Electron Microscopy and Spectroscopy in the Analysis of Friction and Wear Mechanisms
Abstract
:1. Introduction
2. Sample Materials and Tribological Tests
3. Analytical Scanning Electron Microscopy
4. Analytical Transmission Electron Microscopy
5. Sample Preparation for Wear Mechanism Study
6. A Few Examples
6.1. FEG-SEM Observation on the Running-In Friction
6.2. TEM, EDX, and EELS Analysis of Tribofilms
6.3. XTEM of Wear Induced Subsurface Microstructure Changes
7. Summary
Funding
Acknowledgments
Conflicts of Interest
References
- Münz, W.D. Titanium aluminium nitride films—A new alternative to TiN coatings. J. Vac. Sci. Technol. 1986, 4, 2717–2725. [Google Scholar] [CrossRef]
- Paldeys, S.; Deevi, S.C. Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater. Sci. Eng. 2003, A342, 58–79. [Google Scholar] [CrossRef]
- Helmersson, U.; Todorova, S.; Barnett, S.A.; Sandgren, J.E.; Markert, J.C.; Greene, J.E. Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness. J. Appl. Phys. 1987, 62, 481–484. [Google Scholar] [CrossRef]
- Münz, W.D.; Donohue, L.A.; Hovsepian, P.E. Properties of various large-scale fabricated TiAlN- and CrN-based superlattice coatings grown by combined cathodic arc-unbalanced magnetron sputter deposition. Surf. Coat. Technol. 2000, 125, 269–277. [Google Scholar] [CrossRef]
- Veprek, S.; Reiprich, S.; Li, S. Superhard nanocrystalline composite materials: The TiN/Si3N4 system. Appl. Phys. Lett. 1995, 66, 2640–2642. [Google Scholar] [CrossRef]
- Lu, C.; Mai, Y.M.; Shen, Y.G. Recent advances on understanding the origin of superhardness in nanocomposite coatings: A critical review. J. Mater. Sci. 2006, 41, 937–950. [Google Scholar] [CrossRef]
- Musil, J. Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering. In Nanostructured Hard Coatings; De Hosson, J.T.M., Cavaleiro, A., Eds.; Springer Science: Berlin, Germany, 2006; pp. 407–463. [Google Scholar]
- Martınez-Martınez, D.; Lopez-Cartes, C.; Justo, A.; Fernandez, A.; Sanchez-Lopez, J.C. Self-lubricating Ti–C–N nanocomposite coatings prepared by double magnetron sputtering. Solid State Sci. 2009, 11, 660–670. [Google Scholar] [CrossRef]
- Lu, Y.H.; Shen, Y.G. Nanostructure transition: From solid solution Ti(N,C) to nanocomposite nc-Ti(N,C)/a-(C,CNx). Appl. Phys. Lett. 2007, 90, 221913. [Google Scholar] [CrossRef]
- Erdemir, A.; Donnet, C. Tribology of diamond-like carbon films: Recent progress and future prospects. J. Phys. D Appl. Phys. 2006, 39, R311–R327. [Google Scholar] [CrossRef]
- Sanchez-Lopez, J.C.; Erdemir, A.; Donnet, C.; Rojas, T.C. Friction-induced structural transformations of diamondlike carbon coatings under various atmospheres. Surf. Coat. Technol. 2003, 163–164, 444–450. [Google Scholar] [CrossRef]
- Merkle, A.P.; Erdemir, A.; Eryilmaz, O.L.; Johnson, J.A.; Marks, L.D. In situ TEM studies of tribo-induced bonding modifications in near-frictionless carbon films. Carbon 2010, 48, 587–591. [Google Scholar] [CrossRef]
- Lindquist, M.; Wilhelmsson, O.; Jansson, U.; Wiklund, U. Tribofilm formation and tribological properties of TiC and nanocomposite TiAlC coatings. Wear 2009, 266, 379–387. [Google Scholar] [CrossRef]
- Luo, Q.; Zhou, Z.; Rainforth, W.M.; Hovsepian, P.E. TEM-EELS study of low-friction superlattice TiAlN/VN coating: The wear mechaisms. Tribol. Lett. 2006, 24, 171–178. [Google Scholar] [CrossRef]
- Luo, Q.; Xie, J.P.; Song, Y.P. Effects of microstructure on the abrasive wear behaviour of spheroidal cast iron. Wear 1995, 184, 1–10. [Google Scholar] [CrossRef]
- Luo, Q.; Xie, J.P.; Lu, W. Investigation of the wear failure mechanism of a flour milling roller. Wear 1993, 161, 11–16. [Google Scholar] [CrossRef]
- Luo, Q.; Rainforth, W.M.; Münz, W.D. TEM observation of wear mechanisms of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron deposition. Wear 1999, 225–229, 74–82. [Google Scholar] [CrossRef]
