Wear of Stellite 6 Coatings Produced with High-Velocity Oxygen Fuel at Elevated Temperatures
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Coating Characterization of Standard (Std) Condition
3.2. Effect of Parameters on CoF and Wear
3.3. Wear Mechanisms
3.3.1. Spray Parameters
3.3.2. Testing Temperature
3.3.3. Applied Load
3.3.4. Distance
3.3.5. Heat Treatment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HVOF | High-velocity oxygen fuel |
COF | Coefficient of friction |
Std | Standard |
FCC | Faced-centered cubic |
References
- Coutsouradis, D.; Davin, A.; Lamberigts, M. Cobalt-based superalloys for applications in gas turbines. Mater. Sci. Eng. 1987, 88, 11–19. [Google Scholar] [CrossRef]
- Crook, P.; Levy, A. Cobalt-Base Alloys. In Corrosion Tests and Standards: Application and Interpretation, 2nd ed.; ASTM MANUAL SERIES MNL; ASTM International: West Conshohocken, PA, USA, 1995; pp. 486–492. [Google Scholar]
- Davis, J.R.; American Society for Metals International Handbook Committee. Nickel, Cobalt, and Their Alloys; ASM International: Materials Park, OH, USA, 2000. [Google Scholar]
- Baboian, R. Corrosion Tests and Standards: Application and Interpretation; ASTM International: West Conshohocken, PA, USA, 2005. [Google Scholar]
- Antony, K.C. Wear-Resistant Cobalt-Base Alloys. JOM 1983, 35, 52–60. [Google Scholar] [CrossRef]
- Eastman, J.W. Book Review: Stellite: A History of the Haynes Stellite Company, 1912–1972. Bus. Hist. Rev. 1975, 49, 272–273. [Google Scholar] [CrossRef]
- Stott, F.H.; Stevenson, C.W.; Wood, G.C. Friction and wear properties of Stellite 31 at temperatures from 293 to 1073K. Met. Technol. 1977, 4, 66–74. [Google Scholar] [CrossRef]
- Viat, A.; Dreano, A.; Fouvry, S.; De Barros Bouchet, M.-I.; Henne, J.-F. Fretting wear of pure cobalt chromium and nickel to identify the distinct roles of HS25 alloying elements in high temperature glaze layer formation. Wear Part B 2017, 376–377, 1043–1054. [Google Scholar] [CrossRef]
- Birol, Y. High temperature sliding wear behaviour of Inconel 617 and Stellite 6 alloys. Wear 2010, 269, 664–671. [Google Scholar] [CrossRef]
- Blau, P. Elevated-Temperature Tribology of Metallic Materials. Tribol. Int. 2010, 43, 1203–1208. [Google Scholar] [CrossRef]
- Dreano, A.; Fouvry, S.; Guillonneau, G. A combined friction energy and tribo-oxidation formulation to describe the high temperature fretting wear response of a cobalt-based alloy. Wear Part A 2019, 426–427, 712–724. [Google Scholar] [CrossRef]
- Dreano, A.; Fouvry, S.; Guillonneau, G. Understanding and formalization of the fretting-wear behavior of a cobalt-based alloy at high temperature. Wear 2020, 452–453, 203297. [Google Scholar] [CrossRef]
- Dreano, A.; Fouvry, S.; Sao-Joao, S.; Galipaud, J.; Guillonneau, G. The formation of a cobalt-based glaze layer at high temperature: A layered structure. Wear 2019, 440–441, 203101. [Google Scholar] [CrossRef]
- Huang, C.; Zou, B.; Guo, P.; Liu, Y.; Huang, C.; Wang, J. Sliding behavior and wear mechanism of iron and cobalt-based high-temperature alloys against WC and SiC balls. Int. J. Refract. Met. Hard Mater. 2016, 59, 40–55. [Google Scholar] [CrossRef]
- Korashy, A.; Attia, H.; Thomson, V.; Oskooei, S. Characterization of fretting wear of cobalt-based superalloys at high temperature for aero-engine combustor components. Wear 2015, 330–331, 327–337. [Google Scholar] [CrossRef]
- Pauschitz, A.; Roy, M.; Franek, F. Mechanisms of sliding wear of metals and alloys at elevated temperatures. Tribol. Int. 2008, 41, 584–602. [Google Scholar] [CrossRef]
