Tribological Performance of Glycerol-Based Hydraulic Fluid Under Low-Temperature Conditions
Abstract
:1. Introduction
2. Experimentation
2.1. Test Lubricants
2.2. Rheology Tests
2.3. Tribological Tests
2.4. Comparing the Tribological Properties of the Test Lubricants at Low- (0 °C and −20 °C) and Moderate- (40 °C) Temperature Conditions
2.5. Surface Analysis Techniques
3. Results and Discussion
3.1. Properties of Test Lubricants
3.2. Rheology Results
3.3. Friction Results
3.4. Wear Results
3.5. Discussion on Friction and Wear Results
3.6. Comparing the Tribological Properties of Test Lubricants at Low- (0 °C and −20 °C) and Moderate- (40 °C) Temperature Conditions
3.7. Surface Analysis
4. Conclusions
- The GHF showed good viscosity stability with temperature changes and maintained a Newtonian-like behavior under shear at both 0 °C and −20 °C, suggesting consistent lubrication performance under low-temperature conditions. By comparison, the MHF showed a more significant viscosity transition with temperature changes and exhibited shear-thinning behavior at −20 °C;
- The GHF showed lower coefficients of friction across all test temperatures (0 °C, −20 °C, and 40 °C) and load conditions (25 N and 50 N), with COF values ranging from 0.086 to 0.145, a reduction of 21–55% compared to the MHF, which exhibited COF values between 0.154 and 0.223;
- The GHF led to significantly less surface wear damage with lower wear volumes on the test discs, showing reductions of 77–90% compared to the MHF across all test conditions. The steel test balls lubricated with the glycerol lubricant exhibited clear circular wear scars, suggesting stable lubrication and controlled wear, while those lubricated with the mineral lubricant displayed uneven wear patterns with deep scratches;
- The temperature significantly impacted the friction and wear performance of both lubricants. The GHF had its lowest COF values at 40 °C, although it showed higher wear volumes compared to its wear volumes at the lower temperatures. At 0 °C and −20 °C, it provided wear protection, with reductions of up to 90% compared to the MHF, although its COF values were higher than at 40 °C.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gelinski, S.; Winter, M.; Wichmann, H.; Bock, R.; Herrmann, C.; Bahadir, M. Development and testing of a novel glycerol/chitosan based biocide-free hydraulic fluid. J. Clean. Prod. 2016, 112, 3589–3596. [Google Scholar] [CrossRef]
- Trajkovski, A.; Novak, N.; Pustavrh, J.; Kalin, M.; Majdič, F. Performance of Polymer Composites Lubricated with Glycerol and Water as Green Lubricants. Appl. Sci. 2023, 13, 7413. [Google Scholar] [CrossRef]
- Soni, S.; Agarwal, M. Lubricants from renewable energy sources—A review. Green Chem. Lett. Rev. 2014, 7, 359–382. [Google Scholar] [CrossRef]
- Goyan, R.L.; Melley, R.E.; Wissner, P.A.; Ong, W.C. Biodegradable lubricants. Tribol. Lubr. Technol. 1998, 54, 1998. [Google Scholar]
- Keshavarz, S.; Naimi-Jamal, M.R.; Izadmanesh, Y.; Dekamin, M.G. Synthesis of ionic liquids with multifunctional tribological properties as excellent single-component package additives for turbine oils. Lubr. Sci. 2019, 31, 311–320. [Google Scholar] [CrossRef]
- Tan, H.W.; Aziz, A.R.A.; Aroua, M.K. Glycerol production and its applications as a raw material: A review. Renew. Sustain. Energy Rev. 2013, 27, 118–127. [Google Scholar] [CrossRef]
- Tamayo, J.G.Z.; Björling, M.; Shi, Y.; Prakash, B.; Larsson, R. Micropitting performance of glycerol-based lubricants under rolling-sliding contact conditions. Tribol. Int. 2022, 167, 107348. [Google Scholar] [CrossRef]
- Trajkovski, A.; Matkovič, S.; Novak, N.; Nadeem, I.; Kalin, M.; Majdič, F. Glycerol aqueous solutions for the enhanced tribological behaviour of polymer composites sliding against steel. Tribol. Int. 2024, 192, 109173. [Google Scholar] [CrossRef]
- Shi, Y.; Minami, I.; Grahn, M.; Björling, M.; Larsson, R. Boundary and elastohydrodynamic lubrication studies of glycerol aqueous solutions as green lubricants. Tribol. Int. 2014, 69, 39–45. [Google Scholar] [CrossRef]
