Oil-Sealing Performance Evaluation of Labyrinth Seal Using Combined Finite Element Analysis and Computational Fluid Dynamics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finite Element Analysis
2.2. Computational Fluid Dynamics Analysis
3. Results
3.1. Results of Finite Element Analysis
3.2. Results of Computational Fluid Dynamics Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zheng, Y.; Wang, Y.; Dai, Y. Numerical simulation and characteristics analysis of the turbine shaft end spiral groove mechanical seal. In Proceedings of the 2012 3rd International Conference on Digital Manufacturing and Automation, ICDMA 2012, Guilin, China, 31 July–2 August 2012. [Google Scholar]
- Sun, D.F.; Sun, J.J.; Ma, C.B.; Yu, Q.P. Frequency-Domain-Based Nonlinear Response Analysis of Stationary Ring Displacement of Noncontact Mechanical Seal. Shock Vib. 2019, 2019, 7082538. [Google Scholar] [CrossRef]
- Amarnath, M.; Shrinidhi, R.; Ramachandra, A.; Kandagal, S.B. Prediction of defects in antifriction bearings using vibration signal analysis. J. Inst. Eng. Mech. Eng. Div. 2004, 85, 88–92. [Google Scholar]
- Li, X.; Fu, P.; Chen, K.; Lin, Z.; Zhang, E. The contact state monitoring for seal end faces based on acoustic emission detection. Shock Vib. 2016, 2016, 8726781. [Google Scholar] [CrossRef]
- Li, G.; Zhang, Q.; Lei, Z.; Huang, E.; Wu, H.; Xu, G. Leakage performance of labyrinth seal for oil sealing of aero-engine. Propuls. Power Res. 2019, 8, 13–22. [Google Scholar] [CrossRef]
- Mortazavi, F.; Palazzolo, A. CFD-based prediction of rotordynamic performance of smooth stator-grooved rotor (SS-GR) liquid annular seals. In Proceedings of the ASME Turbo Expo, Charlotte, NC, USA, 26–30 June 2017; Volume 7A-2017. [Google Scholar]
- Choi, Y.H.; Kwak, H.S.; Lee, C.R.; Kim, C. Development of an Advanced Oil Deflector Used in Thermoelectric Power Plant. J. Korean Soc. Precis. Eng. 2016, 33, 661–668. [Google Scholar] [CrossRef]
- Kim, J.H.; Bae, J.H.; Lee, C.-R.; Kim, C. Development of Flexible Packing Ring in Steam Turbine for Reduction of Leakage by using CFD Flow Analysis. J. Korean Soc. Precis. Eng. 2013, 30, 741–748. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Li, J.; Yan, X. Effects of tooth bending damage on the leakage performance and rotordynamic coefficients of labyrinth seals. Chinese J. Aeronaut. 2020, 33, 1206–1217. [Google Scholar] [CrossRef]
- Yan, X.; Wang, H.; He, K. Numerical investigations into the rubbing wear behavior of honeycomb seal. J. Mech. Sci. Technol. 2023, 37, 4375–4390. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y.; Tian, A. Influence of structure parameters on aeroelastic stability for labyrinth seal based on energy method. Propuls. Power Res. 2018, 7, 288–295. [Google Scholar] [CrossRef]
- Wang, N.; Wang, Y. Aeroelastic Stability of Labyrinth Seal with Different Structure Parameters. In Proceedings of the MATEC Web of Conferences, Wuhan, China, 10–13 May 2018; Volume 179. [Google Scholar]
- Zhang, W.F.; Yang, J.G.; Li, C.; Tian, Y.W. Comparison of leakage performance and fluid-induced force of turbine tip labyrinth seal and a new kind of radial annular seal. Comput. Fluids 2014, 105, 125–137. [Google Scholar] [CrossRef]
- Huang, D.; Li, X. Rotordynamic characteristics of a rotor with labyrinth gas seals. Part 1: Comparison with Child’s experiments. Proc. Inst. Mech. Eng. Part A J. Power Energy 2004, 218, 171–178. [Google Scholar] [CrossRef]
- Huang, D.; Li, X. Rotordynamic characteristics of a rotor with labyrinth gas seals. Part 2: A non-linear model. Proc. Inst. Mech. Eng. Part A J. Power Energy 2004, 218, 179–186. [Google Scholar] [CrossRef]
- Huang, D.; Li, X. Rotordynamic characteristics of a rotor with labyrinth gas seals. Part 3: Coupled fluid-solid vibration. Proc. Inst. Mech. Eng. Part A J. Power Energy 2004, 218, 187–197. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Feng, Z. Labyrinth seal rotordynamic characteristics part I: Operational conditions effects. J. Propuls. Power 2016, 32, 1199–1211. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Feng, Z. Labyrinth seal rotordynamic characteristics part II: Geometrical parameter effects. J. Propuls. Power 2016, 32, 1281–1291. [Google Scholar] [CrossRef]
- Huo, C.; Sun, J.; Song, P.; Sun, W. Influence of tooth geometrical shape on the leakage and rotordynamic characteristics of labyrinth seals in a cryogenic liquid turbine expander. Int. J. Refrig. 2023, 145, 105–117. [Google Scholar] [CrossRef]
