Lubricity Assessment, Wear and Friction of CNT-Based Structures in Nanoscale
Abstract
:1. Introduction
2. Experimental—Materials and Methods
3. Results and Discussion
3.1. Carbon Nanotube/Polyvinyl Butyral Composites (PVBC)
3.2. MWCNTs/Polydimethylsiloxane-Based Coatings
3.3. Vertically Aligned CNT Forest Array
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Tjong, S.C. Structural and mechanical properties of polymer composites. Mater. Sci. Eng. R Rep. 2006, 53, 73–197. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Chou, T.W. Processing–structure-multi-functional property relationship in carbon nanotube/epoxy composites. Carbon 2006, 44, 3022–3029. [Google Scholar] [CrossRef]
- Pegel, S.; Potschke, P.; Villmow, T.; Stoyan, D.; Heinrich, G. Spatial statistics of carbon nanotube polymer composites. Polymer 2009, 5, 2123–2132. [Google Scholar] [CrossRef]
- Li, W.H.; Chen, X.H.; Chen, C.S.; Xu, L.S.; Yang, Z.; Wang, Y.G. Preparation and shear properties of carbon nanotubes/poly (butyl methacrylate) hybrid material. Polym. Compos. 2008, 29, 972–977. [Google Scholar] [CrossRef]
- Selmi, A.; Friebel, C.; Doghri, I.; Hassis, H. Prediction of the elastic properties of single walled carbon nanotubes reinforced polymers. Compos. Sci. Tech. 2007, 67, 2071–2084. [Google Scholar] [CrossRef]
- Kao, C.C.; Young, R.J. Assessment of interface damage during the deformation of carbon nanotubes composites. J. Mater. Sci. 2010, 45, 1425–1431. [Google Scholar] [CrossRef]
- Bower, C.; Rosen, R.; Han, J.; Zhou, O. Deformation of carbon nanotubes in nanotube polymer composite. Appl. Phys. Lett. 1999, 74, 3317–3319. [Google Scholar] [CrossRef]
- Li, C.Y.; Wei, T.W. Multiscale modeling of compressive behavior of carbon nanotube polymer composites. Compos. Sci. Technol. 2006, 66, 2409–2414. [Google Scholar] [CrossRef]
- Giraldo, L.F.; Lopez, B.L.; Bostow, W. Effect of the type of carbon nanotubes on tribological properties of polyamide 6. Polym. Eng. Sci. 2009, 49, 896–902. [Google Scholar] [CrossRef]
- Wang, C.; Xue, T.; Dong, B.; Wang, Z.; Li, H.L. Polysteyrene-acrylonitrile CNTs composites preparation and tribological behavior research. Wear 2008, 265, 1923–1926. [Google Scholar] [CrossRef]
- Sun, L.Y.; Gibson, R.F.; Gordaninejad, F.; Suher, J. Energy absorption capability of composites: A review. Compos. Sci. Technol. 2009, 69, 2392–2409. [Google Scholar] [CrossRef]
- Srivastava, V.K. Effect of CNTs on the Wear and Friction Performance of Carbon Fibre Woven Fabric Reinforced Epoxy Resin Composites. Int. J. Compos. Mater. 2016, 6, 95–99. [Google Scholar]
- Zhang, L.C.; Zarudi, I.; Xiao, K.Q. Novel behaviour of friction and wear of epoxy composites reinforced by carbon nanotubes. Wear 2006, 261, 806–811. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, G.J.; Wu, C.W. Anti-friction, wear-proof and self-lubrication application of carbon nanotubes. Rev. Adv. Mater. Sci. 2014, 36, 75–88. [Google Scholar]
- Charitidis, C.A.; Koumoulos, E.P.; Giorcelli, M.; Musso, S.; Jagadale, P.; Tagliaferro, A. Nanomechanical and tribological properties of carbon nanotube/polyvinyl butyral composites. Polym. Compos. 2013, 34, 1950–1960. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Parousis, T.; Trompeta, A.F.A.; Kartsonakis, I.A.; Charitidis, C.A. Investigation of MWCNT addition into poly-dimethylsiloxane-based coatings. Plast. Rubber Compos. 2016, 45, 106–117. [Google Scholar] [CrossRef]
