Multiscale Investigation of the Anti-Friction Mechanism in Graphene Coatings on Copper Substrates: Substrate Reinforcement via Microstructural Evolution
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Section
2.2. MD Simulation
3. Results and Discussion
3.1. Surface Morphology of Samples
3.2. Nanoindentation Characteristics in Experiments
3.3. Friction and Wear Characteristics in Experiments
3.4. Nanoindentation Characteristics in MD Simulation
3.5. Friction and Wear Characteristics in MD Simulation Under Constant-Force Loading Mode
3.6. Friction and Wear Characteristics in MD Simulation Under Constant-Depth Loading Mode
3.7. Microscopic Substrate Reinforcement Effect and Anti-Friction Mechanism of Graphene Coatings
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uzoma, P.C.; Hu, H.; Khadem, M.; Penkov, O.V. Tribology of 2D nanomaterials: A review. Coatings 2020, 10, 897. [Google Scholar] [CrossRef]
- Lang, H.; Peng, Y.; Cao, X.; Yu, K. Dynamic electron transfer for reducing nanofriction of graphene at electrified interfaces. Appl. Surf. Sci. 2020, 520, 146327. [Google Scholar] [CrossRef]
- Ussia, M.; Pumera, M. Towards micromachine intelligence: Potential of polymers. Chem. Soc. Rev. 2022, 51, 1558–1572. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Liu, X.; Shi, Q.; He, T.; Sun, Z.; Guo, X.; Liu, W.; Bin Sulaiman, O.; Dong, B.; Lee, C. Development Trends and Perspectives of Future Sensors and MEMS/NEMS. Micromachines 2020, 11, 7. [Google Scholar] [CrossRef]
- Lee, S.-J.; Sohn, Y.-C.; Kim, C.-L. Tribological Effects of Water-Based Graphene Lubricants on Graphene Coatings. Materials 2023, 16, 197. [Google Scholar] [CrossRef]
- Nyholm, N.; Espallargas, N. Functionalized carbon nanostructures as lubricant additives—A review. Carbon 2023, 201, 1200–1228. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Morozov, S.V.; Novoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.R.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Bhushan, R.; Kumar, P.; Thakur, A.K. Catalyst-free solvothermal synthesis of ultrapure elemental N- and B-doped graphene for energy storage application. Solid State Ion. 2020, 353, 115371. [Google Scholar] [CrossRef]
- Thiruppathi, A.R.; Sidhureddy, B.; Salverda, M.; Wood, P.C.; Chen, A. Novel three-dimensional N-doped interconnected reduced graphene oxide with superb capacitance for energy storage. J. Electroanal. Chem. 2020, 875, 113911. [Google Scholar] [CrossRef]
- Si, S.; Wang, J.; Li, J.; Li, W.; Cong, H.; Liu, J.; Tang, J.; Jiang, C.; Xia, R.; Xiao, X. Enhancing resistance to radiation hardening and radiation thermal conductivity degradation by tungsten/graphene interface engineering. J. Nucl. Mater. 2020, 539, 152348. [Google Scholar] [CrossRef]
- Ding, Y.; Li, D.; Xu, F.; Lang, W.; Qin, Q.H.; Ye, Z.; Liu, J.; Wen, X. The microstructure evolution of graphene in nanoindentation G/WC-Co based on molecular dynamics simulation. Diam. Relat. Mater. 2024, 141, 110729. [Google Scholar] [CrossRef]
- He, M.; Wang, Y.; Wang, S.; Luo, S. Laser-induced graphene enabled 1D fiber electronics. Carbon 2020, 168, 308–318. [Google Scholar] [CrossRef]
- Yang, X.; Li, X.-M.; Kong, Q.-Q.; Liu, Z.; Chen, J.-P.; Jia, H.; Liu, Y.-Z.; Xie, L.-J.; Chen, C.-M. One-pot ball-milling preparation of graphene/carbon black aqueous inks for highly conductive and flexible printed electronics. Sci. China-Mater. 2020, 63, 392–402. [Google Scholar] [CrossRef]
- Haridas, V.; Sukhananazerin, A.; Sneha, J.M.; Pullithadathil, B.; Narayanan, B. α-Fe2O3 loaded less-defective graphene sheets as chemiresistive gas sensor for selective sensing of NH3. Appl. Surf. Sci. 2020, 517, 146158. [Google Scholar] [CrossRef]
- Kudr, J.; Zhao, L.; Nguyen, E.P.; Arola, H.; Nevanen, T.K.; Adam, V.; Zitka, O.; Merkoci, A. Inkjet-printed electrochemically reduced graphene oxide microelectrode as a platform for HT-2 mycotoxin immunoenzymatic biosensing. Biosens. Bioelectron. 2020, 156, 112109. [Google Scholar] [CrossRef]
- Pathmanapan, S.; Periyathambi, P.; Anandasadagopan, S.K. Fibrin hydrogel incorporated with graphene oxide functionalized nanocomposite scaffolds for bone repair-in vitro and in vivo study. Nanomed.-Nanotechnol. Biol. Med. 2020, 29, 102251. [Google Scholar] [CrossRef] [PubMed]