- Pagliaro, M.; Rossi, M. (Eds.) Glycerol: Properties and Production. In The Future of Glycerol: New Uses of a Versatile Raw Material; The Royal Society of Chemistry: London, UK, 2008. [Google Scholar] [CrossRef]
- Bosch, J.; DellaCorte, C. Rheological characterization and tribological evaluation of water-based lubricants in AISI 52100 bearing steel. Tribol. Lett. 2024, 72, 10. [Google Scholar] [CrossRef]
- Zheng, D.; Ju, C.; Su, T. An amino acid functionalized ionic liquid as a multifunctional lubricant additive in water-glycerol. J. Oleo Sci. 2021, 70, 1623–1630. [Google Scholar] [CrossRef] [PubMed]
- Björling, M.; Shi, Y. DLC and glycerol: Superlubricity in rolling/sliding elastohydrodynamic lubrication. Tribol. Lett. 2019, 67, 23. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Y.; Zhang, S.; Luo, J. Controllable superlubricity of glycerol solution via environment humidity. Langmuir 2013, 29, 11924–11930. [Google Scholar] [CrossRef] [PubMed]
- Habchi, W.; Matta, C.; Joly-Pottuz, L.; De Barros, M.I.; Martin, J.M.; Vergne, P. Full film, boundary lubrication and tribochemistry in steel circular contacts lubricated with glycerol. Tribol. Lett. 2011, 42, 351–358. [Google Scholar] [CrossRef]
- Le, V.N.-A.; Lin, J.-W. Tribological properties of aluminum nanoparticles as additives in an aqueous glycerol solution. Appl. Sci. 2017, 7, 80. [Google Scholar] [CrossRef]
- Patzer, G.; Woydt, M. New methodologies indicating adhesive wear in load step tests on the translatory oscillation tribometer. Lubricants 2021, 9, 101. [Google Scholar] [CrossRef]
- Tomy, A. Impact of Contaminants on Blade Bearing’s Lifetime. Master’s Thesis, Luleå University of Technology, Luleå, Sweden, 2024. [Google Scholar]
- Kapsiz, M.; Geffroy, S.; Holzer, A.; Schmitz, K. Tribological Performances of Diamond-Like Carbon Coatings for Hydraulic Applications. Chem. Eng. Technol. 2022, 46, 118–127. [Google Scholar] [CrossRef]
- Strmčnik, E.; Majdič, F.; Kalin, M. Influence of a Diamond-Like Carbon-Coated Mechanical Part on the Operation of an Orbital Hydraulic Motor in Water. Metals 2019, 9, 466. [Google Scholar] [CrossRef]
- Hernández-Sierra, M.T.; Bravo-Sánchez, M.G.; Báez, J.E.; Aguilera-Camacho, L.D.; García-Miranda, J.S.; Moreno, K.J. Improvement effect of green lubricants on the tribological and mechanical performance of 4140 steel. Appl. Sci. 2019, 9, 4896. [Google Scholar] [CrossRef]
- Mang, T.; Noll, S.; Bartels, T. Lubricants, 1. Fundamentals of Lubricants and Lubrication. Ullmann’s Encycl. Ind. Chem. 2011, 21, 394–411. [Google Scholar] [CrossRef]
- Lubrecht, A.A.; Venner, C.H.; Colin, F. Film thickness calculation in elasto-hydrodynamic lubricated line and elliptical contacts: The Dowson, Higginson, Hamrock contribution. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2009, 223, 511–515. [Google Scholar] [CrossRef]
- Hamrock, B.; Dowson, D. Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part III-Fully Flooded Result. J. Lubr. Technol. 1976, 99, 264–275. [Google Scholar] [CrossRef]
- Hamrock, B.; Dowson, D. Elastohydrodynamic Lubrication of Elliptical Contacts for Materials of Low Elastic Modulus I—Fully Flooded Conjunction. Trans. ASME J. Lubr. Technol. 1977, 100, 236–245. [Google Scholar] [CrossRef]
- Hansen, J.; Björling, M.; Larsson, R. A new film parameter for rough surface EHL contacts with anisotropic and isotropic structures. Tribol. Lett. 2021, 69, 37. [Google Scholar] [CrossRef]
- ASTMD7421-19; Standard Test Method for Determining Extreme Pressure Properties of Lubricating Oils Using High-Frequency, Linear Oscillation (SRV) Test Machine. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTMD5706-16; Standard Test Method for Determining Extreme Pressure Properties of Lubricating Greases Using a High-Frequency, Linear-Oscillation (SRV) Test Machine. ASTM International: West Conshohocken, PA, USA, 2016.