- Viat, A.; De Barros Bouchet, M.-I.; Vacher, B.; Le Mogne, T.; Fouvry, S.; Henne, J.-F. Nanocrystalline glaze layer in ceramic-metallic interface under fretting wear. Surf. Coat. Technol. 2016, 308, 307–315. [Google Scholar] [CrossRef]
- Viat, A.; Guillonneau, G.; Fouvry, S.; Kermouche, G.; Sao Joao, S.; Wehrs, J.; Michler, J.; Henne, J.-F. Brittle to ductile transition of tribomaterial in relation to wear response at high temperatures. Wear 2017, 392–393, 60–68. [Google Scholar] [CrossRef]
- Wood, P.D.; Evans, H.E.; Ponton, C.B. Investigation into the wear behaviour of Stellite 6 during rotation as an unlubricated bearing at 600 °C. Tribol. Int. 2011, 44, 1589–1597. [Google Scholar] [CrossRef]
- Dreano, A.; Baydoun, S.; Fouvry, S.; Nar, S.; Alvarez, P. Influence of a pre-existing glaze layer on the fretting-wear response of HS25 cobalt-based alloy subjected to various temperature conditions. Wear 2022, 488–489, 204144. [Google Scholar] [CrossRef]
- Baydoun, S.; Moul-El-Ksour, F.Z.; Fouvry, S.; Guillonneau, G.; Pereira, J.C.; Santos, F.; Niklas, A.; Lopez-Ruiz, P.; Vega, J.; Rocchi, J. Tribological investigation of new self-fluxing nickel alloys for high temperature application: The effect of silicon distribution on glaze layer formation. Wear 2025, 564–565, 205631. [Google Scholar] [CrossRef]
- Manoj, A.; Verma, P.C.; Narala, S.K.R.; Saravanan, P.; Tiwari, S.K.; Joshi, S. High-temperature tribological evaluation of cobalt-based laser cladded disc for automotive brake systems. Ceram. Int. 2024, 50, 54458–54472. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.; Shan, Y.; Yi, G.; Wan, S.; Zhang, G.; Du, X.; Ma, F. Influences of counterparts on the high-temperature tribological properties and glaze layer formation of pre-oxidized cobalt-based alloys. Wear 2024, 544–545, 205260. [Google Scholar] [CrossRef]
- Zhen, J.; Han, Y.; Yuan, L.; Jia, Z.; Zhang, R. Investigating Influence of Mo Elements on Friction and Wear Performance of Nickel Alloy Matrix Composites in Air from 25 to 800 °C. Lubricants 2024, 12, 396. [Google Scholar] [CrossRef]
- Wei, C.; Yang, L.; Duan, R.; Chu, K.; Ren, F. Sliding wear-induced compositional lamination in a VCoNi alloy at elevated temperatures, and its implications for reduced friction and wear. Acta Mater. 2024, 277, 120171. [Google Scholar] [CrossRef]
- Frenk, A.; Kurz, W. Microstructural effects on the sliding wear resistance of a cobalt-based alloy. Wear 1994, 174, 81–91. [Google Scholar] [CrossRef]
- Asl, S.K.; Sohi, M.H.; Hokamoto, K.; Uemura, M. Effect of heat treatment on wear behavior of HVOF thermally sprayed WC-Co coatings. Wear 2006, 260, 1203–1208. [Google Scholar] [CrossRef]
- Bolelli, G.; Cannillo, V.; Lusvarghi, L.; Montorsi, M.; Mantini, F.P.; Barletta, M. Microstructural and tribological comparison of HVOF-sprayed and post-treated M–Mo–Cr–Si (M=Co, Ni) alloy coatings. Wear 2007, 263, 1397–1416. [Google Scholar] [CrossRef]
- Bolelli, G.; Lusvarghi, L. Heat Treatment Effects on the Tribological Performance of HVOF Sprayed Co-Mo-Cr-Si Coatings. J. Therm. Spray Technol. 2006, 15, 802–810. [Google Scholar] [CrossRef]
- Bolelli, G.; Lusvarghi, L. Tribological properties of HVOF as-sprayed and heat treated Co–Mo–Cr–Si coatings. Tribol. Lett. 2006, 25, 43–54. [Google Scholar] [CrossRef]
- Houdková, Š.; Smazalová, E.; Pala, Z. Effect of Heat Treatment on the Microstructure and Properties of HVOF-Sprayed Co-Cr-W Coating. J. Therm. Spray Technol. 2016, 25, 546–557. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Hao, E.; Bu, Z.; An, Y.; Zhou, H.; Chen, J. High temperature induced “glaze” layer formed in HVOF-sprayed NiCrWMoCuCBFe coating and its wear reduction mechanism. Friction 2022, 10, 1424–1438. [Google Scholar] [CrossRef]