- Luo, Q.; Rainforth, W.M.; Münz, W.D. TEM study of the wear of TiAlN/CrN superlattice coatings. Scrip. Mater. 2001, 45, 399–404. [Google Scholar] [CrossRef]
- Luo, Q.; Rainforth, W.M.; Münz, W.D. Wear mechanisms of monolithic and multicomponent nitride coatings grown by combined arc etching and unbalanced magnetron sputtering. Surf. Coat. Technol. 2001, 146–147, 430–435. [Google Scholar] [CrossRef]
- Inman, I.A.; Datta, S.; Du, H.L.; Burnell-Gray, J.S.; Luo, Q. Microscopy of glazed layers formed during high temperature sliding wear. Wear 2003, 254, 461–467. [Google Scholar] [CrossRef]
- Zhou, Z.; Mckay, S.; Luo, Q.; Rainforth, M.; Chen, L.; Hovsepian, P. Investigating Worn Surface of NanoscaleTiAlN/VN Coating Using FIB and TEM. EMAG-Nano Imaging Anal. Fabr. Nanoscale J. Phys. Ser. 2006, 26, 95–98. [Google Scholar]
- Luo, Q.; Hovsepian, P.E. Transmission electron microscopy and energy dispersive X-ray spectroscopy on the worn surface of nano-structured TiAlN/VN multilayer coating. Thin Solid Films 2006, 497, 203–209. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Zhou, Z.; Rainforth, W.M.; Bolton, M. Effect of tribofilm formation on the dry sliding friction and wear properties of magnetron sputtered TiAlCrYN coatings. Tribol. Lett. 2009, 34, 113–124. [Google Scholar] [CrossRef]
- Luo, Q.; Schimpf, C.; Ehiasarian, A.P.; Chen, L.; Hovsepian, P.E. Structure and wear mechanisms of nano-structured TiAlCN/VCN multilayer coatings. Plasma Processes Polym. 2007, 4, S916–S920. [Google Scholar] [CrossRef]
- Luo, Q. Tribofilms in solid lubricants. In Encyclopedia of Tribology; Wang, Q.J., Chung, Y.-W., Eds.; Springer Science: New York, NY, USA, 2013; pp. 3760–3767. [Google Scholar]
- Luo, Q. Origin of friction in running-in sliding wear of nitride coatings. Tribol. Lett. 2010, 37, 529–539. [Google Scholar] [CrossRef]
- Zhou, Z.; Rainforth, W.M.; Luo, Q.; Hovsepian, P.E.; Ojeda, J.J.; Romero-Gonzalez, M.E. Wear and friction of TiAlN/VN coatings against Al2O3 in air at room and elevated temperatures. Acta Mater. 2010, 58, 2912–2925. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, S.C.; Zhou, Z.; Chen, L. Structure characterization and tribological study of magnetron sputtered nanocompositenc-TiAlV(N,C)/a-C coatings. J. Mater. Chem. 2011, 21, 9746–9756. [Google Scholar] [CrossRef]
- Luo, Q. Temperature dependent friction and wear of magnetron sputtered coating TiAlN/VN. Wear 2011, 271, 2058–2066. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, E.; Luo, Q.; Owens, D. Cast study: Wear mechanisms of NiCrVMo-steel and CrB-steel scrap shear blades. Wear 2018, 398–399, 29–40. [Google Scholar] [CrossRef]
- Ibrahim, M.Z.; Sarhan, A.A.D.; Yusuf, F.; Hamdi, M. Biomedical materials and techniques to improve the tribological, mechanical and biomedical properties of orthopaedic implants—A review article. J. Alloy. Compd. 2017, 714, 636–667. [Google Scholar] [CrossRef]
- Van Hove, R.P.; Sierevelt, I.N.; van Royen, B.J.; Nolte, P.A. Titanium nitride coating of orthopaedic implants: A review of the literature. BioMed. Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lapaj, L.; Wendland, J.; Markuszewski, J.; Mroz, A.; Wisniewski, T. Retrieval analysis of titanium nitrtide (TiN) coated prosthetic demoral heads articulating with polyethylene. J. Mech. Behav. Biomed. Mater. 2016, 55, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Affatato, S.; Roggiero, A.; De Mattia, J.S.; Taddei, P. Does metal transfer affect the tribological behaviour of demoral heads? Roughness and phase transformation analyses on retrieved zirconia and Biolox Delta composites. Compos. Part B 2016, 92, 290–298. [Google Scholar] [CrossRef]
- Namus, R.; Zheng, P.; Rainforth, W.M. Correlation of the wear transition in CoCrMo alloys with the formation of a nanocrystalline surface layer and a proteinaceous surface film. Wear 2017, 376–377, 223–231. [Google Scholar] [CrossRef]