- Balarini, R.; Diniz, G.A.S.; Profito, F.J.; de Souza, R.M. Comparison of unidirectional and reciprocating tribometers in tests with MoDTC-containing oils under boundary lubrication. Tribol. Int. 2020, 149, 105686. [Google Scholar] [CrossRef]
- Rahnejat, H. Tribology and Dynamics of Engine and Powertrain: Fundamentals, Applications and Future Trends; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Bowden, F.P.; Tabor, D. The Friction and Lubrication of Solids; Oxford University Press: Oxford, UK, 2001; Volume 1. [Google Scholar]
- Abdelbary, A. Extreme Tribology: Fundamentals and Challenges; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Jeon, H.-G.; Kim, J.-K.; Na, S.-J.; Kim, M.-S.; Hong, S.-H. Application of condition monitoring for hydraulic oil using tuning fork sensor: A study case on hydraulic system of earth moving machinery. Materials 2022, 15, 7657. [Google Scholar] [CrossRef]
- Quinchia, L.A.; Delgado, M.A.; Franco, J.M.; Spikes, H.A.; Gallegos, C. Low-temperature flow behaviour of vegetable oil-based lubricants. Ind. Crop. Prod. 2012, 37, 383–388. [Google Scholar] [CrossRef]
- Ajay, V.; Piyush, K.; Gagan, A. Study of Rheological properties of industrial lubricants. In Hindawi Conference Papers in Science; Hindawi Publishing Corporation: Cairo, Egypt, 2014. [Google Scholar]
- Conrad, A.; Hodapp, A.; Hochstein, B.; Willenbacher, N.; Jacob, K.-H. Low-temperature rheology and thermoanalytical investigation of lubricating oils: Comparison of phase transition, viscosity, and pour point. Lubricants 2021, 9, 99. [Google Scholar] [CrossRef]
- Webber, R.M. Low temperature rheology of lubricating mineral oils: Effects of cooling rate and wax crystallization on flow properties of base oils. J. Rheol. 1999, 43, 911–931. [Google Scholar] [CrossRef]
- Xiang, D.; Shen, L.; Wang, H. Investigation on the thermal conductivity of mineral oil-based alumina/aluminum nitride nanofluids. Materials 2019, 12, 4217. [Google Scholar] [CrossRef]
- Matta, C.; Joly-Pottuz, L.; De Barros Bouchet, M.I.; Martin, J.M.; Kano, M.; Zhang, Q.; Goddard, W.A., III. Superlubricity and tribochemistry of polyhydric alcohols. Phys. Rev. B 2018, 78, 085436. [Google Scholar] [CrossRef]
- Liu, G.; Li, X.; Li, Y.; Li, Y.; Cao, C.; Wang, Z.; Li, H.; Zhu, M. A comparison of wear between unidirectional and reciprocating sliding motions under different applied loads and lubricants. Phys. Scr. 2023, 98, 115930. [Google Scholar] [CrossRef]
- Yang, Z.-R.; Sun, Y.; Li, X.-X.; Wang, S.-Q.; Mao, T.-J. Dry sliding wear performance of 7075 Al alloy under different temperatures and load conditions. Rare Met. 2015, 41, 1057–1062. [Google Scholar] [CrossRef]
- An, J.; Li, R.G.; Lu, Y.; Chen, C.M.; Xu, Y.C.; Chen, X.; Wang, L.M. Dry sliding wear behavior of magnesium alloys. Wear 2008, 265, 97–104. [Google Scholar] [CrossRef]
- Yu, S.; He, Z.; Chen, K. Dry sliding friction and wear behaviour of short fibre reinforced zinc-based alloy composites. Wear 1996, 198, 108–114. [Google Scholar] [CrossRef]
- Zhao, X.; Tian, C.; Hao, L.; Xu, H.; Dong, J. Tribology and Rheology of Polypropylene Grease with MoS2 and ZDDP Additives at Low Temperatures. Lubricants 2023, 11, 464. [Google Scholar] [CrossRef]
- Cyriac, F.; Yi, T.X.; Poornachary, S.K.; Chow, P.S. Effect of temperature on tribological performance of organic friction modifier and anti-wear additive: Insights from friction, surface (ToF-SIMS and EDX) and wear analysis. Tribol. Int. 2021, 157, 106896. [Google Scholar] [CrossRef]
- Wang, X.; Li, C.; Gong, K.; Wu, X. Surface-Modified MoS2 Nanoparticles as Tribological Additives in a Glycerol Solution. ACS Appl. Nano Mater. 2023, 6, 6662–6669. [Google Scholar] [CrossRef]
