Electric Potential Controlled Ionic Lubrication
Abstract
:1. Introduction
1.1. Lubrication Methods
1.2. Controllable Lubrication Methods
2. Experimental Configurations of Electric Potential Controlled Lubrication
2.1. Electrochemical Surface Force Apparatus/Balance
2.2. Electrochemical Atomic Force Microscope
2.3. Electrochemical Universal Mechanical Tribometer
3. Aqueous Ionic Lubricants
3.1. Ionic Liquids
3.2. Hydrated Ions
3.3. Surfactants
4. Conclusions and Perspectives
4.1. Conclusions
4.2. Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Luo, J.; Zhou, X. Superlubricitive engineering—Future industry nearly getting rid of wear and frictional energy consumption. Friction 2020, 8, 643–665. [Google Scholar] [CrossRef]
- Han, T.; Zhang, S.; Zhang, C. Unlocking the secrets behind liquid superlubricity: A state-of-the-art review on phenomena and mechanisms. Friction 2022, 10, 1137–1165. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Z.; Chen, D.; Xie, Z.; Song, J.; Ruffino, F. Influence of Different Surface Texture Parameters on the Contact Performance of Piston Ring-Sleeve Friction Pair of Hydraulic Cylinders. Adv. Mater. Sci. Eng. 2021, 2021, 5495995. [Google Scholar] [CrossRef]
- Yang, J.; Fu, H.; He, Y.; Gu, Z.; Fu, Y.; Ji, J.; Zhang, Y.; Zhou, Y. Investigation on friction and wear performance of volcano-shaped textured PVD coating. Surf. Coat. Technol. 2022, 431, 128044. [Google Scholar] [CrossRef]
- Feng, S.; Liu, Y.; Li, J.; Wen, S. Superlubricity Achieved with Zwitterionic Brushes in Diverse Conditions Induced by Shear Actions. Macromolecules 2021, 54, 5719–5727. [Google Scholar] [CrossRef]
- Cai, T.; Liu, D.; Liu, S. Fluid-like graphene oxide organic hybrid materials as efficient anti-wear and friction-reducing additive of polyethylene glycol. Tribol. Int. 2021, 159, 106880. [Google Scholar] [CrossRef]
- Li, Y.; Li, S.; Bai, P.; Jia, W.; Xu, Q.; Meng, Y.; Ma, L.; Tian, Y. Surface wettability effect on aqueous lubrication: Van der Waals and hydration force competition induced adhesive friction. J. Colloid Interface Sci. 2021, 599, 667–675. [Google Scholar] [CrossRef] [PubMed]
- Barril, S.; Mischler, S.; Landolt, D. Triboelectrochemical investigation of the friction and wear behaviour of TiN coatings in a neutral solution. Tribol. Int. 2001, 34, 599–608. [Google Scholar] [CrossRef]
- Ren, X.; Zou, H.; Diao, Q.; Wang, C.; Wang, Y.; Li, H.; Sui, T.; Lin, B.; Yan, S. Surface modification technologies for enhancing the tribological properties of cemented carbides: A review. Tribol. Int. 2023, 180, 108257. [Google Scholar] [CrossRef]
- López-Cervantes, A.; Domínguez-López, I.; Barceinas-Sánchez, J.D.O.; García-García, A.L. Effects of surface texturing on the performance of biocompatible UHMWPE as a bearing material during in vitro lubricated sliding/rolling motion. J. Mech. Behav. Biomed. Mater. 2013, 20, 45–53. [Google Scholar] [CrossRef]
- Zhang, T.; Lu, Q.; Zhang, X.; Liu, S.; Ye, Q.; Zhou, F. Fabrication of polyelectrolyte brush-functionalized two-dimensional covalent organic frameworks as additives for aqueous lubricants. Tribol. Int. 2022, 174, 107737. [Google Scholar] [CrossRef]
- Wang, R.; Li, H.Q.; Li, R.S.; Mei, H.J.; Zou, C.W.; Zhang, T.F.; Wang, Q.M.; Kim, K.H. Thermostability, oxidation, and high-temperature tribological properties of nano-multilayered AlCrSiN/VN coatings. Ceram. Int. 2022, 48, 11915–11923. [Google Scholar] [CrossRef]
- Ge, X.; Li, J.; Wang, H.; Zhang, C.; Liu, Y.; Luo, J. Macroscale superlubricity under extreme pressure enabled by the combination of graphene-oxide nanosheets with ionic liquid. Carbon 2019, 151, 76–83. [Google Scholar] [CrossRef]
- Ma, L.; Luo, J.; Zhang, C.; Ma, Z.; Wang, Y.; Dai, Y. Film formation of yogurt under confined condition. Surf. Interface Anal. 2012, 44, 258–262. [Google Scholar] [CrossRef]
- Tadokoro, C.; Nihira, T.; Nakano, K. Minimization of friction at various speeds using autonomous viscosity control of nematic liquid crystal. Tribol. Lett. 2014, 56, 239–247. [Google Scholar] [CrossRef]
- Bresme, F.; Kornyshev, A.A.; Perkin, S.; Urbakh, M. Electrotunable friction with ionic liquid lubricants. Nat. Mater. 2022, 21, 848–858. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Li, X.; Li, W.; Tian, Y.; Meng, Y. On-Line Feedback Control of Sliding Friction of Metals Lubricated by Adsorbed Boundary SDS Films. Lubricants 2022, 10, 148. [Google Scholar] [CrossRef]
