit, R.G.; Maw, H.E.L.; Pike, K.S. DNA barcodes to explore diversity in aphids (Hemiptera: Aphididae and Adelgidae). Redia 2009, 92, 87–91. [Google Scholar]
- Kim, H.; Hoelmer, K.A.; Lee, W.; Kwon, Y.-D.; Lee, S. Molecular and Morphological Identification of the Soybean Aphid and Other Aphis Species on the Primary Host Rhamnus davurica in Asia. Ann. Entomol. Soc. Am. 2010, 103, 532–543. [Google Scholar] [CrossRef]
- Liu, Q.H.; Jiang, L.Y.; Qiao, G.X. DNA barcoding of Greenideinae (Hemiptera: Aphididae) with resolving taxonomy problems. Invertebr. Syst. 2013, 27, 428–438. [Google Scholar] [CrossRef]
- Cocuzza, G.E.M.; Di Silvestro, S.; Giordano, R.; Rapisarda, C. Congruence between cytochrome oxidase I (COI) and morphological data in Anuraphis spp. (Hemiptera, Aphididae) with a comparison between the utility of the 5′barcode and 3′COI regions. ZooKeys 2015, 529, 123–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jousselin, E.; Cruaud, A.; Genson, G.; Chevenet, F.; Foottit, R.G.; Cœur d’acier, A. Is ecological speciation a major trend in aphids? Insights from a molecular phylogeny of the conifer-feeding genus Cinara. Front. Zool. 2013, 10, 56. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F. DNA Taxonomy of Aphidini from China (Hemiptera: Aphidoidea: Aphididae). Ph.D. Thesis, Institute of Zoology, Chinese Academy of Sciences, Beijing, China, 11 June 2008. [Google Scholar]
- Ratnasingham, S.; Hebert, P.D.N. BOLD: The barcode of life data system (www.barcodinglife.org). Mol. Ecol. Notes 2007, 7, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.L.; Huang, X.L.; Jiang, L.Y.; Qiao, G.X. Phylogeny and species differentiation of Mollitrichosiphum spp. (Aphididae, Greenideinae) based on mitochondrial COI and Cyt b genes. Curr. Zool. 2011, 57, 806–815. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Jiang, L.Y.; Chen, J.; Qiao, G.X. DNA barcoding reveals a mysterious high species diversity of conifer-feeding aphids in the mountains of southwest China. Sci. Rep. 2016, 6, 20123. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, M.L. Species Diversity Gradients: We Know More and Less Than We Thought. J. Mammal. 1992, 73, 715–730. [Google Scholar] [CrossRef]
- Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004, 163, 192–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dyer, L.A.; Singer, M.S.; Lill, J.T.; Stireman, J.O.; Gentry, G.L.; Marquis, R.J.; Ricklefs, R.E.; Greeney, H.F.; Wagner, D.L.; Morais, H.C. Host specificity of Lepidoptera in tropical and temperate forests. Nature 2007, 448, 696–699. [Google Scholar] [CrossRef] [PubMed]
- Von Dohlen, C.D.; Teulon, D.A.J. Phylogeny and Historical Biogeography of New Zealand Indigenous Aphidini Aphids (Hemiptera, Aphididae): An Hypothesis. Ann. Entomol. Soc. Am. 2003, 96, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Von Dohlen, C.D.; Rowe, C.A.; Heie, O.E. A test of morphological hypotheses for tribal and subtribal relationships of Aphidinae (Insecta: Hemiptera: Aphididae) using DNA sequences. Mol. Phylogenetics Evol. 2006, 38, 316–329. [Google Scholar] [CrossRef]
- Dixon, A.F.G.; Kindlmann, P.; Leps, J.; Holman, J. Why There are So Few Species of Aphids, Especially in the Tropics. Am. Nat. 1987, 129, 580–592. [Google Scholar] [CrossRef]
- Yasuhiro, K.; Hirofumi, M.; Kihachiro, K. Effects of topographic heterogeneity on tree species richness and stand dynamics in a subtropical forest in Okinawa Island, southern Japan. J. Ecol. 2004, 92, 230–240. [Google Scholar] [CrossRef]
