Analysis of Surface Drag Reduction Characteristics of Non-Smooth Jet Coupled Structures
Abstract
:1. Introduction
2. Modeling and Numerical Simulation of Non-Smooth Jet Coupling Structure
2.1. Structural Model and Numerical Calculation Model
2.2. Numerical Simulation Equations
- (1)
- Governing equation
- (2)
- Turbulence equation
2.3. Mesh Division and Boundary Condition Setting
2.4. Wall Resistance, Calculation of Drag Reduction Rate, and Validation of Experimental Data
3. Drag Reduction Effect of Non-Smooth Jet Coupling Structure
3.1. Comparative Analysis of Different Flow Rates
3.2. Comparative Analysis of Jet Angle and Velocity
4. Comparative Analysis of Flow Field Variation Characteristics of Non-Smooth Jet Coupled Structures
4.1. Characterization of Compressive Stress Variation
- (1)
- Effect of different structures on compressive stresses
- (2)
- Effect of different jet speeds and angles on compressive stresses
4.2. Velocity Field Variation Characteristics
- (1)
- Effect of Different Structures on the Velocity Field
- (2)
- Effect of different jet speeds and angles on the velocity field
4.3. Characterization of Changes in Vortex Structure
- (1)
- Effect of different structures on the flow vortices
- (2)
- Effect of different jet speeds and angles on the distribution of vortex structure
4.4. Shear Stress Variation Characteristics
- (1)
- Surface shear stress analysis of different structures
- (2)
- Surface shear stress analysis at different jet speeds and angles
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Y | Flatbed spreading width [mm] |
Z | Flat-panel computing domain height [mm] |
l | Length of intercepted rectangular plane [mm] |
d1 | Distance to inlet basin [mm] |
d2 | Distance to outlet basin [mm] |
a | Jet hole length [mm] |
b | Jet hole width [mm] |
a | Jet angle [°] |
r | Distance between the jet hole and non-smooth structure [mm] |
v | Jet velocity [m/s] |
v1 | Kinematic viscosity [m2/s] |
Re | Reynolds number |
ρ | Densities [kg/m3] |
U | Incoming velocity [m/s] |
L | Characteristic length [m] |
μ | Dynamic viscosity [Pa·s] |
u | Velocity direction vector |
p | Static pressure [Pa] |
vx, vy, vz | Velocity in the x, y and z directions [m/s] |
k | Turbulent energy [m2/s−2] |
Pk | Turbulence generation rate |
ω | Specific dissipation rate |
F1 | Mixing function |
y+ | Dimensionless grid height [mm] |
Δy | Height of the first layer of the grid [mm] |
f | Viscous drag [N] |
f* | Differential pressure resistance [N] |
F | Total wall resistance [N] |
τi | Discrete unit shear stress [N] |
Ai | Wall discrete unit area [m2] |
Ai* | Projected area of the jet hole and trench face along the main flow field [m2] |
References
- Wu, T.; Chen, W.; Zhao, A.G.; He, P.; Chen, H.A. Comprehensive investigation on micro-structured surfaces for underwater drag reduction. Ocean Eng. 2020, 218, 107902. [Google Scholar] [CrossRef]
- Luo, K.H.; Yan, L.; Zhu, Z.Y.; Wang, Z.Q.; Wang, H.R.; Jiang, F. Application of bionic technology in marine cruise equipment: Research progress and development trends. J. Bionic Eng. 2024, 21, 1117–1155. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Ma, L.B.; Yan, M.H.; He, C.D.; Zhang, J.J.; Mou, J.G.; Wu, D.H.; Run, Y. Strategies for improving friction behavior based on carbon nanotube additive materials. Tribol. Int. 2022, 176, 107875. [Google Scholar] [CrossRef]