- Sun, K.; Hu, Y.; Dong, Y.; Yao, L.; Song, R.; Xu, Y. Tribological behavior of thermal- and pH-sensitive microgels under steel/CoCrMo alloy contacts. Friction 2022, 11, 602–616. [Google Scholar] [CrossRef]
- Zou, H.; Lin, B.; Zhang, X.; Wang, Z.; Yan, S. Observation of anomalous low friction and wear behavior of polyimide in alkaline environment under high load. Wear 2024, 546–547, 205352. [Google Scholar] [CrossRef]
- Chen, S.; Sun, H.; Liu, J.; Wang, J.; Lu, H.; Hao, J.; Xu, L.; Liu, W. A dual-responsive microemulsion with macroscale superlubricity and largely switchable friction. Mater. Horiz. 2024, 11, 1668–1678. [Google Scholar] [CrossRef]
- Tang, S.; Li, S.; Ma, L.; Tian, Y. Photorheological fluids of azobenzene polymers for lubrication regulation. Friction 2021, 10, 1078–1090. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Zhang, Y.; Li, Z.; Zhou, H. The Influence of the Temperature Rise on the Sealing Performance of the Rotating Magnetic Fluid Seal. IEEE Trans. Magn. 2020, 56, 1–10. [Google Scholar] [CrossRef]
- Chen, Y.; Li, D.; Zhang, Y.; He, C. Numerical Analysis and Experimental Study on Magnetic Fluid Reciprocating Seals. IEEE Trans. Magn. 2019, 55, 1–6. [Google Scholar] [CrossRef]
- Lin, B.; Ding, M.; Sui, T.; Cui, Y.; Yan, S.; Liu, X. Excellent Water Lubrication Additives for Silicon Nitride To Achieve Superlubricity under Extreme Conditions. Langmuir 2019, 35, 14861–14869. [Google Scholar] [CrossRef]
- Yan, S.; Lin, B.; Zhang, X.; Wang, A.; Zhou, X. Investigation of the running-in process of silicon nitride sliding in aqueous solutions of ethylene glycol. Tribol. Int. 2015, 90, 386–392. [Google Scholar] [CrossRef]
- Liu, M.; Liang, H.; Chen, X.; Yin, T.; Bu, Y. Asymmetric Contact Synergy of Unequal-Sized Soft and Hard Clusters in Highly Concentrated ZnCl2 for Heterogeneous Superlubricants. Tribol. Lett. 2024, 72, 41. [Google Scholar] [CrossRef]
- Spikes, H.A. Triboelectrochemistry: Influence of Applied Electrical Potentials on Friction and Wear of Lubricated Contacts. Tribol. Lett. 2020, 68, 90. [Google Scholar] [CrossRef]
- Trewby, W.; Tavakol, M.; Jaques, Y.M.; Voïtchovsky, K. Towards local tracking of solvated metal ions at solid-liquid interfaces. Mater. Today Phys. 2024, 44, 101441. [Google Scholar] [CrossRef]
- Lyklema, J. Fundamentals of Interface and Colloid Science; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Gonella, G.; Backus, E.H.G.; Nagata, Y.; Bonthuis, D.J.; Loche, P.; Schlaich, A.; Netz, R.R.; Kühnle, A.; McCrum, I.T.; Koper, M.T.M.; et al. Water at charged interfaces. Nat. Rev. Chem. 2021, 5, 466–485. [Google Scholar] [CrossRef] [PubMed]
- Helmholtz, H. Studien über electrische Grenzschichten. Ann. Phys. 1879, 243, 337–382. [Google Scholar] [CrossRef]
- Hjalmarsson, N.; Atkin, R.; Rutland, M.W. Switchable long-range double layer force observed in a protic ionic liquid. Chem. Commun. 2017, 53, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Wu, X.; Shi, Q.; Song, S.; Liu, Y.; Wang, W. Study on the Superlubricity Behavior of Ions under External Electric Fields at Steel Interfaces. Langmuir 2023, 39, 18757–18767. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Zhang, C.; Chen, X.; Li, J.; Wang, W.; Luo, J. Contribution of a Tribo-Induced Silica Layer to Macroscale Superlubricity of Hydrated Ions. J. Phys. Chem. C 2019, 123, 20270–20277. [Google Scholar] [CrossRef]
- Li, S.; Bai, P.; Li, Y.; Pesika, N.S.; Meng, Y.; Ma, L.; Tian, Y. Quantification/mechanism of interfacial interaction modulated by electric potential in aqueous salt solution. Friction 2020, 9, 513–523. [Google Scholar] [CrossRef]
- Gao, T.; Li, J.; Yi, S.; Luo, J. Potential-Dependent Friction on a Graphitic Surface in Ionic Solution. J. Phys. Chem. C 2020, 124, 23745–23751. [Google Scholar] [CrossRef]
- Fujii, S.; Kasuya, M.; Kurihara, K. Characterization of Platinum Electrode Surfaces by Electrochemical Surface Forces Measurement. J. Phys. Chem. C 2017, 121, 26406–26413. [Google Scholar] [CrossRef]
- Liu, C.; Friedman, O.; Li, Y.; Li, S.; Tian, Y.; Golan, Y.; Meng, Y. Electric Response of CuS Nanoparticle Lubricant Additives: The Effect of Crystalline and Amorphous Octadecylamine Surfactant Capping Layers. Langmuir 2019, 35, 15825–15833. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Meng, Y.; Tian, Y. Potential controlled Boundary Lubrication Using MoS2 Additives in Diethyl Succinate. Tribol. Lett. 2020, 68, 72. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Ouyang, C.; Tian, Y.; Meng, Y. Voltage-Assisted Tribofilm Formation of Sulfur- and Phosphorus-Free Organic Molybdenum Additive on Bearing Steel Surfaces in Industrial Base Oils. Tribol. Lett. 2022, 70, 19. [Google Scholar] [CrossRef]
- Liu, C.; Tian, Y.; Meng, Y. A Chemical Potential Equation for Modeling Triboelectrochemical Reactions on Solid–Liquid Interfaces. Front. Chem. 2021, 9, 650880. [Google Scholar] [CrossRef]
- Luo, M.; Koper, M.T.M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 2022, 5, 615–623. [Google Scholar] [CrossRef]
- Zhou, S.; Panse, K.S.; Motevaselian, M.H.; Aluru, N.R.; Zhang, Y. Three-Dimensional Molecular Mapping of Ionic Liquids at Electrified Interfaces. ACS Nano 2020, 14, 17515–17523. [Google Scholar] [CrossRef]
- Liang, H.; Liu, M.; Yin, T.; Zou, S.; Xia, X.; Hua, X.; Fu, Y.; Zhang, J.; Bu, Y.; Ren, X. Carbon Dots as Ligand Operons to Expand Cluster Size Distribution for High Load-bearing Liquid Superlubricity. Adv. Funct. Mater. 2024, 34, 2311600. [Google Scholar] [CrossRef]
- Du, C.; Yu, T.; Wu, Z.; Zhang, L.; Shen, R.; Li, X.; Feng, M.; Feng, Y.; Wang, D. Achieving macroscale superlubricity with ultra-short running-in period by using polyethylene glycol-tannic acid complex green lubricant. Friction 2023, 11, 748–762. [Google Scholar] [CrossRef]
- Lin, W.; Kampf, N.; Klein, J. Designer Nanoparticles as Robust Superlubrication Vectors. ACS Nano 2020, 14, 7008–7017. [Google Scholar] [CrossRef] [PubMed]
- Rosenhek-Goldian, I.; Kampf, N.; Klein, J. Trapped Aqueous Films Lubricate Highly Hydrophobic Surfaces. ACS Nano 2018, 12, 10075–10083. [Google Scholar] [CrossRef]
- Kasuya, M.; Sogawa, T.; Masuda, T.; Kamijo, T.; Uosaki, K.; Kurihara, K. Anion Adsorption on Gold Electrodes Studied by Electrochemical Surface Forces Measurement. J. Phys. Chem. C 2016, 120, 15986–15992. [Google Scholar] [CrossRef]
- Long, Y.; Galipaud, J.; Weihnacht, V.; Makowski, S.; Martin, J.M.; De Barros Bouchet, M.-I. Achieving superlubricity using selected tribo-pairs lubricated by castor oil and unsaturated fatty acids. Tribol. Int. 2022, 169, 107462. [Google Scholar] [CrossRef]
- Fu, X.; Cao, L.; Wan, Y.; Li, R. Superlubricity achieved with TiN coatings via the in situ formation of a carbon-based film at the sliding interfaces. Ceram. Int. 2021, 47, 33917–33921. [Google Scholar] [CrossRef]
- Zeng, Q.; Dong, G.; Martin, J.M. Green superlubricity of Nitinol 60 alloy against steel in presence of castor oil. Sci. Rep. 2016, 6, 29992. [Google Scholar] [CrossRef] [PubMed]
- Tivony, R.; Klein, J. Probing the Surface Properties of Gold at Low Electrolyte Concentration. Langmuir 2016, 32, 7346–7355. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Fang, J.; Wen, X.; Tian, Y.; Meng, Y. Active Control of Boundary Lubrication of Ceramic Tribo-Pairs in Sodium Dodecyl Sulfate Aqueous Solutions. Tribol. Lett. 2021, 69, 144. [Google Scholar] [CrossRef]
- Han, T.; Zhang, C.; Luo, J. Macroscale Superlubricity Enabled by Hydrated Alkali Metal Ions. Langmuir 2018, 34, 11281–11291. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, C.; Cheng, P.; Chen, X.; Wang, W.; Luo, J. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles. Langmuir 2016, 32, 5593–5599. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Shi, F.; Liu, Q.; Pang, Y.; He, D.; Sun, W.; Peng, L.; Yang, J.; Qu, M. Wearable superhydrophobic PPy/MXene pressure sensor based on cotton fabric with superior sensitivity for human detection and information transmission. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128676. [Google Scholar] [CrossRef]
- Kuang, F.; Zhou, X.; Liu, Z.; Huang, J.; Liu, X.; Qian, K.; Gryllias, K. Computer-visionic research on friction vibration and coupling of frictional and torsional vibrations in water-lubricated bearing-shaft system. Tribol. Int. 2020, 150, 106336. [Google Scholar] [CrossRef]
- Zhang, Z.; Ouyang, W.; Liang, X.; Yan, X.; Yuan, C.; Zhou, X.; Guo, Z.; Dong, C.; Liu, Z.; Jin, Y.; et al. Review of the evolution and prevention of friction, wear, and noise for water-lubricated bearings used in ships. Friction 2023, 12, 1–38. [Google Scholar] [CrossRef]
- Mattei, L.; Di Puccio, F.; Piccigallo, B.; Ciulli, E. Lubrication and wear modelling of artificial hip joints: A review. Tribol. Int. 2011, 44, 532–549. [Google Scholar] [CrossRef]
- Israelachvili, J.; Min, Y.; Akbulut, M.; Alig, A.; Carver, G.; Greene, W.; Kristiansen, K.; Meyer, E.; Pesika, N.; Rosenberg, K. Recent advances in the surface forces apparatus (SFA) technique. Rep. Prog. Phys. 2010, 73, 036601. [Google Scholar] [CrossRef]
- Hayler, H.; Groves, T.S.; Guerrini, A.; Southam, A.; Zheng, W.; Perkin, S. The Surface Force Balance: Direct Measurement of Interactions in Fluids and Soft Matter. Rep. Prog. Phys. 2024, 87, 046601. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Tan, Q.; Xiang, L.; Cai, D.; Zeng, H.; Yi, H.; Ni, Z.; Chen, Y. Structure and properties of water film adsorbed on mica surfaces. J. Chem. Phys. 2015, 143, 104705. [Google Scholar] [CrossRef] [PubMed]
- Raviv, U.; Laurat, P.; Klein, J. Fluidity of water confined to subnanometre films. Nature 2001, 413, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Raviv, U.; Klein, J. Fluidity of Bound Hydration Layers. Science 2002, 297, 1540–1543. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.M.; Borkovec, M.; Trefalt, G. Forces between solid surfaces in aqueous electrolyte solutions. Adv. Colloid Interface Sci. 2020, 275, 102078. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Chun, B.-W.; Gu, L.; Kuhl, T.L. Effect of Ca2+ ion concentration on adsorption of poly(carboxylate ether)-based (PCE) superplasticizer on mica. J. Colloid Interface Sci. 2018, 527, 195–201. [Google Scholar] [CrossRef]
- Gaisinskayakipnis, A.; Ma, L.; Kampf, N.; Klein, J. Frictional Dissipation Pathways Mediated by Hydrated Alkali Metal Ions. Langmuir 2016, 32, 4755–4764. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Cao, W.; Xu, Z.; Adibnia, V.; Olgiati, M.; Valtiner, M.; Ma, L.; Zhang, C.; Ma, M.; Luo, J.; et al. Hydration layer structure modulates superlubrication by trivalent La3+ electrolytes. Sci. Adv. 2023, 9, eadf3902. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Gaisinskaya-Kipnis, A.; Kampf, N.; Klein, J. Origins of hydration lubrication. Nat. Commun. 2015, 6, 6060. [Google Scholar] [CrossRef]
- Cao, Y.; Kampf, N.; Lin, W.; Klein, J. Normal and shear forces between boundary sphingomyelin layers under aqueous conditions. Soft Matter 2020, 16, 3973–3980. [Google Scholar] [CrossRef]
- Chen, M.; Briscoe, W.H.; Armes, S.P.; Klein, J. Lubrication at physiological pressures by polyzwitterionic brushes. Science 2009, 323, 1698–1701. [Google Scholar] [CrossRef]
- Chai, L.; Klein, J. Shear Behavior of Adsorbed Poly(ethylene Oxide) Layers in Aqueous Media. Macromolecules 2008, 41, 1831–1838. [Google Scholar] [CrossRef]
- Yu, J.; Jackson, N.; Xu, X.; Morgenstern, Y.; Kaufman, Y.; Ruths, M.; de Pablo, J.; Tirrell, M. Multivalent counterions diminish the lubricity of polyelectrolyte brushes. Science 2018, 360, 1434–1438. [Google Scholar] [CrossRef] [PubMed]
- Banquy, X.; Burdyńska, J.; Dong, W.L.; Matyjaszewski, K.; Israelachvili, J. Bioinspired Bottle-Brush Polymer Exhibits Low Friction and Amontons-like Behavior. J. Am. Chem. Soc. 2014, 136, 6199–6202. [Google Scholar] [CrossRef] [PubMed]
- Banquy, X.; Lee, D.W.; Das, S.; Hogan, J.; Israelachvili, J.N. Shear-Induced Aggregation of Mammalian Synovial Fluid Components under Boundary Lubrication Conditions. Adv. Funct. Mater. 2014, 24, 3152–3161. [Google Scholar] [CrossRef]
- Kang, T.; Banquy, X.; Heo, J.; Lim, C.; Lynd, N.A.; Lundberg, P.; Oh, D.X.; Lee, H.-K.; Hong, Y.-K.; Hwang, D.S.; et al. Mussel-Inspired Anchoring of Polymer Loops That Provide Superior Surface Lubrication and Antifouling Properties. ACS Nano 2016, 10, 930–937. [Google Scholar] [CrossRef] [PubMed]
- Faivre, J.; Shrestha, B.R.; Burdynska, J.; Xie, G.; Moldovan, F.; Delair, T.; Benayoun, S.; David, L.; Matyjaszewski, K.; Banquy, X. Wear Protection without Surface Modification Using a Synergistic Mixture of Molecular Brushes and Linear Polymers. ACS Nano 2017, 11, 1762–1769. [Google Scholar] [CrossRef] [PubMed]
- Adibnia, V.; Olszewski, M.; De Crescenzo, G.; Matyjaszewski, K.; Banquy, X. Superlubricity of Zwitterionic Bottlebrush Polymers in the Presence of Multivalent Ions. J. Am. Chem. Soc. 2020, 142, 14843–14847. [Google Scholar] [CrossRef] [PubMed]
- Reddyhoff, T.; Ewen, J.P.; Deshpande, P.; Frogley, M.D.; Welch, M.D.; Montgomery, W. Macroscale Superlubricity and Polymorphism of Long-Chain n-Alcohols. ACS Appl. Mater. Interfaces 2021, 13, 9239–9251. [Google Scholar] [CrossRef]
- Li, J.; Zhang, C.; Luo, J. Superlubricity behavior with phosphoric acid-water network induced by rubbing. Langmuir 2011, 27, 9413–9417. [Google Scholar] [CrossRef]
- Lei, Y.; Wang, Y.; Shen, J.; Cai, Z.; Zhao, C.; Chen, H.; Luo, X.; Hu, N.; Cui, W.; Huang, W. Injectable hydrogel microspheres with self-renewable hydration layers alleviate osteoarthritis. Sci. Adv. 2022, 8, eabl6449. [Google Scholar] [CrossRef] [PubMed]
- Valtiner, M.; Banquy, X.; Kristiansen, K.; Greene, G.W.; Israelachvili, J.N. The electrochemical surface forces apparatus: The effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in aqueous solutions. Langmuir 2012, 28, 13080. [Google Scholar] [CrossRef] [PubMed]
- Tivony, R.; Klein, J. Modifying surface forces through control of surface potentials. Faraday Discuss. 2017, 199, 261–277. [Google Scholar] [CrossRef] [PubMed]
- Lecadre, F.; Kasuya, M.; Harano, A.; Kanno, Y.; Kurihara, K. Low-Temperature Surface Forces Apparatus to Determine the Interactions between Ice and Silica Surfaces. Langmuir 2018, 34, 11311–11315. [Google Scholar] [CrossRef] [PubMed]
- Fajardo, O.Y.; Bresme, F.; Kornyshev, A.A.; Urbakh, M. Electrotunable Friction with Ionic Liquid Lubricants: How Important Is the Molecular Structure of the Ions? J. Phys. Chem. Lett. 2015, 6, 3998–4004. [Google Scholar] [CrossRef]
- Fréchette, J.; Vanderlick, T.K. Electrocapillary at Contact: Potential-Dependent Adhesion between a Gold Electrode and a Mica Surface. Langmuir 2005, 21, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Cheng, J.; Delparastan, P.; Wang, H.; Sigg, S.J.; DeFrates, K.G.; Cao, Y.; Messersmith, P.B. Molecular design principles of Lysine-DOPA wet adhesion. Nat. Commun. 2020, 11, 3895. [Google Scholar] [CrossRef] [PubMed]
- Fukuma, T.; Garcia, R. Atomic- and Molecular-Resolution Mapping of Solid–Liquid Interfaces by 3D Atomic Force Microscopy. ACS Nano 2018, 12, 11785–11797. [Google Scholar] [CrossRef] [PubMed]
- Butt, H.J. Electrostatic interaction in atomic force microscopy. Biophys. J. 1991, 60, 777–785. [Google Scholar] [CrossRef]
- Ducker, W.A.; Senden, T.J.; Pashley, R.M. Direct measurement of colloidal forces using an atomic force microscope. Nature 1991, 353, 239–241. [Google Scholar] [CrossRef]
- Butt, H.J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 1991, 60, 1438. [Google Scholar] [CrossRef] [PubMed]
- Ducker, W.A.; Senden, T.J.; Pashley, R.M. Measurement of forces in liquids using a force microscope. Langmuir 1992, 8, 1831–1836. [Google Scholar] [CrossRef]
- Kohonen, M.M.; Karaman, M.E.; Pashley, R.M. Debye Length in Multivalent Electrolyte Solutions. Langmuir 2000, 16, 5749–5753. [Google Scholar] [CrossRef]
- Trulsson, M.; Jönsson, B.; Åkesson, T.; Forsman, J.; Labbez, C. Repulsion between Oppositely Charged Surfaces in Multivalent Electrolytes. Phys. Rev. Lett. 2006, 97, 068302. [Google Scholar] [CrossRef] [PubMed]
- Pasquina-Lemonche, L.; Burns, J.; Turner, R.D.; Kumar, S.; Tank, R.; Mullin, N.; Wilson, J.S.; Chakrabarti, B.; Bullough, P.A.; Foster, S.J.; et al. The architecture of the Gram-positive bacterial cell wall. Nature 2020, 582, 294–297. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Q.; Li, Q.; Dong, M. The role of hydrated anions in hydration lubrication. Nano Res. 2023, 16, 1096–1100. [Google Scholar] [CrossRef]
- Dishon, M.; Zohar, O.; Sivan, U. Effect of cation size and charge on the interaction between silica surfaces in 1:1, 2:1, and 3:1 aqueous electrolytes. Langmuir 2011, 27, 12977–12984. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Q.; Zhang, D.; Wang, Y.; Zhang, Y.; Li, Q.; Dong, M. Probing the hydration friction of ionic interfaces at the atomic scale. Nanoscale Horiz. 2022, 7, 368–375. [Google Scholar] [CrossRef]
- Ma, P.; Liu, Y.; Sang, X.; Tan, J.; Ye, S.; Ma, L.; Tian, Y. Homogeneous interfacial water structure favors realizing a low-friction coefficient state. J. Colloid Interface Sci. 2022, 626, 324–333. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Y.; Jones, S.; Segalman, R.; Warr, G.G.; Atkin, R. Interfacial nanostructure and friction of a polymeric ionic liquid-ionic liquid mixture as a function of potential at Au(111) electrode interface. J. Colloid Interface Sci. 2022, 606, 1170–1178. [Google Scholar] [CrossRef]
- Lang, H.; Peng, Y.; Zou, K.; Huang, Y.; Song, C. Velocity-Dependent Friction of Graphene at Electrical Contact Interfaces. Langmuir 2023, 39, 11363–11370. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yang, W.; Fan, Y.; Song, Q.; Xiao, S. TiO2 metasurfaces: From visible planar photonics to photochemistry. Sci. Adv. 2019, 5, eaax0939. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Ma, P.; Ma, L.; Tian, Y.; Luo, J. Investigation of the running-in process in photoinduced superlubricity. Front. Mater. 2023, 10, 1109890. [Google Scholar] [CrossRef]
- Cao, H.; Meng, Y. Electrochemical effect on boundary lubrication of ZDDP additive blended in propylene carbonate/diethyl succinate. Tribol. Int. 2018, 126, 229–239. [Google Scholar] [CrossRef]
- Liu, C.; Friedman, O.; Meng, Y.; Tian, Y.; Golan, Y. CuS Nanoparticle Additives for Enhanced Ester Lubricant Performance. ACS Appl. Nano Mater. 2018, 1, 7060–7065. [Google Scholar] [CrossRef]
- Han, T.; Yi, S.; Zhang, C.; Li, J.; Chen, X.; Luo, J.; Banquy, X. Superlubrication Obtained with Mixtures of Hydrated Ions and Polyethylene Glycol Solutions in the Mixed and Hydrodynamic Lubrication Regimes. J. Colloid Interface Sci. 2020, 579, 479–488. [Google Scholar] [CrossRef]
- Wang, K.; Liu, L.; Song, A.; Ma, T.; Wang, H.; Luo, J.; Liu, Y. Macroscale superlubricity under ultrahigh contact pressure in the presence of layered double hydroxide nanosheets. Nano Res. 2022, 15, 4700–4709. [Google Scholar] [CrossRef]
- Ren, X.; Yang, X.; Xie, G.; He, F.; Wang, R.; Zhang, C.; Guo, D.; Luo, J. Superlubricity under ultrahigh contact pressure enabled by partially oxidized black phosphorus nanosheets. npj 2D Mater. Appl. 2021, 5, 44. [Google Scholar] [CrossRef]
- Han, T.; Zhang, C.; Li, J.; Yuan, S.; Chen, X.; Zhang, J.; Luo, J. Origins of Superlubricity Promoted by Hydrated Multivalent Ions. J. Phys. Chem. Lett. 2020, 11, 184–190. [Google Scholar] [CrossRef]
- Yuan, S.; Zhang, C. A sulfonated modification of PEEK for ultralow friction. Friction 2022, 11, 881–893. [Google Scholar] [CrossRef]
- Han, T.; Zhao, M.; Sun, C.; Zhao, R.; Xu, W.; Zhang, S.; Singh, S.; Luo, J.; Zhang, C. Macroscale Superlubricity of Hydrated Anions in the Boundary Lubrication Regime. ACS Appl. Mater. Interfaces 2023, 15, 42094–42103. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Han, T.; Zhang, C.; Luo, J. Superlubricating UHMWPE composites with functionalized carbon nanotubes reinforcement applicable to artificial joints. Tribol. Int. 2024, 191, 109142. [Google Scholar] [CrossRef]
- Wei, Q.; Cai, M.; Zhou, F.; Liu, W. Dramatically tuning friction using responsive polyelectrolyte brushes. Macromolecules 2013, 46, 9368–9379. [Google Scholar] [CrossRef]
- Yi, S.; Li, J.; Liu, Y.; Ge, X.; Zhang, J.; Luo, J. In-situ formation of tribofilm with Ti3C2Tx MXene nanoflakes triggers macroscale superlubricity. Tribol. Int. 2021, 154, 106695. [Google Scholar] [CrossRef]
- Liu, Y.; Li, J.; Ge, X.; Yi, S.; Wang, H.; Liu, Y.; Luo, J. Macroscale Superlubricity Achieved on the Hydrophobic Graphene Coating with Glycerol. ACS Appl. Mater. Interfaces 2020, 12, 18859–18869. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Halmans, T.; Li, J.; Luo, J. Molecular behaviors in thin film lubrication—Part three: Superlubricity attained by polar and nonpolar molecules. Friction 2019, 7, 625–636. [Google Scholar] [CrossRef]
- Liang, H.; Yin, T.; Liu, M.; Fu, C.; Xia, X.; Zou, S.; Hua, X.; Fu, Y.; Bu, Y. Unravelling High-Load Superlubricity of Ionic Liquid Analogues by In Situ Raman: Incomplete Hydration Induced by Competitive Exchange of External Water with Crystalline Water. J. Phys. Chem. Lett. 2023, 14, 453–459. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Chen, H.; Yan, H.; Huang, C.; Wu, L.; Wang, T. Superlubricity by polyimide-induced alignment. Friction 2023, 11, 1690–1707. [Google Scholar] [CrossRef]
- Zheng, Z.; Liu, X.; Huang, G.; Chen, H.; Yu, H.; Feng, D.; Qiao, D. Macroscale superlubricity achieved via hydroxylated hexagonal boron nitride nanosheets with ionic liquid at steel/steel interface. Friction 2022, 10, 1365–1381. [Google Scholar] [CrossRef]
- Zhou, Y.; Qu, J. Ionic Liquids as Lubricant Additives: A Review. ACS Appl. Mater. Interfaces 2017, 9, 3209–3222. [Google Scholar] [CrossRef]
- Zhou, F.; Liang, Y.; Liu, W. Ionic liquid lubricants: Designed chemistry for engineering applications. Chem. Soc. Rev. 2009, 38, 2590–2599. [Google Scholar] [CrossRef]
- Fedorov, M.V.; Kornyshev, A.A. Ionic Liquids at Electrified Interfaces. Chem. Rev. 2014, 114, 2978–3036. [Google Scholar] [CrossRef]
- Kondrat, S.; Feng, G.; Bresme, F.; Urbakh, M.; Kornyshev, A.A. Theory and Simulations of Ionic Liquids in Nanoconfinement. Chem. Rev. 2023, 123, 6668–6715. [Google Scholar] [CrossRef]
- Zheng, Q.; Chhattal, M.; Bai, C.; Zheng, Z.; Qiao, D.; Gong, Z.; Zhang, J. Superlubricity of PTFE triggered by green ionic liquids. Appl. Surf. Sci. 2023, 614, 156241. [Google Scholar] [CrossRef]
- Li, H.; Endres, F.; Atkin, R. Effect of alkyl chain length and anion species on the interfacial nanostructure of ionic liquids at the Au(111)–ionic liquid interface as a function of potential. Phys. Chem. Chem. Phys. 2013, 15, 14624–14633. [Google Scholar] [CrossRef]
- Li, H.; Wood, R.J.; Endres, F.; Atkin, R.J.J. Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential. J. Phys. Condens. Matter 2014, 26, 284115. [Google Scholar] [CrossRef]
- Li, H.; Wood, R.J.; Rutland, M.W.; Atkin, R. An ionic liquid lubricant enables superlubricity to be “switched on” in situ using an electrical potential. Chem. Commun. 2014, 50, 4368–4370. [Google Scholar] [CrossRef]
- Li, H.; Rutland, M.W.; Atkin, R. Ionic liquid lubrication: Influence of ion structure, surface potential and sliding velocity. Phys. Chem. Chem. Phys. 2013, 15, 14616–14623. [Google Scholar] [CrossRef]
- Li, H.; Niemann, T.; Ludwig, R.; Atkin, R. Effect of Hydrogen Bonding between Ions of Like Charge on the Boundary Layer Friction of Hydroxy-Functionalized Ionic Liquids. J. Phys. Chem. Lett. 2020, 11, 3905–3910. [Google Scholar] [CrossRef]
- Zhang, Y.; Marlow, J.B.; Millar, W.; Aman, Z.M.; Silvester, D.S.; Warr, G.G.; Atkin, R.; Li, H. Nanostructure, electrochemistry and potential-dependent lubricity of the catanionic surface-active ionic liquid [P6,6,6,14] [AOT]. J. Colloid Interface Sci. 2022, 608, 2120–2130. [Google Scholar] [CrossRef]
- Lin, W.; Klein, J. Control of surface forces through hydrated boundary layers. Curr. Opin. Colloid Interface Sci. 2019, 44, 94–106. [Google Scholar] [CrossRef]
- Kuznetsov, V.; Papastavrou, G. Ion Adsorption on Modified Electrodes as Determined by Direct Force Measurements under Potentiostatic Control. J. Phys. Chem. C 2014, 118, 2673–2685. [Google Scholar] [CrossRef]
- Li, J.; Luo, J. Normal and Frictional Force Hysteresis between Self-Assembled Fluorosurfactant Micelle Arrays at the Nanoscale. Adv. Mater. Interfaces 2018, 5, 1700802. [Google Scholar] [CrossRef]
- Li, J.; Dou, Z.-P.; Liu, Y.; Luo, J.; Xiao, J.-X. Improvement of Load Bearing Capacity of Nanoscale Superlow Friction by Synthesized Fluorinated Surfactant Micelles. ACS Appl. Nano Mater. 2018, 1, 953–959. [Google Scholar] [CrossRef]
- Li, J.; Luo, J. Superlow Friction of Graphite Induced by Self-Assembly of SDS Molecular Layers. Langmuir 2017, 33, 12596–12601. [Google Scholar] [CrossRef]
- Li, J.; Luo, J. Nonlinear Frictional Energy Dissipation between Silica-Adsorbed Surfactant Micelles. J. Phys. Chem. Lett. 2017, 8, 2258–2262. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, Y.; Tian, Y.; Zhang, X. Effect of concentration and addition of ions on the adsorption of sodium dodecyl sulfate on stainless steel surface in aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 408–415. [Google Scholar] [CrossRef]
- He, S.; Meng, Y.; Tian, Y. Correlation Between Adsorption/Desorption of Surfactant and Change in Friction of Stainless Steel in Aqueous Solutions Under Different Electrode Potentials. Tribol. Lett. 2011, 41, 485–494. [Google Scholar] [CrossRef]
- Yang, X.; Meng, Y.; Tian, Y. Potential controlled Boundary Lubrication of Stainless Steels in Non-aqueous Sodium Dodecyl Sulfate Solutions. Tribol. Lett. 2014, 53, 17–26. [Google Scholar] [CrossRef]
- Gao, T.; Li, J.; Wang, W.; Luo, J. Extremely low friction on gold surface with surfactant molecules induced by surface potential. Friction 2023, 11, 513–523. [Google Scholar] [CrossRef]
- Tang, L.; Wang, L.; Yang, X.; Feng, Y.; Li, Y.; Feng, W. Poly(N-isopropylacrylamide)-based smart hydrogels: Design, properties and applications. Prog. Mater. Sci. 2021, 115, 100702. [Google Scholar] [CrossRef]
