Investigation of the Dynamic Leakage Characteristics of Floating Seal End Faces in Shield Machine Cutters with Consideration of Wear Effects
Abstract
:1. Introduction
2. Establishment of the Theoretical Models
2.1. Leakage Rate Model of the Floating Seal End Face
2.2. Characterization Model of Rough Surface
2.3. Oil Film Pressure and Thickness Distribution Model for Rough Surfaces
2.4. Dynamic Evolution Model of Surface Roughness Under Wear
3. Numerical Solution Method
4. Model Validation and Discussion
4.1. Calibration Experimental for the Dynamic Surface Roughness Model Considering Wear
4.1.1. Experimental Setup
- Archard model calibration experimental setup
- Wear depth and surface roughness experimental setup
4.1.2. Results and Discussion
- Archard model calibration
- Relationship between wear depth and surface roughness
4.2. Analysis of Floating Seal Leakage Characteristics
4.3. Experimental Validation of Cutter Seal Leakage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shen, X.; Chen, X.; Fu, Y.; Cao, C.; Yuan, D.; Li, X.; Xiao, Y. Prediction and analysis of slurry shield TBM disc cutter wear and its application in cutter change time. Wear 2022, 498, 13. [Google Scholar] [CrossRef]
- Hu, G.; Yu, L.; Zhang, Z.; Yang, C.; Fu, J.; Xue, J.; Zhao, H.; Xia, Y.; Yu, L.; Chang, L. Research on fatigue failure analysis and fracture mechanisms of a cutter ring in tunnel boring machine. Eng. Fail. Anal. 2025, 169, 16. [Google Scholar] [CrossRef]
- Fu, J.; Wu, D.; Lan, H.; Ji, Z.; Li, W.; Xia, Y. Online monitoring and analysis of TBM cutter temperature: A case study in China. Measurement 2021, 174, 8. [Google Scholar] [CrossRef]
- Wang, L.; Kang, Y.; Zhao, X.; Zhang, Q. Disc cutter wear prediction for a hard rock TBM cutterhead based on energy analysis. Tunn. Undergr. Space Technol. 2015, 50, 324–333. [Google Scholar] [CrossRef]
- Fu, J.; Xia, Y.; Zhang, L.; Lin, L.; Zhang, X.; Zhao, S. Failure analysis on the fracture of disc cutter in EPB shield machine. Eng. Fail. Anal. 2020, 108, 12. [Google Scholar] [CrossRef]
- Hu, G.; Zhao, H.; Fu, J.; Xue, J.; Xia, Y. Impact fracture failure analysis and mechanism study of a TBM disc cutter ring. Eng. Fail. Anal. 2024, 163, 12. [Google Scholar] [CrossRef]
- Hu, X.; Wang, Z.; Cheng, W.; Huang, L. Study on Damage Form and Dismantling Inspection Standard of Hob of Super-large Diameter Slurry Shield. Tool Eng. 2021, 55, 61–65. [Google Scholar]
- Ha, Y.; Lee, Y.; An, B.; Lee, Y. Experiment and CFD Analysis of Plain Seal, Labyrinth Seal and Floating Ring Seal on Leakage Performance. In Proceedings of the 11th IFToMM International Conference on Rotordynamics, Beijing, China, 18–21 September 2023. [Google Scholar]
- Li, G.; Zhang, Q.; Huang, E.; Lei, Z.; Wu, H.; Xu, G. Leakage performance of floating ring seal in cold/hot state for aero-engine. Chin. J. Aeronaut. 2019, 32, 2085–2094. [Google Scholar] [CrossRef]
- Hu, T.; Deng, W.; Tang, Z.; Mi, D.; Zhang, W.; Wang, X. Analysis of leakage characteristics and structural optimization of two-stage floating ring seal. Int. J. Turbo. Jet-Engines 2025. [Google Scholar] [CrossRef]
- He, Z.; Guo, Y.; Si, J.; Li, N.; Jia, L.; Zou, Y.; Wang, H. Numerical Optimization Analysis of Floating Ring Seal Performance Based on Surface Texture. Lubricants 2024, 12, 241. [Google Scholar] [CrossRef]
