A Validated Computational Study of Lubricants under White Etching Crack Conditions Exposed to Electrical Fields
Abstract
:1. Introduction
2. Materials and Methods
- 3D drawing of the structure;
- Relaxed Structure by molecular mechanics with the QSPR output values (to the right);
- Energy relaxed structure starting from (B) by the use of PM3 calculation.
3. Results
4. Validation
5. Discussion
6. Conclusions
- Gear oils in general, raising the need to acquire components;
- A priori risk assessment for Drive Trains.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Smelova, V.; Schwedt, A.; Wang, L.; Holweger, W.; Mayer, J. Microstructural changes in White Etching Cracks (WECs) and their relationship with those in Dark Etching Region (DER) and White Etching Bands (WEBs) due to Rolling Contact Fatigue (RCF). Int. J. Fatigue 2017, 100, 148–158. [Google Scholar] [CrossRef]
- Holweger, W.; Wolf, M.; Merk, D.; Blass, T.; Goss, M.; Loos, J.; Barteldes, S.; Jakovics, A. White Etching Crack Root Cause Investigations. Tribol. Trans. 2015, 58, 59–69. [Google Scholar] [CrossRef]
- Gould, B.; Greco, A. Investigating the Process of White Etching Crack Initiation in Bearing Steel. Tribol. Lett. 2016, 62, 26. [Google Scholar] [CrossRef]
- Kruhöffer, W.; Loos, J. WEC Formation in Rolling Bearings under Mixed Friction: Influences and “Friction Energy Accumulation” as Indicator. Tribol. Trans. 2017, 60, 516–529. [Google Scholar] [CrossRef]
- Manieri, F.; Stadler, K.; Morales-Espejel, G.E.; Kadiric, A. The origins of white etching cracks and their significance to rolling bearing failures. Int. J. Fatigue 2019, 120, 107–133. [Google Scholar] [CrossRef]
- Richardson, A.D.; Evans, M.H.; Wang, L.; Wood, R.J.K.; Ingram, M.; Meuth, B. The Evolution of White Etching Cracks (WECs) in Rolling Contact Fatigue-Tested 100Cr6 Steel. Tribol. Lett. 2018, 66, 6. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.; Evans, M.-H.; Wang, L.; Ingram, M.; Rowland, Z.; Llanos, G.; Wood, R. The effect of over-based calcium sulfonate detergent additives on white etching crack (WEC) formation in rolling contact fatigue tested 100Cr6 steel. Tribol. Int. 2019, 133, 246–262. [Google Scholar] [CrossRef]
- López-Uruñuela, F.J.; Fernández-Díaz, B.; Pinedo, B.; Aguirrebeitia, J. Early stages of subsurface crack and WEC formation in 100Cr6 bearing steel under RCF and hydrogen influence. Int. J. Fatigue 2022, 155, 106587. [Google Scholar] [CrossRef]
- Ruellan, A.; Kleber, X.; Ville, F.; Cavoret, J.; Liatard, B. Understanding white etching cracks in rolling element bearings: Formation mechanisms and influent tribochemical drivers. Part J Proceedings of the Institution of Mechanical Engineers. J. Eng. Tribol. 2015, 229, 886–901. [Google Scholar]
- Loos, J.; Bergmann, I.; Goss, M. Influence of Currents from Electrostatic Charges on WEC Formation in Rolling Bearings. Tribol. Trans. 2016, 59, 865–875. [Google Scholar] [CrossRef]
- Loos, J.; Bergmann, I.; Goss, M. Influence of High Electrical Currents on WEC Formation in Rolling Bearings. Tribol. Trans. 2021, 64, 708–720. [Google Scholar] [CrossRef]
- Holweger, W.; Schwedt, A.; Rumpf, V.; Mayer, J.; Bohnert, C.; Wranik, J.; Spille, J.; Wang, L. A Study on Early Stages of White Etching Crack Formation under Full Lubrication Conditions. Lubricants 2022, 10, 24. [Google Scholar] [CrossRef]
- Higginson, D.; Dowson, G.R. A numerical solution to the elasto-hydrodynamic problem. J. Mech. Eng. Sci. 1959, 1, 6–15. [Google Scholar]
- Liran, M.A.; Luo, J. Thin film lubrication in the past 20 years. Friction 2016, 4, 280–302. [Google Scholar]
- Mathas, D.; Holweger, W.; Wolf, M.; Bohnert, C.; Bakolas, V.; