Approach to Determine the Limiting Shear Stress of Lubricants at High Pressures Based on Traction Mapping
Abstract
:1. Introduction
2. Experimental Methods
2.1. Traction Machine
2.2. Specimens and Lubricants
2.3. Operating Conditions
3. Limiting Shear Stress (LSS) Measurement
3.1. 3D Map of Traction
3.2. Limiting Shear Stress
3.3. Approach for the Selection of Entrainment Velocity and Maximum EHL Friction Coefficient
4. Results and Discussion
4.1. Measurement and Analysis of LSS for PAO40
4.2. Analysis of Limiting Shear Stress for Complex Ester
4.3. Comparison of Limiting Shear Stress of the Two Lubricants
4.4. Effect of Entrainment Velocity on LSS Measurement
5. Conclusions
- The measured LSS and the EHL coefficient of friction of the complex ester are higher than that of the PAO40, while the low-shear viscosity of the complex ester is lower than that of PAO40 at ambient pressure and 40 °C.
- For both lubricants, PAO40 and complex ester, the measured LSS varies linearly with mean contact pressure and the relation can be described using the bilinear LSS model. The y-axis intercept of the fitting curve of the measured LSS is negative. This is in accordance with the results in the literature for model fluids and widely used commercial lubricants.
- The choice of critical velocity has significant influence on the measurements of limiting shear stress. The effects of temperature and molecular structure on the limiting shear stress of lubricants will be investigated in future studies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holmberg, K.; Erdemir, A. Influence of Tribology on Global Energy Consumption, Costs and Emissions. Friction 2017, 5, 263–284. [Google Scholar] [CrossRef]
- Gohar, R. Elastohydrodynamics; World Scientific: Singapore, 2001. [Google Scholar]
- Bair, S. High Pressure Rheology for Quantitative Elastohydrodynamics; Elsevier eBooks: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Smith, F.W. Lubricant Behavior in Concentrated Contact—Some Rheological Problems. ASLE Trans. 1960, 3, 18–25. [Google Scholar] [CrossRef]
- Bair, S.; Winer, W.O. A rheological model for elastohydrodynamic contacts based on primary laboratory data. J. Lubr. Technol. 1979, 101, 258–264. [Google Scholar] [CrossRef]
- Jacobson, B.O. Rheology and Elastohydrodynamic Lubrication; Elsevier: Amsterdam, The Netherlands, 1991; Volume 19. [Google Scholar]
- Zhang, Y.; Wang, W.; He, L.; Zhao, Z. Slip Status in Lubricated Point-Contact Based on Layered Oil Slip Lubrication Model. Tribol. Int. 2020, 144, 106104. [Google Scholar] [CrossRef]
- Wong, P.L.; Li, X.M.; Guo, F. Evidence of Lubricant Slip on Steel Surface in EHL Contact. Tribol. Int. 2013, 61, 116–119. [Google Scholar] [CrossRef]
- Jacobson, B. An Experimental Determination of the Solidification Velocity for Mineral Oils. ASLE Trans. 1974, 17, 290–294. [Google Scholar] [CrossRef]
- Šperka, P.; Křupka, I.; Hartl, M. Evidence of Plug Flow in Rolling–Sliding Elastohydrodynamic Contact. Tribol. Lett. 2014, 54, 151–160. [Google Scholar] [CrossRef]
- Ndiaye, S.N.; Martinie, L.; Philippon, D.; Gonon-Caux, M.; Margueritat, J.; Vergne, P. On the Influence of Phase Change in Highly Loaded Frictional Contacts. Tribol. Lett. 2020, 68, 54. [Google Scholar] [CrossRef]