- Gong, P.; Qu, Y.; Wang, W.; Lv, F.; Jin, J. Macroscale Superlubricity of Black Phosphorus Quantum Dots. Lubricants 2022, 10, 158. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Liu, S.; Sun, Y.; Zeng, L.; Li, J.; Sun, C.; Cai, M.; Yu, Q.; Zhou, F. Tribological Properties and Biotoxicity of Gluconate-Based Ionic Liquids as Glycerol Lubricant Additives. ACS Sustain. Chem. Eng. 2024, 12, 5332–5342. [Google Scholar] [CrossRef]
- Uebel, F.; Thérien-Aubin, H.; Landfester, K. Glycerol-Based Polyurethane Nanoparticles Reduce Friction and Wear of Lubricant Formulations. Macromol. Mater. Eng. 2022, 307, 2100821. [Google Scholar] [CrossRef]
- Lyu, B.; Zhang, L.; Meng, X.; Wang, C. A boundary lubrication model and experimental study considering ZDDP tribofilms on reciprocating friction pairs. Tribol. Lett. 2022, 70, 65. [Google Scholar] [CrossRef]
- Prasad, B.K. Investigation into sliding wear performance of zinc-based alloy reinforced with SiC particles in dry and lubricated conditions. Wear 2007, 262, 262–273. [Google Scholar] [CrossRef]
- Fu, X.; Cao, L.; Qi, C.; Wan, Y.; Xu, C. Ultralow friction of PVD TiN coating in the presence of glycerol as a green lubricant. Ceram. Int. 2020, 46, 24302–24311. [Google Scholar] [CrossRef]
Test Parameters | Values |
---|---|
Average Speed | 0.2 m/s |
Frequency | 50 Hz |
Time | 2 h |
Stroke Length | 2 mm |
Contact Pressure | 1.35 GPa, 1.7 GPa |
Load | 25 N, 50 N |
Temperature | 0 °C, − 20 °C |
Test | Lubricant | Temperature (°C) | Viscosity (Pa·s) | Load (N) | Contact Pressure (GPa) |
---|---|---|---|---|---|
1 | GHF | 0 | 1.2 | 25 | 1.35 |
2 | MHF (ISO VG 46) | 0 | 0.5 | 25 | 1.35 |
3 | GHF | 0 | 1.2 | 50 | 1.70 |
4 | MHF (ISO VG 46) | 0 | 0.5 | 50 | 1.70 |
5 | GHF | −20 | 10.9 | 25 | 1.35 |
6 | MHF (ISO VG 46) | −20 | 6.6 | 25 | 1.35 |
7 | GHF | −20 | 10.9 | 50 | 1.70 |
8 | MHF (ISO VG 46) | −20 | 6.6 | 50 | 1.70 |
Test | Lubricant | Temperature (°C) | Viscosity (Pa·s) | Ue (m/s) | Load (N) | Contact Pressure (GPa) | α (GPa−1) | λ |
---|---|---|---|---|---|---|---|---|
1 | GHF | 40 | 0.079 | 0.2 | 25 | 1.35 | 4.7 | 0.113 |
2 | MHF (ISO VG 46) | 40 | 0.043 | 0.2 | 25 | 1.35 | 23.3 | 0.165 |
3 | GHF | 40 | 0.079 | 0.2 | 50 | 1.70 | 4.7 | 0.108 |
4 | MHF (ISO VG 46) | 40 | 0.043 | 0.2 | 50 | 1.70 | 23.3 | 0.157 |
Test Conditions | Average Wear Scar Width (μm) | |
---|---|---|
GHF | MHF | |
40 °C, 25 N | 353.0 | 327.6 |
40 °C, 50 N | 369.1 | 382.3 |
0 °C, 25 N | 242.9 | 341.6 |
0 °C, 50 N | 274.7 | 354.9 |
−20 °C, 25 N | 173.7 | 333.2 |
−20 °C, 50 N | 201.0 | 353.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okhiria, P.; Björling, M.; Johansson, P.; Hasan, M.; Larsson, R.; Shi, Y. Tribological Performance of Glycerol-Based Hydraulic Fluid Under Low-Temperature Conditions. Lubricants 2024, 12, 430. https://doi.org/10.3390/lubricants12120430
Okhiria P, Björling M, Johansson P, Hasan M, Larsson R, Shi Y. Tribological Performance of Glycerol-Based Hydraulic Fluid Under Low-Temperature Conditions. Lubricants. 2024; 12(12):430. https://doi.org/10.3390/lubricants12120430
Chicago/Turabian StyleOkhiria, Paul, Marcus Björling, Pontus Johansson, Mushfiq Hasan, Roland Larsson, and Yijun Shi. 2024. "Tribological Performance of Glycerol-Based Hydraulic Fluid Under Low-Temperature Conditions" Lubricants 12, no. 12: 430. https://doi.org/10.3390/lubricants12120430
APA StyleOkhiria, P., Björling, M., Johansson, P., Hasan, M., Larsson, R., & Shi, Y. (2024). Tribological Performance of Glycerol-Based Hydraulic Fluid Under Low-Temperature Conditions. Lubricants, 12(12), 430. https://doi.org/10.3390/lubricants12120430