- Miao, Y.; Xu, M.; Zhang, L. Electrochemistry-Induced Improvements of Mechanical Strength, Self-Healing, and Interfacial Adhesion of Hydrogels. Adv. Mater. 2021, 33, 2102308. [Google Scholar] [CrossRef]
- Dhanola, A.; Khanna, N.; Gajrani, K.K. A critical review on liquid superlubricitive technology for attaining ultra-low friction. Renew. Sustain. Energy Rev. 2022, 165, 112626. [Google Scholar] [CrossRef]
- Kasuya, M.; Kubota, D.; Fujii, S.; Kurihara, K. Nano-confined electrochemical reaction studied by electrochemical surface forces apparatus. Faraday Discuss. 2022, 233, 206–221. [Google Scholar] [CrossRef]
- Wen, X.; Bai, P.; Li, Y.; Cao, H.; Li, S.; Wang, B.; Fang, J.; Meng, Y.; Ma, L.; Tian, Y. Effects of abrasive particles on liquid superlubricity and mechanisms for their removal. Langmuir 2021, 37, 3628–3636. [Google Scholar] [CrossRef]
- Wen, X.; Bai, P.; Meng, Y.; Ma, L.; Tian, Y. High-temperature superlubricity realized with chlorinated-phenyl and methyl-terminated silicone oil and hydrogen-ion running-in. Langmuir 2022, 38, 10043–10051. [Google Scholar] [CrossRef]
- Wu, L.; Wang, F.; Zhang, C.; Zhang, X.; Gu, L.; Shi, W. Silver/Graphene Nanocomposite as an Additive for Aqueous Lubrication. ACS Appl. Nano Mater. 2023, 6, 1603–1609. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, C.; Gesang, Y.; Shang, H.; Wang, R.; Liang, Y.; Wang, T.; Chen, W.; Shao, T. Fretting wear evolution of γ-TiAl alloy. Tribol. Int. 2021, 154, 106721. [Google Scholar] [CrossRef]
- Yi, M.; Qiu, J.; Xu, W. Tribological performance of ultrathin MoS2 nanosheets in formulated engine oil and possible friction mechanism at elevated temperatures. Tribol. Int. 2022, 167, 107426. [Google Scholar] [CrossRef]
- Yi, M.; Zhang, C. The synthesis of two-dimensional MoS2 nanosheets with enhanced tribological properties as oil additives. RSC Adv. 2018, 8, 9564–9573. [Google Scholar] [CrossRef]
Setups | EC-SFA/SFB | EC-AFM | EC-UMT |
---|---|---|---|
Load range (N) | 0.1~100 mN | 1~1000 nN | 1~50 N |
Rotation speed (rotation) or sliding frequency (reciprocating) | 5~500 mHz | 1~10 Hz | 0.1~3000 r/min |
Sliding velocity | 0.1~100 μm/s | 0.1~10 μm/s | 0.1~300 mm/s |
Contact area | 0.001~0.01 mm2 | <0.1~1 μm2 | 0.01~100 mm2 |
Motion | Straight reciprocation | Straight reciprocation | Straight reciprocationRotation |
Commonly used friction materials | Mica, gold, etc. | Graphene, SiO2, etc. | Ceramics, polymers, metals, amorphous carbon, etc. |
Peculiarity | 0.1 nm resolution for separation distance; transparent materials with atomically smooth surfaces are necessary. | High-resolution imaging; soft materials and highly deformable surfaces are less accurate to measure. | Multi-module single platform tests; large applied load; large contact area. |
Ionic Lubricants | Ionic Liquids | Hydrated Ions | Surfactants |
---|---|---|---|
Setups | EC-AFM, EC-UMT | EC-AFM, EC-SFA/SFB | EC-UMT, EC-AFM |
The control range of CoF (low CoF, high CoF) | ~0.001, >0.01 (HOPG/SiO2) 0.008, >0.03 (GCr15/GCr15) | 0.003, 0.006 (HOPG/SiO2) 0.004, 0.035 (gold/SiO2) 0.05, 0.8 (gold/mica) | 0.01, 0.35 (316L/304, 440C) 0.0003, 0.002 (gold/SiO2) |
Controlled mechanism | Physical adsorption, Electrochemical reaction | Physical adsorption | Physical adsorption, Electrochemical reaction |
Commonly used pairs | Au/SiO2, HOPG/SiO2, Au/Mica, Steel/SiO2, Steel/Steel, Copper/ZrO2, Copper/Steel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Guo, H.; Singh, S.; Adibnia, V.; He, H.; Kang, F.; Yang, Y.; Liu, C.; Han, T.; Zhang, C. Electric Potential Controlled Ionic Lubrication. Lubricants 2024, 12, 214. https://doi.org/10.3390/lubricants12060214
Wang Z, Guo H, Singh S, Adibnia V, He H, Kang F, Yang Y, Liu C, Han T, Zhang C. Electric Potential Controlled Ionic Lubrication. Lubricants. 2024; 12(6):214. https://doi.org/10.3390/lubricants12060214
Chicago/Turabian StyleWang, Zhongnan, Hui Guo, Sudesh Singh, Vahid Adibnia, Hongjiang He, Fang Kang, Ye Yang, Chenxu Liu, Tianyi Han, and Chenhui Zhang. 2024. "Electric Potential Controlled Ionic Lubrication" Lubricants 12, no. 6: 214. https://doi.org/10.3390/lubricants12060214
APA StyleWang, Z., Guo, H., Singh, S., Adibnia, V., He, H., Kang, F., Yang, Y., Liu, C., Han, T., & Zhang, C. (2024). Electric Potential Controlled Ionic Lubrication. Lubricants, 12(6), 214. https://doi.org/10.3390/lubricants12060214