- Zhang, Y.; Wen, S. An Analysis of Elastohydrodynamic Lubrication with Limiting Shear Stress: Part II—Load Influence. Tribol. Trans. 2002, 45, 211–216. [Google Scholar] [CrossRef]
- Johnson, K.L.; Tevaarwerk, J.L. Shear Behaviour of Elastohydrodynamic Oil Films. Proc. R. Soc. Lond. 1977, 356, 215–236. [Google Scholar] [CrossRef]
- Kobayashi, H.; Fujita, Y. Mechanisms for Three Kinds of Limiting Shear Stresses Appearing in the Traction Modes of Viscous, Viscoelastic, and Glassy States of Lubricants. J. Appl. Phys. 2014, 115, 223509. [Google Scholar] [CrossRef]
- Xu, R.; Martinie, L.; Vergne, P.; Joly, L.; Fillot, N. An Approach for Quantitative EHD Friction Prediction Based on Rheological Experiments and Molecular Dynamics Simulations. Tribol. Lett. 2023, 71, 69. [Google Scholar] [CrossRef]
- Washizu, H.; Ohmori, T.; Suzuki, A. Molecular origin of limiting shear stress of elastohydrodynamic lubrication oil film studied by molecular dynamics. Chem. Phys. Lett. 2017, 678, 1–4. [Google Scholar] [CrossRef]
- Gattinoni, C.; Heyes, D.M.; Lorenz, C.D.; Dini, D. Traction and Nonequilibrium Phase Behavior of Confined Sheared Liquids at High Pressure. Phys. Rev. E 2013, 88, 052406. [Google Scholar] [CrossRef] [PubMed]
- Martinie, L.; Vergne, P. Lubrication at Extreme Conditions: A Discussion about the Limiting Shear Stress Concept. Tribol. Lett. 2016, 63, 21. [Google Scholar] [CrossRef]
- Bader, N.F. Traction in EHL-Contacts: The Influence of Local Fluid Rheology and Temperatures. Ph.D. Dissertation, Leibniz University, Hannover, Germany, 2018. [Google Scholar]
- Fang, N.; Chang, L.; Webster, M.N.; Jackson, A. A Non-Averaging Method of Determining the Rheological Properties of Traction Fluids. Tribol. Int. 2000, 33, 751–760. [Google Scholar] [CrossRef]
- Ndiaye, S.N.; Martinie, L.; Philippon, D.; Devaux, N.; Vergne, P. A Quantitative Friction-Based Approach of the Limiting Shear Stress Pressure and Temperature Dependence. Tribol. Lett. 2017, 65, 149. [Google Scholar] [CrossRef]
- Liu, H.C.; Zhang, B.; Bader, N.; Venner, C.H.; Poll, G. Scale and Contact Geometry Effects on Friction in Thermal EHL: Twin-Disc versus Ball-on-Disc. Tribol. Int. 2021, 154, 106694. [Google Scholar] [CrossRef]
- Habchi, W.; Vergne, P.; Bair, S.; Andersson, O.; Eyheramendy, D.; Morales-Espejel, G.E. Influence of Pressure and Temperature Dependence of Thermal Properties of a Lubricant on the Behaviour of Circular TEHD Contacts. Tribol. Int. 2010, 43, 1842–1850. [Google Scholar] [CrossRef]
- Poll, G.; Wang, D. Fluid Rheology, Traction/Creep Relationships and Friction in Machine Elements with Rolling Contacts. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 481–500. [Google Scholar] [CrossRef]
- Hansen, J.; Björling, M.; Larsson, R. Lubricant Film Formation in Rough Surface Non-Conformal Conjunctions Subjected to GPa Pressures and High Slide-to-Roll Ratios. Sci. Rep. 2020, 10, 22250. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; Wang, Q.J. On the λ Ratio Range of Mixed Lubrication. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2012, 226, 1010–1022. [Google Scholar] [CrossRef]
- Zhang, J.; Spikes, H.A. Measurement of EHD Friction at Very High Contact Pressures. Tribol. Lett. 2020, 68, 42. [Google Scholar] [CrossRef]