- Islas Encalada, A.; Alidokht, S.A.; Sharifi, N.; Stoyanov, P.; Makowiec, M.; Moreau, C.; Chromik, R.R. Wear behavior of HVOF sprayed cobalt-based composite coatings reinforced with Cr3C2. Wear 2024, 546–547, 205310. [Google Scholar] [CrossRef]
- Patel, P.; Munagala, V.N.V.; Sharifi, N.; Roy, A.; Alidokht, S.A.; Harfouche, M.; Makowiec, M.; Stoyanov, P.; Chromik, R.R.; Moreau, C. Influence of HVOF spraying parameters on microstructure and mechanical properties of FeCrMnCoNi high-entropy coatings (HECs). J. Mater. Sci. 2024, 59, 4293–4323. [Google Scholar] [CrossRef]
- Kato, H.; Komai, K. Tribofilm formation and mild wear by tribo-sintering of nanometer-sized oxide particles on rubbing steel surfaces. Wear 2007, 262, 36–41. [Google Scholar] [CrossRef]
- Hager, C.H.; Hu, J.; Muratore, C.; Voevodin, A.A.; Grandhi, R. The mechanisms of gross slip fretting wear on nickel oxide/Ti6Al4V mated surfaces. Wear 2010, 268, 1195–1204. [Google Scholar] [CrossRef]
- Yao, M.X.; Wu, J.B.C.; Xu, W.; Liu, R. Metallographic study and wear resistance of a high-C wrought Co-based alloy Stellite 706K. Mater. Sci. Eng. A 2005, 407, 291–298. [Google Scholar] [CrossRef]
- Lund, C.H.; Wagner, H.J. Oxidation of Nickel- and Cobalt-Base Superalloys; Defense Metals Information Center, Battelle Memorial Institute: Columbus, OH, USA, 1965. [Google Scholar]
- Dréano, A.; Fouvry, S.; Guillonneau, G. A tribo-oxidation abrasive wear model to quantify the wear rate of a cobalt-based alloy subjected to fretting in low-to-medium temperature conditions. Tribol. Int. 2018, 125, 128–140. [Google Scholar] [CrossRef]
Parameter | A | B |
---|---|---|
Powder feed rate (g/min) | 23 | 23 |
Oxygen flow rate (LPM) | 304 | 152 |
Propylene flow rate (LPM) | 79 | 87 |
Air flow rate (LPM) | 422 | 331 |
Spraying distance (mm) | 150 | 150 |
Transverse speed (mm/s) | 1000 | 1000 |
Number of passes | 25 | 25 |
Width of spray (mm) | 3 | 3 |
Parameters | Spray | Temperature (°C) | Load (N) | Distance (m) | Heat Treatment (°C-h) |
---|---|---|---|---|---|
Std | A | 300 | 5 | 400 | none |
1 | B | 300 | 5 | 400 | none |
2 | A | 100 | 5 | 400 | none |
3 | A | 300 | 1 | 400 | none |
4 | A | 300 | 10 | 400 | none |
5 | A | 300 | 5 | 100 | none |
6 | A | 300 | 5 | 800 | none |
7 | A | 300 | 5 | 1600 | none |
8 | A | 300 | 5 | 3200 | none |
9 | A | 300 | 5 | 400 | 600-2 |
10 | A | 300 | 5 | 400 | 850-24 |
11 | A | 300 | 5 | 400 | 1150-1 |
Element | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
Co | 49 | 69 | 33 | 61 | 12.5 | Co |
Cr | 38 | 25 | 33 | 29 | 49.5 | Cr |
W | 5 | 2 | 3 | 3.5 | 0.5 | W |
C | 8 | 4 | 3 | 6 | 3.5 | C |
O | - | - | 28 | 0.5 | 34 | O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Encalada, A.I.; Stoyanov, P.; Makowiec, M.; Moreau, C.; Chromik, R.R. Wear of Stellite 6 Coatings Produced with High-Velocity Oxygen Fuel at Elevated Temperatures. Lubricants 2025, 13, 264. https://doi.org/10.3390/lubricants13060264
Encalada AI, Stoyanov P, Makowiec M, Moreau C, Chromik RR. Wear of Stellite 6 Coatings Produced with High-Velocity Oxygen Fuel at Elevated Temperatures. Lubricants. 2025; 13(6):264. https://doi.org/10.3390/lubricants13060264
Chicago/Turabian StyleEncalada, Alejandra Islas, Pantcho Stoyanov, Mary Makowiec, Christian Moreau, and Richard R. Chromik. 2025. "Wear of Stellite 6 Coatings Produced with High-Velocity Oxygen Fuel at Elevated Temperatures" Lubricants 13, no. 6: 264. https://doi.org/10.3390/lubricants13060264
APA StyleEncalada, A. I., Stoyanov, P., Makowiec, M., Moreau, C., & Chromik, R. R. (2025). Wear of Stellite 6 Coatings Produced with High-Velocity Oxygen Fuel at Elevated Temperatures. Lubricants, 13(6), 264. https://doi.org/10.3390/lubricants13060264