- Shahabi, M.; Raissi, H. Payload delivery of anticancer drug Tegafur with the assistance of graphene oxide nanosheet during biomembrane penetration: Molecular dynamics simulation survey. Appl. Surf. Sci. 2020, 517, 146186. [Google Scholar] [CrossRef]
- Su, J.; Zhang, X.; Tong, X.; Wang, X.; Yang, P.; Yao, F.; Guo, R.; Yuan, C. Preparation of graphene quantum dots with high quantum yield by a facile one-step method and applications for cell imaging. Mater. Lett. 2020, 271, 127806. [Google Scholar] [CrossRef]
- Guo, W.; Bai, Q.; Dou, Y.; Wang, H.; Wang, T.; Chen, S. Effect of Normal Load on the Nanofriction Behavior of Graphene on Stainless-Steel Substrate: Implication for Nanoscale Lubrication. ACS Appl. Nano Mater. 2024, 7, 10511–10519. [Google Scholar] [CrossRef]
- Lei, C.; Ma, Q.; Zhi, S.; Yan, L.; Zhang, C.; Liu, C.; Sun, X. Planar Spiral Micro-Inductor Based on Graphene/Cu Composite Film Conductive Coil Fabricated by MEMS Technology. J. Electron. Mater. 2023, 52, 8030–8037. [Google Scholar] [CrossRef]
- Khan, Z.H.; Kermany, A.R.; Ochsner, A.; Iacopi, F. Mechanical and electromechanical properties of graphene and their potential application in MEMS. J. Phys. D-Appl. Phys. 2017, 50, 053003. [Google Scholar] [CrossRef]
- Lei, Y.; Yan, Y.; Lv, J. Atomistic study of the strengthening mechanisms of graphene coated aluminum. Nanotechnology 2020, 31, 055708. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, S.; Liu, S. Atomistic simulation on nanomechanical response of indented graphene/nickel system. Comput. Mater. Sci. 2017, 130, 16–20. [Google Scholar] [CrossRef]
- Peng, W.; Sun, K.; Abdullah, R.; Zhang, M.; Chen, J.; Shi, J. Strengthening mechanisms of graphene coatings on Cu film under nanoindentation: A molecular dynamics simulation. Appl. Surf. Sci. 2019, 487, 22–31. [Google Scholar] [CrossRef]
- Li, W.; Wang, P.; Wang, S.; Duan, Z.; Liu, L.; Wang, Y.; Xu, M. In situ synthesis of graphene oxide-sealed LDHs coatings: A novel approach to enhancing corrosion resistance and tribological performance on magnesium alloys. Coatings 2023, 13, 1544. [Google Scholar] [CrossRef]
- Yao, Q.; Qi, Y.; Zhang, J.; Zhang, S.; Zhao, P.; Wang, H.; Feng, X.-Q.; Li, Q. Impacts of the substrate stiffness on the anti-wear performance of graphene. AIP Adv. 2019, 9, 075317. [Google Scholar] [CrossRef]
- Zhao, W.; Duan, F. Effect of Supporting Metal Substrates on the Tribological Properties of Monolayer Graphene. Tribol. Lett. 2020, 68, 32–45. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, F.; Wang, L.; Duan, F.; Mu, X. Effect of hydrogen adsorption on the atomic-scale wear of few-layer graphene. Tribol. Int. 2021, 164, 107208. [Google Scholar] [CrossRef]
- Li, C.; Tang, W.; Tang, X.-Z.; Yang, L.; Bai, L. A molecular dynamics study on the synergistic lubrication mechanisms of graphene/water-based lubricant systems. Tribol. Int. 2022, 167, 107356. [Google Scholar] [CrossRef]
- Fu, H.; Duan, F. Effects of Environmental Moisture and Functional Groups on the Sliding Adhesive Behaviour of Graphene Steps. Tribol. Lett. 2021, 69, 104–113. [Google Scholar] [CrossRef]
- Zhao, B.; Huang, S.; Zhang, Y.; Ju, X.; Li, C.; Li, Z.; Xu, L. Molecular Dynamics Study on the Tribological Characteristics of Grain Boundary-Containing Graphene/h-BN Heterostructure Films. Lubricants 2024, 12, 296. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, S.; Lin, Q.; Ji, Z.; Gong, P.; Sun, Z.; Shen, B. Microscopic Mechanisms Behind the High Friction and Failure Initiation of Graphene Wrinkles. Langmuir 2021, 37, 6776–6782. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Khajeh, A.; Martini, A.; Kim, S.H. Origin of High Friction at Graphene Step Edges on Graphite. ACS Appl. Mater. Interfaces 2021, 13, 1895–1902. [Google Scholar] [CrossRef] [PubMed]