- Chen, Y.; Xiong, C.; Li, Y.; Li, X.; Xue, X.; Wang, B.; Gan, Y. Dynamic performance analysis and parameter collaborative optimization of floating seal dam compliant foil face gas seal. J. Braz. Soc. Mech. Sci. Eng. 2023, 45, 612. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S.; Zhang, C. A multiscale wear simulation method for rotary lip seal under mixed lubricating conditions. Tribol. Int. 2018, 121, 190–203. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S.; Zhang, C.; Tomovic, M.M. Numerical study of the effects of textured shaft on the wear of rotary lip seals. Tribol. Int. 2019, 138, 215–238. [Google Scholar] [CrossRef]
- Lee, Y.B.; Shin, S.K.; Ryu, K.; Kim, C.H.; And Jang, G. Test Results for Leakage and Rotordynamic Coefficients of Floating Ring Seals in a High-Pressure, High-Speed Turbopump. Tribol. Trans. 2005, 48, 273–282. [Google Scholar] [CrossRef]
- Lebeck, A.O. Hydrodynamic lubrication in wavy contacting face seals—A two dimensional model. ASME J. Lubr. Technol. 1981, 103, 578–586. [Google Scholar] [CrossRef]
- Zhao, Z.; Yang, Y.; Han, H.; Ma, H.; Wang, H.; Li, Z. Meshing Characteristics of Spur Gears Considering Three-Dimensional Fractal Rough Surface under Elastohydrodynamic Lubrication. Machines 2022, 10, 705. [Google Scholar] [CrossRef]
- Wu, J.; Cui, J.; Shu, W.; Wang, L.; Chen, R. Elastohydrodynamic lubrication model and failure test for micro-contact thermodynamic characteristics of friction interface. Tribol. Int. 2023, 185, 108499. [Google Scholar] [CrossRef]
- Huang, T.C.; Lin, C.Y.; Liao, K.C. Sealing performance assessments of PTFE rotary lip seals based on the elasto-hydrodynamic analysis with the modified archard wear model. Tribol. Int. 2022, 176, 107917. [Google Scholar] [CrossRef]
- Ni, X.; Sun, J.; Ma, C.; Zhang, Y. Wear Model of a Mechanical Seal Based on Piecewise Fractal Theory. Fractal Fract. 2023, 7, 251. [Google Scholar] [CrossRef]
- Sapozhnykov, Y.I.; Zahorulko, A.V. Computational studies of stuffing box packing seal wear mechanism using the Archard model. Probl. Tribol. 2024, 29, 6–15. [Google Scholar] [CrossRef]
- Huang, T.C.; Tsai, J.W.; Liao, K.C. Wear and leakage assessments of canted coil Spring–Energized polytetrafluoroethylene seals under Ultra-High cycle operations. Eng. Fail. Anal. 2022, 135, 106110. [Google Scholar] [CrossRef]
- Liu, D.; Wang, S.; Zhang, C.; Tomovic, M. Wear Simulation Method for Mechanical Seals Under Mixed Lubrication Using Flow Factors. In Proceedings of the 7th International Conference on Fracture Fatigue and Wear: FFW 2018, Ghent, Belgium, 9–10 July 2018. [Google Scholar]
- Wang, J.; Li, J.; Ma, C. A performance degradation analysis method for a reciprocating rod seal in the wear process under mixed lubrication conditions. Proc. Inst. Mech. Eng. Part J.-J. Eng. Tribol. 2023, 237, 681–697. [Google Scholar] [CrossRef]
- Patir, N.; Cheng, H.S. An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. ASME J. Lubr. Technol. 1978, 100, 12–17. [Google Scholar] [CrossRef]
- Manesh, K.K.; Ramamoorthy, B.; Singaperumal, M. Numerical generation of anisotropic 3D non-Gaussian engineering surfaces with specified 3D surface roughness parameters. Wear 2010, 268, 1371–1379. [Google Scholar] [CrossRef]
- Chen, H.; Hu, Y.; Wang, H.; Wang, W. Computer Simulation of Rough Surfaces. Lubr. Eng. 2006, 52–55+59. [Google Scholar]
- Hui, Y.; Wang, Y.; Liu, Y. Effects of Anisotropic Autocorrelation Length on Parameters of 3D Computer Simulation Surface. Surf. Technol. 2018, 47, 246–251. [Google Scholar] [CrossRef]