- Bair, S. A traction (friction) curve is not a flow curve. Lubricants 2022, 10, 221. [Google Scholar] [CrossRef]
- Habchi, W.; Bair, S.; Vergne, P. On Friction Regimes in Quantitative Elastohydrodynamics. Tribol. Int. 2013, 58, 107–117. [Google Scholar] [CrossRef]
- Björling, M.; Larsson, R.; Marklund, P.; Kassfeldt, E. Elastohydrodynamic lubrication friction mapping—The influence of lubricant, roughness, speed, and slide-to-roll ratio. Proc. Inst. Mech. Eng. Part J J. Eng. Tribology 2011, 225, 671–681. [Google Scholar] [CrossRef]
- Otero, J.E.; De La Guerra Ochoa, E.; Tanarro, E.C.; Martínez, F.F.; Urgilés, R.W.C. An Analytical Approach for Predicting EHL Friction: Usefulness and Limitations. Lubricants 2022, 10, 141. [Google Scholar] [CrossRef]
- Hamrock, B.J.; Dowson, D. Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III—Fully Flooded Results. J. Lubr. Technol. 1977, 99, 264–275. [Google Scholar] [CrossRef]
Specimen | Material | Diameter, mm | Surface Roughness Ra, μm | Young’s Modulus, GPa | Poisson Ratio |
---|---|---|---|---|---|
Ball | WC | 19.05 | <0.02 | 610 | 0.258 |
Disc | WC | 46 | <0.01 | 610 | 0.258 |
Lubricant | Kinematic Viscosity at 40 °C, mm/s2 | Kinematic Viscosity at 100 °C, mm/s2 | Viscosity Index, VI | Density 20 °C, kg/m3 |
---|---|---|---|---|
PAO40 | 396 | 39 | 147 | 850 |
Complex ester | 366 | 39 | 155 | 1012 |
Parameter | Unit | Value |
---|---|---|
Temperature, | °C | 40 |
Mean Contact pressure, | GPa | 1.2~1.7 |
Entrainment velocity, | m/s | 0~2 |
Slide-to-roll ratio, SRR | % | 0~50 |
/GPa | /mm/s | /- | LSS/MPa |
---|---|---|---|
1.2 | 900 | 0.0446 | 53.52 |
1.3 | 700 | 0.050 | 65.00 |
1.4 | 600 | 0.056 | 78.82 |
1.5 | 600 | 0.060 | 90.18 |
1.6 | 600 | 0.063 | 101.12 |
1.7 | 600 | 0.066 | 112.2 |
/GPa | /mm/s | /- | LSS/MPa |
---|---|---|---|
1.2 | 600 | 0.0506 | 60.72 |
1.3 | 600 | 0.0563 | 73.19 |
1.4 | 500 | 0.0626 | 87.64 |
1.5 | 500 | 0.0667 | 100.05 |
1.6 | 500 | 0.0701 | 112.16 |
1.7 | 500 | 0.0725 | 123.25 |
/GPa | LSS of PAO40/MPa | LSS of Complex Ester/MPa |
---|---|---|
1.2 | 55.40 | 60.72 |
1.3 | 65.00 | 73.19 |
1.4 | 78.82 | 87.64 |
1.5 | 90.18 | 100.05 |
1.6 | 101.12 | 112.16 |
1.7 | 112.20 | 123.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Zhao, Y.; Han, Y.; Lou, W.; Li, S.; Wang, X.; Guo, F.; Liu, H. Approach to Determine the Limiting Shear Stress of Lubricants at High Pressures Based on Traction Mapping. Lubricants 2024, 12, 128. https://doi.org/10.3390/lubricants12040128
Ma Z, Zhao Y, Han Y, Lou W, Li S, Wang X, Guo F, Liu H. Approach to Determine the Limiting Shear Stress of Lubricants at High Pressures Based on Traction Mapping. Lubricants. 2024; 12(4):128. https://doi.org/10.3390/lubricants12040128
Chicago/Turabian StyleMa, Zhaoqun, Yan Zhao, Yiming Han, Wenjing Lou, Shuai Li, Xiaobo Wang, Feng Guo, and Haichao Liu. 2024. "Approach to Determine the Limiting Shear Stress of Lubricants at High Pressures Based on Traction Mapping" Lubricants 12, no. 4: 128. https://doi.org/10.3390/lubricants12040128
APA StyleMa, Z., Zhao, Y., Han, Y., Lou, W., Li, S., Wang, X., Guo, F., & Liu, H. (2024). Approach to Determine the Limiting Shear Stress of Lubricants at High Pressures Based on Traction Mapping. Lubricants, 12(4), 128. https://doi.org/10.3390/lubricants12040128