- Zeng, P.; Rana, A.; Thompson, R.; Rainforth, W.M. Subsurface characterisation of wear on mechanically polished and electro-polished bilmedical grade CoCrMo. Wear 2015, 332–333, 650–661. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, L.; Neville, A.; Qiao, L. (iv) Tribofilm on hip implants. Orthop. Trauma 2013, 27, 93–100. [Google Scholar] [CrossRef]
- Slonaker, M.; Goswami, T. Review of wear mechnaisms in hip implants: Paper II—Ceramics IG004712. Mater. Des. 2004, 25, 395–405. [Google Scholar] [CrossRef]
- Zeng, P.; Rainforth, W.M.; Inkson, B.J.; Stewart, T.D. Transmission electron microscopy analysis of worn alumina hip replacement prostheses. Acta Mater. 2012, 60, 2061–2072. [Google Scholar] [CrossRef]
- Zeng, P.; Rainforth, W.M.; Stewart, T.D. Characterisation of the wear mechanisms in retrieved aluminium-on-alumina total hip replacements. Wear 2017, 376–377, 212–222. [Google Scholar] [CrossRef]
- Luo, Q.; Lewis, D.B.; Hovsepian, P.E.; Münz, W.D. Transmission electron microscopy and X-ray diffrac-tion investigation of the microstructure of nano-scale multilayers TiAlN/VN grown by unbalanced magne-tron deposition. J. Mater. Res. 2004, 19, 1093–1104. [Google Scholar] [CrossRef]
- Lewis, D.B.; Creasey, S.; Zhou, Z.; Forsyth, J.J.; Ehiasarian, A.P.; Hovsepian, P.E.; Luo, Q.; Rainforth, W.M.; Münz, W.M. The effect of (Ti + Al): V ratio on the structure and oxidation behavior of TiAlN/VN nano-scale multilayer coatings. Surf. Coat. Technol. 2004, 177–178, 252–259. [Google Scholar] [CrossRef]
- Hovsepian, P.E.; Lewis, D.B.; Luo, Q.; Münz, W.D.; Mayrhofer, P.H.; Mitterer, C.; Zhou, Z.; Rainforth, W.M. TiAlN based nanoscale multilayer PVD coatings designed to adapt their tribological properties at elevated temperatures. Thin Solid Films 2005, 485, 160–168. [Google Scholar] [CrossRef]
- Luo, Q.; Robinson, G.; Pittman, M.; Howarth, M.; Sim, W.M.; Stalley, M.R.; Leitner, H.; Ebner, R.; Caliskanoglu, D.; Hovsepian, P.E. Performance of nano-structured multilayer PVD coating TiAlN/VN in dry high speed milling of aerospace aluminium 7010-T7651. Surf. Coat. Technol. 2005, 200, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Luo, Q.; Hovsepian, P.E.; Lewis, D.B.; Münz, W.D.; Kok, Y.N.; Cockrem, J.; Bolton, M.; Farinotti, A. Tribological perperties of unbalanced magnetron sputtered nanoscale multilayer coatings TiAlN/VN and TiAlCrYN deposited on plasma nitrided steels. Surf. Coat. Technol. 2005, 193, 39–45. [Google Scholar] [CrossRef]
- Dave, D.; Krug, T.; Tietema, R.; Sim, W.; Luo, Q.; Hovsepian, P.E. New Tool Coatings for Light Metal Cutting. Trans. Mater. Heat Treat. 2004, 25, 832–836. [Google Scholar]
- Lewis, D.B.; Luo, Q.; Zhou, Z.; Hovsepian, P.E.; Münz, W.D. Interrelationship between atomic species, bias voltage, texture and microstructure of nano-scale multilayers. Surf. Coat. Technol. 2004, 184, 225–232. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M.; Hovsepian, P.E.; Lewis, D.B.; Luo, Q.; Münz, W.D. Novel Coating Systems Produced by the Combined Cathodic Arc/Unbalanced Magnetron Sputtering for Environmental Protection of Titanium Alloys and Titanium Aluminides. Surf. Coat. Technol. 2002, 155, 103–111. [Google Scholar] [CrossRef]
- Luo, Q.; Oluwafemi, O.; Kitchen, M.; Yang, S. Tribological properties and wear mechanisms of DC pulse plasma nitrided austenitic stainless steel in dry reciprocating sliding tests. Wear 2017, 376–377, 1640–1651. [Google Scholar] [CrossRef]
- Sigle, W. Analytical transmission electron microscopy. Ann. Rev. Mater. Res. 2005, 35, 239–314. [Google Scholar] [CrossRef]
- Ponsonnet, L.; Donnet, C.; Varlot, K.; Martin, J.M.; Grill, A.; Tatel, V. EELS analysis of hydrogenated diamond-like carbon films. Thins Solid Films 1998, 319, 97–100. [Google Scholar] [CrossRef]