- Schuldt, A.; Baruffol, M.; Böhnke, M.; Bruelheide, H.; Härdtle, W.; Lang, A.C.; Nadrowski, K.; Oheimb, G.V.; Voigt, W.; Zhou, H.Z. Tree diversity promotes insect herbivory in subtropical forests of south-east China. J. Ecol. 2010, 98, 917–926. [Google Scholar] [CrossRef] [Green Version]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Kazutaka, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Librado, P.; Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 2009, 25, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Bandelt, H.-J.; Forster, P.; Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, R.; Shiyang, K.; Vaidya, G.; Ng, P.K.L. DNA Barcoding and Taxonomy in Diptera: A Tale of High Intraspecific Variability and Low Identification Success. Syst. Biol. 2006, 55, 715–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef]
- Puillandre, N.; Lambert, A.; Brouillet, S.; Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012, 21, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Barraclough, T.G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 2013, 62, 707–724. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Kapli, P.; Pavlidis, P.; Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 2013, 29, 2869–2876. [Google Scholar] [CrossRef] [Green Version]
- Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [Google Scholar] [CrossRef] [Green Version]
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Schwarzfeld, M.D.; Sperling, F.A.H. Comparison of five methods for delimitating species in Ophion Fabricius, a diverse genus of parasitoid wasps (Hymenoptera, Ichneumonidae). Mol. Phylogenetics Evol. 2015, 93, 234–248. [Google Scholar] [CrossRef]
- Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestro, D.; Michalak, I. raxmlGUI: A graphical front-end for RAxML. Org. Divers. Evol. 2012, 12, 335–337. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Herbaceous Plants and Shrubs, 2 Volume Set; John Wiley & Sons: Chichester, UK, 2006. [Google Scholar]
- Kim, H.; Lee, W.; Lee, S. Morphometric Relationship, Phylogenetic Correlation, and Character Evolution in the Species-Rich Genus Aphis (Hemiptera: Aphididae). PLoS ONE 2010, 5, e11608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigand, A.M.; Adrienne, J.; Rajko, S.; Jan, S.; Eugenia, Z.; Annette, K.K. Evolution of microgastropods (Ellobioidea, Carychiidae): Integrating taxonomic, phylogenetic and evolutionary hypotheses. BMC Evol. Biol. 2013, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahiri, R.; Lafontaine, J.D.; Schmidt, B.C.; Dewaard, J.R.; Zakharov, E.V.; Hebert, P.D.N. A Transcontinental Challenge-A Test of DNA Barcode Performance for 1541 Species of Canadian Noctuoidea (Lepidoptera). PLoS ONE 2014, 9, e92797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barman, A.; Joyce, A.; Torres, R.; Higbee, B. Assessing genetic diversity in four stink bug species, Chinavia hilaris, Chlorochroa uhleri, Chlorochroa sayi, and Thyanta pallidovirens (Hemiptera: Pentatomidae), using DNA barcodes. J. Econ. Entomol. 2017, 110, 2590–2598. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Lee, W.; Kanturski, M.; Foottit, R.G.; Akimoto, S.-I.; Lee, S. Cryptic diversity of the subfamily Calaphidinae (Hemiptera: Aphididae) revealed by comprehensive DNA barcoding. PLoS ONE 2017, 12, e0176582. [Google Scholar] [CrossRef]