- Qin, L.G.; Ma, Z.Y.; Sun, H.J.; Lu, S.; Zeng, Q.F.; Zeng, Y.L.; Dong, G.N. Drag reduction and antifouling properties of non-smooth surfaces modified with ZIF-67. Surf. Coat. Technol. 2021, 427, 127836. [Google Scholar] [CrossRef]
- Li, C.; Nie, B.Y.; Ren, Y.J.; Chen, W.; Zhou, L.B.; Li, W.; Chen, J. Research status of anti-water erosion coatings for the final stage titanium blade in steam turbines. J. Chang. Univ. Sci. Technol. (Nat. Sci.) 2022, 19, 32–46. [Google Scholar] [CrossRef]
- Liu, G.J.; Yuan, Z.C.; Qiu, Z.Z.; Feng, S.W.; Xie, Y.C.; Leng, D.X.; Tian, X.J. A brief review of bio-inspired surface technology and application toward underwater drag reduction. Ocean Eng. 2020, 199, 106962. [Google Scholar] [CrossRef]
- Qin, L.G.; Gong, C.Y.; Sun, H.J.; Lu, S.; Zeng, Q.F.; Zhang, Y.L.; Dong, G.N. Review of research on drag reduction of non-smooth surface. Surf. Technol. 2022, 51, 107–122. [Google Scholar] [CrossRef]
- Tian, G.Z.; Zhang, Y.S.; Feng, X.M.; Hu, Y.S. Focus on bioinspired textured surfaces toward fluid drag reduction: Recent progresses and challenges. Adv. Eng. Mater. 2022, 24, 2100696. [Google Scholar] [CrossRef]
- Qi, J.Y.; Qi, Y.; Chen, Q.Y.; Yan, F. A study of drag reduction on cylinders with different V-groove depths on the surface. Water 2021, 14, 36. [Google Scholar] [CrossRef]
- Lloyd, C.J.; Peakall, J.; Burns, A.D.; Keevil, G.M.; Dorrell, R.M.; Wignall, P.B.; Fletcher, T.M. Hydrodynamic efficiency in sharks: The combined role of riblets and denticles. Bioinspiration Biomim. 2021, 16, 046008. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Chen, J.W.; Jiang, M.; Wang, S.W.; Wan, Z.Y.; Xie, Y.; Li, L. The effect of drop volume on the apparent contact angle of hierarchical structured superhydrophobic surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125849. [Google Scholar] [CrossRef]
- Luo, N.; Qu, Z.; Cai, Q.J.; Peng, W.H.; Dong, J.W. Experimental study on microstructural characteristics of lotus leaf surface and droplet impact dynamics. Res. Explor. Lab. 2023, 42, 69–74. [Google Scholar] [CrossRef]
- Liu, L.X.; Wang, K.J.; Wang, X.W.; Tian, H.P.; Jiang, N. TRPIV experimental investigation of drag reduction mechanism inturbulent boundary layer over superhydrophobic-riblet surface. J. Exp. Fluid Mech. 2021, 35, 117–125. [Google Scholar] [CrossRef]
- Gu, Y.Q.; Yin, Z.F.; Yu, S.W.; He, C.D.; Wang, W.T.; Zhang, J.J.; Wu, D.H.; Mou, J.G.; Ren, Y. Suppression of unsteady partial cavitation by a bionic jet. Int. J. Multiph. Flow 2023, 164, 104466. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.Y.; Wang, T.; Qian, Z.S. Influence of nozzle structure on the flow field of the prestage of nozzle flapper servo valve. Int. J. Hydromechatronics 2023, 6, 59–75. [Google Scholar] [CrossRef]
- Cui, X.X.; Chen, D.K.; Chen, H.W. Multistage gradient bioinspired riblets for synergistic drag reduction and efficient antifouling. ACS Omega 2023, 8, 8569–8581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.S.; Fan, D.L.; Feng, X.M.; Hu, Y.S.; Shi, J.; Tian, G.Z. Drag reduction performance and mechanism of flexible conical microstructure film inspired by pufferfish epidermis. Ocean Eng. 2023, 271, 113760. [Google Scholar] [CrossRef]