- Dowson, D. A generalized Reynolds equation for fluid-film lubrication. Int. J. Mech. Sci. 1962, 4, 159–170. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, D. A full numerical solution to the mixed lubrication in point contacts. J. Tribol. 2000, 122, 1–9. [Google Scholar] [CrossRef]
- Jianmei, W.; Jianfeng, K.; Yanjuan, Z.; Xunjie, H. Viscosity monitoring and control on oil-film bearing lubrication with ferrofluids. Tribol. Int. 2014, 75, 61–68. [Google Scholar] [CrossRef]
- Wong, P.L.; Wang, R.; Lingard, S. Pressure and temperature dependence of the density of liquid lubricants. Wear 1996, 201, 58–63. [Google Scholar] [CrossRef]
- Aghababaei, R.; Zhao, K. Micromechanics of material detachment during adhesive wear: A numerical assessment of Archard’s wear model. Wear 2021, 476, 203739. [Google Scholar] [CrossRef]
- Huang, P.; Lee, C. Estimation of tool wear and surface roughness development using deep learning and sensors fusion. Sensors 2021, 21, 5338. [Google Scholar] [CrossRef] [PubMed]
- Bayer, R.G.; Sirico, J.L. The influence of surface roughness on wear. Wear 1975, 35, 251–260. [Google Scholar] [CrossRef]
- Yuan, Z.; Jiang, Z.; Zhou, Z.; Wang, H.; Li, J.; Cai, Z.; Xing, Z.; Ding, C.; Piao, Z. Effect of surface roughness on friction and wear behavior of GCr15 bearing steel under different loads. Surf. Sci. Technol. 2024, 2, 28. [Google Scholar] [CrossRef]
Experimental Parameters | Value | Experimental Parameters | Value |
---|---|---|---|
Speed (r/min) | 1250 | Load (N) | 8~20 |
Temperature (°C) | 25 | Surface roughness (μm) | 0.2 |
Friction disc dimensions (mm) | Φ70 × 3 | Friction block dimensions (mm) | Φ5 × 3 |
Group | Speed (r/min) | Load (N) | Duration (min) |
---|---|---|---|
A | 1250 | 20 | 120 |
B | 1250 | 16 | 120 |
C | 1250 | 12 | 120 |
D | 1250 | 8 | 120 |
Time (min) | Wear Depth (μm) | Surface Roughness (μm) |
---|---|---|
40 | 0.701 | 0.206 |
80 | 1.924 | 0.211 |
120 | 3.324 | 0.217 |
160 | 4.654 | 0.221 |
200 | 5.521 | 0.224 |
240 | 6.731 | 0.227 |
Parameter | Value | Parameter | Value | Parameter | Value |
---|---|---|---|---|---|
280 | |||||
128 | |||||
128 |
Group | Speed (r/min) | Pressure (MPa) | Total Operating Time (h) |
---|---|---|---|
1 | 60 | 1.0 | 24 |
2 | 60 | 1.2 | 24 |
3 | 60 | 1.4 | 24 |
4 | 60 | 1.6 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, G.; Zhou, Z.; Zhang, Z.; Zhao, H. Investigation of the Dynamic Leakage Characteristics of Floating Seal End Faces in Shield Machine Cutters with Consideration of Wear Effects. Lubricants 2025, 13, 227. https://doi.org/10.3390/lubricants13050227
Hu G, Zhou Z, Zhang Z, Zhao H. Investigation of the Dynamic Leakage Characteristics of Floating Seal End Faces in Shield Machine Cutters with Consideration of Wear Effects. Lubricants. 2025; 13(5):227. https://doi.org/10.3390/lubricants13050227
Chicago/Turabian StyleHu, Gang, Zhengzhong Zhou, Zhihao Zhang, and Haiming Zhao. 2025. "Investigation of the Dynamic Leakage Characteristics of Floating Seal End Faces in Shield Machine Cutters with Consideration of Wear Effects" Lubricants 13, no. 5: 227. https://doi.org/10.3390/lubricants13050227
APA StyleHu, G., Zhou, Z., Zhang, Z., & Zhao, H. (2025). Investigation of the Dynamic Leakage Characteristics of Floating Seal End Faces in Shield Machine Cutters with Consideration of Wear Effects. Lubricants, 13(5), 227. https://doi.org/10.3390/lubricants13050227