- Xue, W.; Fang, Z.; Wang, T.; Li, Z.; Li, J. Investigation on the Rotordynamic Characteristics of Labyrinth Seal with Swirl Brakes. Hsi-An Chiao Tung Ta Hsueh/J. Xi’an Jiaotong Univ. 2022, 56, 105–116. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Li, J. Investigation on the Rotordynamic Characteristics of Straight-Through Labyrinth Seal Using Bulk-Flow Model. Hsi-An Chiao Tung Ta Hsueh/J. Xi’an Jiaotong Univ. 2021, 55, 25–33. [Google Scholar] [CrossRef]
- Wang, T.; Li, Z.; Li, J. Rotordynamic Characteristics of the Straight-Through Labyrinth Seal Based on the Applicability Analysis of Leakage Models Using Bulk-Flow Method. J. Eng. Gas Turbines Power 2022, 144, 011028. [Google Scholar] [CrossRef]
- Du, Q.; Zhang, D. Numerical investigation on flow characteristics and aerodynamic performance of a 1.5-stage SCO2 axial-inflow turbine with labyrinth seals. Appl. Sci. 2020, 10, 373. [Google Scholar] [CrossRef]
- Baek, S.I.; Ahn, J. Optimizing the geometric parameters of a straight-through labyrinth seal to minimize the leakage flow rate and the discharge coefficient. Energies 2021, 14, 705. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, J. Large eddy simulation of leakage flow in a stepped labyrinth seal. Processes 2021, 9, 2179. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, Y.; Qu, X.; Huo, G.; Zhao, Z. Simulation and Flow Analysis of the Hole Diaphragm Labyrinth Seal at Several Whirl Frequencies. Energies 2022, 15, 379. [Google Scholar] [CrossRef]
- Dogu, Y.; Sertçakan, M.C.; Gezer, K.; Kocagül, M.; Arican, E.; Ozmusul, M.S. Labyrinth seal leakage degradation due to various types of wear. J. Eng. Gas Turbines Power 2017, 139, 062504. [Google Scholar] [CrossRef]
- Dogu, Y.; Sertçakan, M.C.; Bahar, A.S.; Pişkin, A.; Arican, E.; Kocagül, M. Computational Fluid Dynamics Investigation of Labyrinth Seal Leakage Performance Depending on Mushroom-Shaped Tooth Wear. J. Eng. Gas Turbines Power 2016, 138, 032503. [Google Scholar] [CrossRef]
- Yan, X.; Dai, X.; Zhang, K.; Li, J.; He, K. Effect of teeth bending and mushrooming damages on leakage performance of a labyrinth seal. J. Mech. Sci. Technol. 2018, 32, 4697–4709. [Google Scholar] [CrossRef]
- Whalen, J.K.; Alvarez, E.E.; Palliser, L.P. Thermoplastic Labyrinth Seals For Centrifugal Compressors. In Proceedings of the 33rd Turbomachinery Symposium, Houston, TX, USA, 20–23 September 2004; Turbomachinery Laboratories, Texas A&M University: College Station, TX, USA, 2004. [Google Scholar]
Type 1 | Type 2 | Type 3 | ||
---|---|---|---|---|
Teeth | Material | Stainless steel | Al–Mg Alloy | Al–Mg Alloy |
Density (g/cc) | 7.80 | 2.68 | 2.68 | |
Elastic modulus (MPa) | 200,000 | 70,300 | 70,300 | |
Poisson’s ratio | 0.33 | 0.33 | 0.33 | |
Yield strength (MPa) | 275 | 89.6 | 89.6 | |
Rotor | Material | Carbon steel | Carbon steel | Carbon steel |
Density (g/cc) | 7.85 | 7.85 | 7.85 | |
Elastic modulus (MPa) | 205,000 | 205,000 | 205,000 | |
Poisson’s ratio | 0.29 | 0.29 | 0.29 | |
Yield strength (MPa) | 490 | 490 | 490 |
Undeformed Seal | Deformed Seal | Increment | |
---|---|---|---|
Type 1 | 3.272 | 4.969 | 1.697 (52%) |
Type 2 | 3.299 | 4.240 | 0.941 (29%) |
Type 3 | 0.057 | 0.059 | 0.002 (4%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, W.M.; Son, S.M.; Choi, D.K.; Lee, H.G.; Choi, C. Oil-Sealing Performance Evaluation of Labyrinth Seal Using Combined Finite Element Analysis and Computational Fluid Dynamics. Lubricants 2023, 11, 400. https://doi.org/10.3390/lubricants11090400
Park WM, Son SM, Choi DK, Lee HG, Choi C. Oil-Sealing Performance Evaluation of Labyrinth Seal Using Combined Finite Element Analysis and Computational Fluid Dynamics. Lubricants. 2023; 11(9):400. https://doi.org/10.3390/lubricants11090400
Chicago/Turabian StylePark, Won Man, Sung Man Son, Dae Kyung Choi, Hong Guk Lee, and Choengryul Choi. 2023. "Oil-Sealing Performance Evaluation of Labyrinth Seal Using Combined Finite Element Analysis and Computational Fluid Dynamics" Lubricants 11, no. 9: 400. https://doi.org/10.3390/lubricants11090400
APA StylePark, W. M., Son, S. M., Choi, D. K., Lee, H. G., & Choi, C. (2023). Oil-Sealing Performance Evaluation of Labyrinth Seal Using Combined Finite Element Analysis and Computational Fluid Dynamics. Lubricants, 11(9), 400. https://doi.org/10.3390/lubricants11090400