- Lee, K.-J.; Hsu, M.-H.; Cheng, H.-Z. Effect of Process Parameters of CNT Containing Friction Powder on Flexural Properties and Friction Performance of Organic Brake Friction Materials. J. Nanomater. 2014. [Google Scholar] [CrossRef]
- Li, Y.; Yu, T.; Pui, T.; Chen, P.; Zheng, L.; Liao, K. Fabrication and characterization of recyclable carbon nanotube/polyvinyl butyral composite fiber. Compos. Sci. Technol. 2011, 71, 1665–1670. [Google Scholar] [CrossRef]
- Kim, K.T.; Jo, W.H. Noncovalent functionalization of multiwalled carbon nanotubes using graft copolymer with naphthalene and its application as a reinforcing filler for poly(styrene-co-acrylonitrile). J. Polym. Sci. A 2010, 48, 4184–4191. [Google Scholar] [CrossRef]
- Zhuang, G.S.; Sui, G.X.; Sun, Z.S.; Yang, R. Pseudoreinforcement effect of multiwalled carbon nanotubes in epoxy matrix composites. J. Appl. Polym. Sci. 2006, 102, 3664–3672. [Google Scholar] [CrossRef]
- Ribeiro, R.; Banda, S.; Ounaies, Z.; Ucisik, H.; Usta, M.; Liang, H. A tribological and biomimetic study of PI–CNT composites for cartilage replacement. J. Mater. Sci. 2012, 47, 649–658. [Google Scholar] [CrossRef]
- Nadler, M.; Werner, J.; Mahrholz, T.; Riedel, U.; Hufenbach, W. Effect of CNT surface functionalisation on the mechanical properties of multi-walled carbon nanotube/epoxy-composites. Compos. A 2009, 40, 932–937. [Google Scholar] [CrossRef]
- Fiedler, B.; Gojny, F.H.; Wichmann, M.H.G.; Nolte, M.C.M.; Schulte, K. Fundamental aspects of nano-reinforced composites. Compos. Sci. Technol. 2006, 66, 3115–3125. [Google Scholar] [CrossRef]
- Prashantha, K.; Soulestin, J.; Lacrampe, M.F.; Claes, M.; Dupin, G.; Krawczak, P. Multi-walled carbon nanotube filled polypropylene composites based on masterbatch route: Improvement of dispersion and mechanical properties through PP-g-MA addition. Express Polym. Lett. 2008, 2, 735–745. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Charitidis, C.A.; Papageorgiou, D.P.; Papathanasiou, A.G.; Boudouvis, A.G. Nanomechanical and Nanotribological Properties of Hydrophobic Fluorocarbon Dielectric Coating on Tetraethoxysilane for Electrowetting Applications. Surf. Coat. Technol. 2012, 206, 3823–3831. [Google Scholar] [CrossRef]
- Pharr, G.M.; Oliver, W.C.; Brotzen, F.R. On the generality of the relationship among contact stiffness, contact area, and elastic modulus during indentation. J. Mater. Res. 1992, 7, 613–617. [Google Scholar] [CrossRef]
- Nix, W.D. Elastic and plastic properties of thin films on substrates: Nanoindentation techniques. Mater. Sci. Eng. A 1997, 234–236, 37–44. [Google Scholar] [CrossRef]
- Chaudhri, M.M.; Winter, M. The load bearing area of a hardness indentation. J. Phys. D 1988, 21, 370–374. [Google Scholar] [CrossRef]
- Alcala, J.; Barone, A.C.; Anglada, M. The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Mater. 2000, 48, 3451–3464. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Jagadale, P.; Lorenzi, A.; Tagliaferro, A.; Charitidis, C.A. Evaluation of surface properties of epoxy–nanodiamonds composites. Compos. B 2015, 80, 27–36. [Google Scholar] [CrossRef]
- Trompeta, A.F.A.; Koumoulos, E.P.; Kartsonakis, I.A.; Charitidis, C.A. Advanced characterization of by-product carbon film obtained by thermal chemical vapor deposition during CNT manufacturing. Manuf. Rev. 2017, 4, 7. [Google Scholar] [CrossRef]
