Next Article in Journal
Carbon Nanomaterials—Promising Solid Lubricants to Tailor Friction and Wear
Previous Article in Journal
Nanotribological Performance Factors for Aqueous Suspensions of Oxide Nanoparticles and Their Relation to Macroscale Lubricity
Open AccessArticle

Principal Stress Ratio Effect at Residual Stress Determination Utilizing the Variation of Indentation Hardness

Department of Solid Mechanics, Royal Institute of Technology, SE-10044 Stockholm, Sweden
Lubricants 2019, 7(6), 50; https://doi.org/10.3390/lubricants7060050
Received: 30 April 2019 / Revised: 2 June 2019 / Accepted: 6 June 2019 / Published: 11 June 2019
The determination of residual stresses is an important issue when it comes to material failure analysis. The variation of global indentation properties, due to the presence of residual stresses, can serve as a guideline for the size and direction of such stresses. One of these global indentation properties, the material hardness, is unfortunately invariant of residual stresses when metals and alloys are at issue. In this situation, one has to rely on the size of the indentation contact area for residual stress determination. For other materials such as ceramics and polymers, where elastic deformations are of greater importance at indentation, such invariance is no longer present. Here, this variation is investigated based on finite element simulations. The aim is then to determine how the indentation hardness is influenced by the principal residual stress ratio and also discuss if such an influence is sufficient in order to determine the size and direction of such stresses in an experimental situation. It should be emphasized that this work does not suggest a new approach to residual stress determination (by indentation testing) but investigates the applicability of previously derived methods to a situation where the surface stress field is not simplified as equi-biaxial or uniaxial. For simplicity, but not out of necessity, only cone indentation of elastic-perfectly plastic materials is considered. View Full-Text
Keywords: residual stress determination; hardness; correlation of indentation properties; principal stress influence; relative contact area residual stress determination; hardness; correlation of indentation properties; principal stress influence; relative contact area
Show Figures

Figure 1

MDPI and ACS Style

Larsson, P.-L. Principal Stress Ratio Effect at Residual Stress Determination Utilizing the Variation of Indentation Hardness. Lubricants 2019, 7, 50.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop