Self-Lubricating Ni-Based Composite Coating with Core-Shell Structured Mo@Ag@Ni Addition: Tribological Behaviors and Interface Evolution over Multi-Thermal Cycles
Abstract
1. Introduction
2. Experimental
2.1. Composite Coating Preparation
2.2. Characterization
3. Results and Discussion
3.1. Microstructure and Mechanical Properties of the Composite Coating
3.2. Tribological Behaviors of the Composite Coating
3.2.1. Tribological Behaviors from RT to 800 °C
3.2.2. Tribological Behaviors and Microstructure Evolution over Multi-Thermal Cycles
4. Conclusions
- (1)
- The composite coating has a uniform microstructure and exhibits excellent mechanical properties. The enhancement of the mechanical properties can be attributed to the reduced segregation of Mo and Ag, as well as the enhancement of the interfacial bonding strength between Mo@Ag@Ni and NiCrAlY particles.
- (2)
- The lowest friction coefficient (approximately 0.32) and wear rate (around 1.58 × 10−5 mm3N−1m−1) were obtained at 800 °C. Meanwhile, the core-shell structured Mo@Ag@Ni effectively promotes the formation of silver molybdates on the worn surface of the NiCrAlY-Mo@Ag@Ni coating during the high-temperature friction process.
- (3)
- The composite coating maintains the excellent tribological properties over multi-thermal cycles. The friction coefficient and wear rate remain stable at approximately 0.3 and 2.5 × 10−5 mm3N−1m−1, respectively, due to the continuous Ag2MoO4 and NiO lubricating films on the worn surface over multi-thermal cycles.
- (4)
- The core-shell structured Mo@Ag@Ni can partially mitigate the diffusion of Ag in the composite coating at high temperatures and continuously provide Ag to form sufficient Ag2O at the interface of the composite coating. Furthermore, the interface of the composite coating has adequate Ag2O to form Ag2MoO4 and supplement the depletion of Ag2MoO4 on the worn surface. This endows the coating with a longer lubrication life.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Q.P.; Shi, X.L.; Xue, Y.W.; Zhang, K.P.; Wu, C.H. Recent progress on surface texturing and solid lubricants in tribology: Designs, properties, and mechanisms. Mater. Today Commun. 2023, 35, 105854. [Google Scholar] [CrossRef]
- Fan, X.J.; Li, W.S.; Yang, J.; Zhu, S.Y.; Cui, S.; Cheng, B.; Zhai, H.M. Effect of MoO3 content on Ni3Al-Ag-MoO3 composite coating microstructure and tribological properties. Coatings 2023, 13, 624. [Google Scholar] [CrossRef]
- Sajjadnejad, M.; Haghshenas, S.M.S.; Badr, P.; Setoudeh, N.; Hosseinpour, S. Wear and tribological characterization of nickel matrix electrodeposited composites: A review. Wear 2021, 486–487, 204098. [Google Scholar] [CrossRef]
- Wang, Y.F.; Shao, X.B.; Liu, J.Y.; Hu, X.Y.; He, X.H.; Deng, G.Y. Difference in high-temperature tribological performance of oxide/Ag-MoS2-based composites. Lubricants 2024, 12, 360. [Google Scholar] [CrossRef]
- Jia, J.H.; Xue, J.L.; He, N.R.; Yang, J.; Chen, W. Effects of Ag2Mo2O7 nano-shapes on the mechanical and tribological properties of NiAl intermetallic compound over a wide temperature range. J. Mater. Res. Technol. 2022, 21, 2316–2325. [Google Scholar] [CrossRef]
- Zhang, Q.G.; Zhou, Y.; Zhang, G.J.; Zhang, L.C.; Xie, Z.M.; Zuo, L.; Ju, H.B.; Fang, Q.F.; Liu, J.G.; Yang, J.F. Nanocomposite Mo-Ag-N lubricating, wear resistant and hard coatings fabricated by magnetron sputtering. Mater. Sci. Eng. B 2022, 286, 116066. [Google Scholar] [CrossRef]
- Yang, Z.Q.; Liu, D.X.; Li, M.Y.; Zhou, K.; Liu, Y.J.; Wu, J.N.; Fan, K.F.; Zhang, X.H.; Wahab, M.A. High-temperature tribological properties of APS-sprayed CoCrNiW wear-resistant coating and NiCoCrAlYTa/Cu/Mo self-lubricating coating. Tribol. Int. 2025, 209, 110682. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Wang, Z.Y.; Zhang, Y.; Bai, X.J.; Zhou, S.H.; Li, H.; Cheng, Y.; Wang, A.Y.; Ke, P.L. Self-adaptive lubricating behavior of VAlN/Ag multi-layer coating at simulated operating conditions. J. Mater. Sci. Technol. 2025, 229, 147–158. [Google Scholar] [CrossRef]
- Dellacorte, C. The effect of counterface on the tribological performance of a high temperature solid lubricant composite from 25 to 650 °C. Surf. Coat. Technol. 1996, 86–87, 486–492. [Google Scholar] [CrossRef]
- Muratore, C.; Voevodin, A.A.; Hu, J.J.; Zabinski, J.S. Tribology of adaptive nanocomposite yttria-stabilized zirconia coatings containing silver and molybdenum from 25 to 700 °C. Wear 2006, 261, 797–805. [Google Scholar] [CrossRef]
- Gautam, R.K.S.; Tripathi, V.M.; Mishra, I.P.; Mishra, S.; Nautiyal, H.; Ali, S.; Tyagi, R. Elevated temperature tribological behavior of NiMoAl-Ag-WS2-hBN coatings deposited by cold spray. Mater. Chem. Phys. 2025, 333, 130347. [Google Scholar] [CrossRef]
- Ju, H.B.; Xu, J.H. Microstructure and tribological properties of NbN-Ag composite films by reactive magnetron sputtering. Appl. Surf. Sci. 2015, 355, 878–883. [Google Scholar] [CrossRef]
- Hao, E.K.; An, Y.L.; Chen, J.; Zhao, X.Q.; Hou, G.L.; Chen, J.M.; Gao, M.Z.; Yan, F.Y. In-situ formation of layer-like Ag2MoO4 induced by high-temperature oxidation and its effect on the self-lubricating properties of NiCoCrAlYTa/Ag/Mo coatings. J. Mater. Sci. Technol. 2021, 75, 164–173. [Google Scholar] [CrossRef]
- Bondarev, A.V.; Kiryukhantsev-Korneev, P.V.; Sidorenko, D.A.; Shtansky, D.V. A new insight into hard low friction MoCN–Ag coatings intended for applications in wide temperature range. Mater. Design 2016, 93, 63–72. [Google Scholar] [CrossRef]
- Stone, D.S.; Migas, J.; Martini, A.; Smith, T.; Muratore, C.; Voevodin, A.A.; Aouadi, S.M. Adaptive NbN/Ag coatings for high temperature tribological applications. Surf. Coat. Technol. 2012, 206, 4316–4321. [Google Scholar] [CrossRef]
- Aouadi, S.M.; Singh, D.P.; Stone, D.S.; Polychronopoulou, K.; Nahif, F.; Rebholz, C.; Muratore, C.; Voevodin, A.A. Adaptive VN/Ag nanocomposite coatings with lubricious behavior from 25 to 1000 °C. Acta Mater. 2010, 58, 5326–5331. [Google Scholar] [CrossRef]
- Ren, Y.; Jia, J.H.; Cao, X.Q.; Zhang, G.G.; Ding, Q. Effect of Ag contents on the microstructure and tribological behaviors of NbN-Ag coatings at elevated temperatures. Vacuum 2022, 204, 111330. [Google Scholar] [CrossRef]
- Guo, H.J.; Yan, P.X.; Wu, Z.G.; Li, B.; Li, F.L.; Hu, J.; Chen, Z. Lubrication mechanisms of Nb-contained oxides characterizing tribochemistry of NiAl/Nb/Ag composites coatings revealed by the density functional theory (DFT) computation. Tribol. Int. 2023, 182, 108352. [Google Scholar] [CrossRef]
- Dai, X.; Wen, M.; Wang, J.; Cui, X.R.; Wang, X.; Zhang, K. The tribological performance at elevated temperatures of MoNbN-Ag coatings. Appl. Surf. Sci. 2020, 509, 145372. [Google Scholar] [CrossRef]
- Mulligan, C.P.; Blanchet, T.A.; Gall, D. Control of lubricant transport by a CrN diffusion barrier layer during high-temperature sliding of a CrN-Ag composite coating. Surf. Coat. Technol. 2010, 205, 1350–1355. [Google Scholar] [CrossRef]
- Ju, H.B.; Huang, K.H.; Luan, J.; Geng, Y.X.; Yang, J.F.; Xu, J.H. Evaluation under temperature cycling of the tribological properties of Ag-SiNx films for green tribological applications. Ceram. Int. 2023, 49, 30115–30124. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Wang, Z.Y.; Zhou, S.H.; Zhang, Y.; Dong, Y.F.; Wang, A.Y.; Ke, P.L. Synergistic effect of V and Ag diffusion favored the temperature-adaptive tribological behavior of VAlN/Ag multi-layer coating. Tribol. Int. 2024, 192, 109285. [Google Scholar] [CrossRef]
- Zhen, Y.; Chen, M.H.; Yu, C.T.; Yang, Z.B.; Qi, Y.; Wang, F.H. High temperature self-lubricating Ti-Mo-Ag composites with exceptional high mechanical strength and wear resistance. J. Mater. Sci. Technol. 2024, 180, 80–90. [Google Scholar] [CrossRef]
- He, N.R.; Fang, Z.W.; Jia, J.H.; Yang, J.; Chen, W.; Xin, H. Tribological properties of Ni-based composite coatings with addition of Ag@Ni core-shell particles over multiple thermal cycles. Trans. Nonferrous Met. Soc. China 2024, 34, 618–628. [Google Scholar] [CrossRef]
- Stone, D.; Liu, J.; Singh, D.P.; Muratore, C.; Voevodin, A.A.; Mishra, S.; Rebholz, C.; Ge, Q.; Aouadi, S.M. Layered atomic structures of double oxides for low shear strength at high temperatures. Scr. Mater. 2010, 62, 735–738. [Google Scholar] [CrossRef]
- Wang, B.B.; Zhu, J.J.; Dai, L.Y.F.; Hao, L.L.; Chen, S.S.; Fu, L.C.; Yang, W.L.; Zhou, L.P. Influence of annealing on the microstructure and tribological performance of Ag-76.7 at.%Mo nanomultilayer films by Co-sputtering. Wear 2025, 578–579, 206152. [Google Scholar] [CrossRef]
- Zhen, J.M.; Han, Y.X.; Yuan, L.; Jia, Z.F.; Zhang, R. Investigating influence of Mo elements on friction and wear performance of nickel alloy matrix composites in air from 25 to 800 °C. Lubricants 2024, 12, 396. [Google Scholar] [CrossRef]
- Liu, E.Y.; Wang, W.Z.; Gao, Y.M.; Jia, J.H. Tribological Properties of Adaptive Ni-Based Composites with Addition of Lubricious Ag2MoO4 at Elevated Temperatures. Tribol. Lett. 2012, 47, 21–30. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, L.; Wang, Y.; Chen, D.; Li, B.Q.; Han, Z.H. Fragmentation of in-flight particles and its influence on the microstructure and mechanical property of YSZ coating deposited by supersonic atmospheric plasma spraying. J. Alloys Compd. 2015, 632, 794–799. [Google Scholar] [CrossRef]
- Li, B.; Gao, Y.M.; Jia, J.H.; Han, M.M.; Guo, H.J.; Wang, W.Z. Influence of heat treatments on the microstructure as well as mechanical and tribological properties of NiCrAlY-Mo-Ag coatings. J. Alloys Compd. 2016, 686, 503–510. [Google Scholar] [CrossRef]
- Ye, F.X.; Zhang, Y.F.; Lou, Z.; Wang, Y.F. Enhanced tribological performance of micro-beam plasma-cladded Ni60 coatings with addition of Mo and Ag lubricants in a wide temperature range. Coatings 2023, 13, 1996. [Google Scholar] [CrossRef]
Procedure | Bath Composition | PH | Temperature | Time/min |
---|---|---|---|---|
Step 1, activating treatment of Mo | PVP HCl (50%) | 7 | 25 ± 5 °C | 30 |
Step 2, Mo@Ag preparation | C6H5Na3O7 NaH2PO2 | 12 | 75 °C | 120 |
Step 3, Mo@Ag@Ni preparation | C6H5Na3O7 NaH2PO2 NiSO4·6H2O | 12 | 75 °C | 120 |
Composite Coating | Mixed Powder Compositions | Vickers Hardness (HV0.2) | |
---|---|---|---|
NiCrAlY | Mo@Ag@Ni (Mo:Ag:Ni = 4:4:2) | ||
NiCrAlY-Mo@Ag@Ni (NMA) | 160 g | 50 g | 332.2 ± 17.5 |
80 wt% | Mo 10 wt% Ag 10 wt% |
Parameters | Bond Coating | Composite Coating |
---|---|---|
Current (A) | 500 | 550 |
Voltage (V) | 50 | 55 |
Ar gas flow rate/(L·min−1) | 40 | 40 |
H2 gas flow rate/(L·min−1) | 6 | 6 |
Power feed rate/(g·min−1) | 35 | 45 |
Spray distance/(mm) | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, N.; Zhai, Y.; Fang, Z.; Yang, J.; Chen, W. Self-Lubricating Ni-Based Composite Coating with Core-Shell Structured Mo@Ag@Ni Addition: Tribological Behaviors and Interface Evolution over Multi-Thermal Cycles. Lubricants 2025, 13, 387. https://doi.org/10.3390/lubricants13090387
He N, Zhai Y, Fang Z, Yang J, Chen W. Self-Lubricating Ni-Based Composite Coating with Core-Shell Structured Mo@Ag@Ni Addition: Tribological Behaviors and Interface Evolution over Multi-Thermal Cycles. Lubricants. 2025; 13(9):387. https://doi.org/10.3390/lubricants13090387
Chicago/Turabian StyleHe, Nairu, Yuanhai Zhai, Ziwen Fang, Jie Yang, and Wei Chen. 2025. "Self-Lubricating Ni-Based Composite Coating with Core-Shell Structured Mo@Ag@Ni Addition: Tribological Behaviors and Interface Evolution over Multi-Thermal Cycles" Lubricants 13, no. 9: 387. https://doi.org/10.3390/lubricants13090387
APA StyleHe, N., Zhai, Y., Fang, Z., Yang, J., & Chen, W. (2025). Self-Lubricating Ni-Based Composite Coating with Core-Shell Structured Mo@Ag@Ni Addition: Tribological Behaviors and Interface Evolution over Multi-Thermal Cycles. Lubricants, 13(9), 387. https://doi.org/10.3390/lubricants13090387