- Smith, M.A.; Rodriguez, J.J.; Whitfield, J.B.; Deans, A.R.; Janzen, D.H.; Hallwachs, W.; Hebert, P.D.N. Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc. Natl. Acad. Sci. USA 2008, 105, 12359–12364. [Google Scholar] [CrossRef] [Green Version]
- Čandek, K.; Kuntner, M. DNA barcoding gap: Reliable species identification over morphological and geographical scales. Mol. Ecol. Resour. 2015, 15, 268–277. [Google Scholar] [CrossRef]
- Duque-Gamboa, D.; Castillo-Cárdenas, M.; Hernández, L.; Guzmán, Y.; Manzano, M.; Toro-Perea, N. Mitochondrial DNA suggests cryptic speciation in Prodiplosis longifila Gagné (Diptera: Cecidomyiidae) associated with geographic distance and host specialization. Bull. Entomol. Res. 2018, 108, 739–749. [Google Scholar] [CrossRef]
- Pentinsaari, M.; Vos, R.; Mutanen, M. Algorithmic single-locus species delimitation: Effects of sampling effort, variation and nonmonophyly in four methods and 1870 species of beetles. Mol. Ecol. Resour. 2017, 17, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Hamilton, C.A.; Hendrixson, B.E.; Brewer, M.S.; Bond, J.E. An evaluation of sampling effects on multiple DNA barcoding methods leads to an integrative approach for delimiting species: A case study of the North American tarantula genus Aphonopelma (Araneae, Mygalomorphae, Theraphosidae). Mol. Phylogenetics Evol. 2014, 71, 79–93. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Q.; Humphreys, A.M.; Fontaneto, D.; Barraclough, T.G. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data. Methods Ecol. Evol. 2014, 5, 1086–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumas, P.; Barbut, J.; Le Ru, B.; Silvain, J.F.; Clamens, A.-L.; d’Alençon, E.; Kergoat, G.J. Phylogenetic molecular species delimitations unravel potential new species in the pest genus spodoptera guenée, 1852 (lepidoptera, noctuidae). PLoS ONE 2015, 10, e0122407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drès, M.; Mallet, J. Host races in plant–feeding insects and their importance in sympatric speciation. Philos. Trans. Biol. Sci. 2002, 357, 471–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackenzie, A. A Trade-Off for Host Plant Utilization in the Black Bean Aphid, Aphis fabae. Evolution 1996, 50, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Lee, W.; Lee, S.; Kim, H. A cryptic species of Aphis gossypii (Hemiptera: Aphididae) complex revealed by genetic divergence and different host plant association. Bull. Entomol. Res. 2015, 105, 40–51. [Google Scholar] [CrossRef]
- Lassaad, M.; Martínez-Torres, D.; Monia, B.H.K. Two mitochondrial haplotypes in Pterochloroides persicae (Hemiptera: Aphididae: Lachninae) associated with different feeding sites. Insect Sci. 2013, 20, 637–642. [Google Scholar] [CrossRef]
- Via, S.; Bouck, A.C.; Skillman, S. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evolution 2000, 54, 1626–1637. [Google Scholar] [CrossRef]
- Kanturski, M.; Lee, Y.; Choi, J.; Lee, S. DNA barcoding and a precise morphological comparison revealed a cryptic species in the Nippolachnus piri complex (Hemiptera: Aphididae: Lachninae). Sci. Rep. 2018, 8, 8998. [Google Scholar] [CrossRef]
- Blackman, R.L.; Eastop, V.F. Aphids on the World’s Crops: An Identification and Information Guide; John Wiley and Sons: Hoboken, NJ, USA, 2000. [Google Scholar]