- Mitternauer, C.; Hebert, C.; Kothleitner, G.; Hofer, F.; Schattschnerder, P.; Zandbergen, H.W. Electron energy loss near edge structure as a fingerprint for identifying chromium nitrides. Solid State Commun. 2004, 130, 209–213. [Google Scholar] [CrossRef]
- Kothleitner, G.; Rogers, M.; Berendes, A.; Bock, W.; Kolbesen, B.O. A combined SNMS and EFTEM/EELS study on focused ion beam prepared vanadium nitride thin films. Appl. Surf. Sci. 2005, 252, 66–76. [Google Scholar] [CrossRef]
- Van Benthem, K.; Kohl, H. Methods for ELNES-quantification: Characterization of the degree of inversion of Mg-Al-spinels. Micron 2000, 31, 347–354. [Google Scholar] [CrossRef]
- Hofer, F.; Warbichler, P.; Scott, A.; Brydson, P.; Galesic, I.; Kolbesen, B. Electron energy loss near edge structure on the nitrogen K-edge in vanadium nitrides. J. Microsc. 2001, 204, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Bouchet, D.; Colliex, C. Experimental study of ELNES at grain boundaries in alumina: Intergranular radiation damage effects on A1-L23 and O-K edges. Ultramicroscopy 2003, 96, 139–152. [Google Scholar] [CrossRef]
- Lu, J.; Gao, S.P.; Yuan, J. ELNES for boron, carbon, and nitrogen K-edges with different chemical environments in layered materials studied by density functional theory. Ultramicroscopy 2012, 112, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Rao, Q.; Zhou, Q. Abrasive wear resistance of Cr-family white cast irons. Acta Metall. Sin. 1987, 23, 575–580. [Google Scholar]
- Xing, J.; Zhou, Q.; Zhou, J. Influence of carbon content on the oxidation and wear resistance of 20% Cr alloy at elevated temperature. J. Mech. Eng. 1992, 28, 32–37. [Google Scholar]
- Qiu, M.; Zhang, Y.; Zhu, J.; Yang, J. Correlation between the characteristics of the thermo-mechanical mized layer and wear behaviour of Ti–6Al–4V alloy. Tribol. Lett. 2006, 22, 227–231. [Google Scholar]
- Abrahams, M.S.; Buiocchi, C.J. Cross-sectional specimens for transmission electron microscopy. J. Appl. Phys. 1974, 45, 3315–3316. [Google Scholar] [CrossRef]
- Helmersson, U.; Sundgren, J.E. Cross-sectional preparation for TEM of film-substrate combinations with a large difference in sputtering yields. J. Electron Microsc. Tech. 1986, 4, 361–369. [Google Scholar] [CrossRef]
- Giannuzzi, L.A.; Stevie, F.A. A review of focused ion beam milling techniques for TEM specimen preparation. Micron 1999, 30, 197–204. [Google Scholar] [CrossRef]
- Reyntjens, S.; Puers, R. A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 2001, 11, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Dieterle, L.; Butz, B.; Muller, E. Optimized Ar ion milling procedure for TEM cross-sectional sample preparation. Ultramicroscopy 2011, 111, 1636–1644. [Google Scholar] [CrossRef] [PubMed]
- Suess, M.J.; Mueller, E.; Wepf, R. Minimization of amorphous layer in Ar+ ion milling for UHR-EM. Ultramicroscopy 2011, 111, 1224–1232. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Rainforth, W.M.; Donohue, L.A.; Wadsworth, I.; Münz, W.D. Tribological investigation of TiAlCrN and TiAlN/CrN coatings grown by combined steered-arc/unbalanced magnetron dep-osition. Vacuum 1999, 53, 123–126. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Q. Electron Microscopy and Spectroscopy in the Analysis of Friction and Wear Mechanisms. Lubricants 2018, 6, 58. https://doi.org/10.3390/lubricants6030058
Luo Q. Electron Microscopy and Spectroscopy in the Analysis of Friction and Wear Mechanisms. Lubricants. 2018; 6(3):58. https://doi.org/10.3390/lubricants6030058
Chicago/Turabian StyleLuo, Quanshun. 2018. "Electron Microscopy and Spectroscopy in the Analysis of Friction and Wear Mechanisms" Lubricants 6, no. 3: 58. https://doi.org/10.3390/lubricants6030058
APA StyleLuo, Q. (2018). Electron Microscopy and Spectroscopy in the Analysis of Friction and Wear Mechanisms. Lubricants, 6(3), 58. https://doi.org/10.3390/lubricants6030058