- Han, Z.B.; Ma, L.J.; Zhao, Z. Study on the antifriction properties of laser processed nonsmooth surfaces with composite textures. Modul. Mach. Tool Autom. Manuf. Tech. 2023, 7, 57–60. [Google Scholar] [CrossRef]
- Wei, H.; Chen, G.J.; Chen, Z.; Yu, Z.W.; Huang, J.S. Progress on bionic textured cutting tools: A review and prospects. J. Bionic Eng. 2024, 21, 19–55. [Google Scholar] [CrossRef]
- Zheng, S.H.; Liang, X.; Li, J.Y.; Liu, Y.Y.; Tang, J. Drag reduction using bionic groove surface for underwater vehicles. Front. Bioeng. Biotechnol. 2023, 11, 1223691. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.J.; Luo, Z.B.; Liu, J.F.; Deng, X.; Peng, W.Q.; Li, S.Q. Flight test of aircraft three-axis attitude control without rudders based on distributed dual synthetic jets. Chin. J. Theor. Appl. Mech. 2022, 54, 1220–1228. [Google Scholar] [CrossRef]
- Hu, C.X.; Gu, Y.Q.; Zhang, J.J.; Qiu, Q.F.; Ding, H.X.; Wu, D.H.; Mou, J.G. Research on the flow and drag reduction characteristics of surfaces with biomimetic fitting structure. J. Appl. Fluid Mech. 2024, 17, 1593–1603. [Google Scholar] [CrossRef]
- Ning, H.W.; Qian, S.Z.; Zhou, T. Applications of level set method in computational fluid dynamics: A review. Int. J. Hydromechatronics 2023, 6, 1–33. [Google Scholar] [CrossRef]
- Qu, K.; Xu, Y.; Huang, J.; Wen, H.B. Numerical simulation of hydrodynamic characteristics of submerged floating tunnels under the action of focused waves. J. Chang. Univ. Sci. Technol. (Nat. Sci.) 2023, 20, 127–141. [Google Scholar] [CrossRef]
- Li, F.; Zhao, G.; Liu, W.X. Research on drag reduction performance of turbulent boundary layer on bionic jet surface. Part M J. Eng. Marit. Environ. 2017, 231, 258–270. [Google Scholar] [CrossRef]
- Zhang, S. Study on the Size and Shape of Holes in Bionic Jet Drag Reduction Jets; Harbin Engineering University: Harbin, China, 2014. [Google Scholar]
Fluid Medium | Densities ρ (kg/m3) | Kinematic Viscosity v1 (m2/s) | Dynamic Viscosity μ (Pa·s) |
---|---|---|---|
Water | 998.2 | 1.0048 × 10−6 | 1.0030 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kou, J.; Lou, Q.; Gu, Y.; Zhang, J.; Mou, C.; Yu, J.; Ding, Y.; Xu, C. Analysis of Surface Drag Reduction Characteristics of Non-Smooth Jet Coupled Structures. Lubricants 2024, 12, 334. https://doi.org/10.3390/lubricants12100334
Kou J, Lou Q, Gu Y, Zhang J, Mou C, Yu J, Ding Y, Xu C. Analysis of Surface Drag Reduction Characteristics of Non-Smooth Jet Coupled Structures. Lubricants. 2024; 12(10):334. https://doi.org/10.3390/lubricants12100334
Chicago/Turabian StyleKou, Jinming, Qiannan Lou, Yunqing Gu, Junjun Zhang, Chengqi Mou, Jiayun Yu, Youting Ding, and Chengbo Xu. 2024. "Analysis of Surface Drag Reduction Characteristics of Non-Smooth Jet Coupled Structures" Lubricants 12, no. 10: 334. https://doi.org/10.3390/lubricants12100334
APA StyleKou, J., Lou, Q., Gu, Y., Zhang, J., Mou, C., Yu, J., Ding, Y., & Xu, C. (2024). Analysis of Surface Drag Reduction Characteristics of Non-Smooth Jet Coupled Structures. Lubricants, 12(10), 334. https://doi.org/10.3390/lubricants12100334