- Carletto, J.; Lombaert, E.; Chavigny, P.; Brévault, T.; Lapchin, L.; Vanlerberghe-Masutti, F. Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Mol. Ecol. 2009, 18, 2198–2212. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.X.; Bräuning, A.; Thomas, A.; Li, J.B.; Cao, K.F. Spatial and temporal temperature trends on the Yunnan Plateau (Southwest China) during 1961–2004. Int. J. Clim. 2011, 31, 2078–2090. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Kerdelhué, C.; Ye, H.; Lieutier, F. Genetic study of the forest pest Tomicus piniperda (Col., Scolytinae) in Yunnan province (China) compared to Europe: New insights for the systematics and evolution of the genus Tomicus. Heredity 2004, 93, 416–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Moeller, M.; Gao, L.M.; Zhang, D.Q.; Li, D.Z. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Mol. Ecol. Resour. 2011, 11, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Jiang, Z.L.; Nardi, F.; Liu, Y.Y.; Luo, X.R.; Li, H.X.; Zhang, Z.K. Members of Bemisia tabaci (Hemiptera: Aleyrodidae) Cryptic Species and the Status of Two Invasive Alien Species in the Yunnan Province (China). J. Insect Sci. 2014, 14, 281. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.; Eastwood, R. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proc. Natl. Acad. Sci. USA 2006, 103, 10334–10339. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.J.; Yu, G.H.; Rao, D.Q.; Yang, J.X. Phylogeography and Demographic History of Babina pleuraden (Anura, Ranidae) in Southwestern China. PLoS ONE 2012, 7, e34013. [Google Scholar] [CrossRef] [Green Version]
- Barman, A.K.; Parajulee, M.N.; Sansone, C.G.; Suh, C.P.; Medina, R.F. Geographic pattern of host-associated differentiation in the cotton fleahopper, Pseudatomoscelis seriatus. Entomol. Exp. Appl. 2012, 143, 31–41. [Google Scholar] [CrossRef]
- Barman, A.; Gadhave, K.; Dutta, B.; Srinivasan, R. Plasticity in host utilization by two host-associated populations of Aphis gossypii Glover. Bull. Entomol. Res. 2018, 108, 360–369. [Google Scholar] [CrossRef] [PubMed]
Number of Cities | Number of Host Plant Species | Morphospecies | MOTUS | The Maximum Intraspecific Genetic Distance | ||
---|---|---|---|---|---|---|
ABGD | GMYC | BPTP | ||||
20 | 50 | Aphis spiraecola | 2 | 2 | 2 | 2.45 |
20 | 55 | Aphis gossypii | 2 | 2 | 1 | 2.93 |
6 | 8 | Hyalopterus pruni | 2 | 2 | 3 | 2.92 |
4 | 2 | Macrosiphoniella kuwayamai | 2 | 2 | 2 | 2.74 |
4 | 3 | Brachycaudus helichrysi | 2 | 1 | 2 | 1.81 |
5 | 7 | Sitobion avenae | 2 | 2 | 1 | 3.69 |
4 | 3 | Shivaphis celti | 2 | 2 | 2 | 3.49 |
10 | 5 | Takecallis taiwana | 2 | 2 | 2 | 3.69 |
3 | 2 | Ceratovacuna keduensis | 2 | 1 | 3 | 1.82 |
3 | 2 | Periphyllus koelreuteriae | 2 | 2 | 2 | 6.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Deng, J.; Chen, C.; Zeng, L.; Lin, X.; Cheng, Z.; Qiao, G.; Huang, X. DNA Barcoding Subtropical Aphids and Implications for Population Differentiation. Insects 2020, 11, 11. https://doi.org/10.3390/insects11010011
Li Q, Deng J, Chen C, Zeng L, Lin X, Cheng Z, Qiao G, Huang X. DNA Barcoding Subtropical Aphids and Implications for Population Differentiation. Insects. 2020; 11(1):11. https://doi.org/10.3390/insects11010011
Chicago/Turabian StyleLi, Qiang, Jun Deng, Cui Chen, Linda Zeng, Xiaolan Lin, Zhentao Cheng, Gexia Qiao, and Xiaolei Huang. 2020. "DNA Barcoding Subtropical Aphids and Implications for Population Differentiation" Insects 11, no. 1: 11. https://doi.org/10.3390/insects11010011
APA StyleLi, Q., Deng, J., Chen, C., Zeng, L., Lin, X., Cheng, Z., Qiao, G., & Huang, X. (2020). DNA Barcoding Subtropical Aphids and Implications for Population Differentiation. Insects, 11(1), 11. https://doi.org/10.3390/insects11010011