- Yin, N.; Zhang, Z.; Zhang, J. Frictional Contact Between the Diamond Tip and Graphene Step Edges. Tribol. Lett. 2019, 67, 75–84. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q.; Diao, D. Cross-Linking-Induced Frictional Behavior of Multilayer Graphene: Origin of Friction. Tribol. Lett. 2016, 62, 33–39. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, Y.; Fan, Y.; Yu, X.; Zhang, Z.; Zhang, B. The three-body abrasive tribological characteristics of the Graphene/h-BN heterostructure film considering defects. Tribol. Int. 2022, 171, 107525. [Google Scholar] [CrossRef]
- Li, J.; Peng, Y.; Tang, X.; Liu, B.; Bai, L.; Zhou, K. Hydrogen-passivation modulation on the friction behavior of graphene with vacancy defects under strain engineering. Appl. Surf. Sci. 2022, 579, 152055. [Google Scholar] [CrossRef]
- Ran, D.; Zheng, P.; Yuan, Z.; Wang, N. Influence Mechanism of Substrate Chemisorption on Mechanical Cutting Properties of Graphene. China Surf. Eng. 2023, 36, 179–189. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Yip, J.; Ding, F. Mechanism of Transition-Metal Nanoparticle Catalytic Graphene Cutting. J. Phys. Chem. Lett. 2014, 5, 1192–1197. [Google Scholar] [CrossRef] [PubMed]
- Stuart, S.J.; Tutein, A.B.; Harrison, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef]
- Klemenz, A.; Pastewka, L.; Balakrishna, S.G.; Caron, A.; Bennewitz, R.; Moseler, M. Atomic Scale Mechanisms of Friction Reduction and Wear Protection by Graphene. Nano Lett. 2014, 14, 7145–7152. [Google Scholar] [CrossRef]
- Liu, H.; Shi, Y.; Youngman, R.E.; Huang, L. Role of densification in deformation behaviors of model metallic glasses under 3-D nanoindentation studied in molecular dynamics simulation. J. Non-Cryst. Solids 2024, 638, 123071. [Google Scholar] [CrossRef]
- Ran, D.; Yuan, Z.; Wang, N.; Zheng, P.; Tang, M.; Sun, J.; Feng, S. Structural evolution and microscopic mechanisms of atomically precise edge graphene nanoribbons prepared by chemical functionalization-assisted cutting. Mater. Today Commun. 2024, 40, 109458. [Google Scholar] [CrossRef]
- Chen, P.; Ye, X.Q.; Yang, J.W.; Wu, L.Y.; Qiao, X.X.; Zhang, J.; Su, L.H. Atomistic insights into friction and wear responses of NiCoCr medium entropy alloy: Influence of pre-strained monolayer graphene coating. J. Alloys Compd. 2025, 1014, 178697. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Min, J.; Yi, C.; Zhan, Y.; Li, M. Nanoindentation experiments for single-layer rectangular graphene films: A molecular dynamics study. Nanoscale Res. Lett. 2014, 9, 41–48. [Google Scholar] [CrossRef] [PubMed]
Parameter Types | AFM Experiments | MD Simulations |
---|---|---|
Sample dimensions (nm) | 107 × 107 | 25 × 20 |
Probe radius (nm) | 15 | 2 |
Normal force (nN) | 150/350/450 | 50 (1.5 nm)/70 (2.0 nm)/ 110 (2.5 nm)/135 (3.0 nm) |
Scratch speed (nm/s) | 5 × 102 | 5 × 1010 |
Scratch distance (nm) | 104 | 3 |
Temperature (℃) | 20~23 | 27 |
Humidity | 40~60 | — |
Probe material | Diamond | Diamond |
Atom | ε (eV) | σ (nm) |
---|---|---|
CT-CG | 0.00286 | 0.347 |
Cu-CG | 0.01170 | 0.300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, D.; Yuan, Z.; Du, P.; Wang, N.; Wang, N.; Zhao, L.; Feng, S.; Jia, W.; Wu, C. Multiscale Investigation of the Anti-Friction Mechanism in Graphene Coatings on Copper Substrates: Substrate Reinforcement via Microstructural Evolution. Lubricants 2025, 13, 457. https://doi.org/10.3390/lubricants13100457
Ran D, Yuan Z, Du P, Wang N, Wang N, Zhao L, Feng S, Jia W, Wu C. Multiscale Investigation of the Anti-Friction Mechanism in Graphene Coatings on Copper Substrates: Substrate Reinforcement via Microstructural Evolution. Lubricants. 2025; 13(10):457. https://doi.org/10.3390/lubricants13100457
Chicago/Turabian StyleRan, Di, Zewei Yuan, Po Du, Ning Wang, Na Wang, Li Zhao, Song Feng, Weiwei Jia, and Chaoqun Wu. 2025. "Multiscale Investigation of the Anti-Friction Mechanism in Graphene Coatings on Copper Substrates: Substrate Reinforcement via Microstructural Evolution" Lubricants 13, no. 10: 457. https://doi.org/10.3390/lubricants13100457
APA StyleRan, D., Yuan, Z., Du, P., Wang, N., Wang, N., Zhao, L., Feng, S., Jia, W., & Wu, C. (2025). Multiscale Investigation of the Anti-Friction Mechanism in Graphene Coatings on Copper Substrates: Substrate Reinforcement via Microstructural Evolution. Lubricants, 13(10), 457. https://doi.org/10.3390/lubricants13100457