- Fischer-Cripps, A.C. A simple phenomenological approach to nanoindentation creep. Mater. Sci. Eng. A 2004, 385, 74–82. [Google Scholar] [CrossRef]
- Rar, A.; Sohn, S.; Oliver, W.C.; Goldsby, D.L.; Tullis, T.E.; Pharr, G.M. On the Measurement of Creep by Nanoindentation with Continuous Stiffness Techniques; Materials Research Society: Boston, MA, USA, 2005; pp. 119–124. [Google Scholar]
- Cheng, Y.T.; Cheng, C.M. Effects of ‘sinking in’ and ‘piling up’ on estimating the contact area under load in indentation. Philos. Mag. Lett. 1998, 78, 115–120. [Google Scholar] [CrossRef]
- Hill, R.; Storakers, B.; Zdunek, A.B. A theoretical study of the Brinell hardness test. Math. Phys. Sci. 1989, 423, 301–330. [Google Scholar] [CrossRef]
- Biwa, S.; Storakers, B. An Analysis of Fully Plastic Brinell Indentation. Mech. Phys. Sol. 1995, 43, 1303–1333. [Google Scholar] [CrossRef]
- Hertz, H. Miscellaneous Papers; Macmillan: London, UK, 1896. [Google Scholar]
- Cheng, Y.T.; Cheng, C.M. What is indentation hardness? Surf. Coat. Technol. 2000, 133–134, 417–424. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. Design criteria for wear-resistant nanostructured and glassy-metal coatings. Surf. Coat. Technol. 2004, 177–178, 317–324. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. Optimization of Nanostructured Tribological Coatings. In Nanostructured Coatings; Springer: New York, NY, USA, 2007; pp. 511–538. [Google Scholar]
- Oberle, T.L. Properties influencing wear of metals. J. Met. 1951, 3, 438–439. [Google Scholar]
- Halling, J. Surface films in tribology. Tribologia 1982, 1, 15–23. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the significance of the H/E ratio in wear control: A nanocomposite coating approach to optimised tribological behavior. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Jagdale, P.; Kartsonakis, I.A.; Giorcelli, M.; Tagliaferro, A.; Charitidis, C.A. Carbon Nanotube/Polymer Nanocomposites: A Study on Mechanical Integrity through Nanoindentation. Polym. Compos. 2014, 4, 19. [Google Scholar] [CrossRef]
- Charitidis, C.A.; Koumoulos, E.P.; Dragatogiannis, D.A. Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale. Lubricants 2013, 1, 22–47. [Google Scholar] [CrossRef]
- Koumoulos, E.P.; Charitidis, C.A. Surface analysis and mechanical behaviour mapping of vertically aligned CNT forest array through nanoindentation. Appl. Surf. Sci. 2017, 396, 681–687. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koumoulos, E.P.; Charitidis, C.A. Lubricity Assessment, Wear and Friction of CNT-Based Structures in Nanoscale. Lubricants 2017, 5, 18. https://doi.org/10.3390/lubricants5020018
Koumoulos EP, Charitidis CA. Lubricity Assessment, Wear and Friction of CNT-Based Structures in Nanoscale. Lubricants. 2017; 5(2):18. https://doi.org/10.3390/lubricants5020018
Chicago/Turabian StyleKoumoulos, Elias P., and Costas A. Charitidis. 2017. "Lubricity Assessment, Wear and Friction of CNT-Based Structures in Nanoscale" Lubricants 5, no. 2: 18. https://doi.org/10.3390/lubricants5020018
APA StyleKoumoulos, E. P., & Charitidis, C. A. (2017). Lubricity Assessment, Wear and Friction of CNT-Based Structures in Nanoscale. Lubricants, 5(2), 18. https://doi.org/10.3390/lubricants5020018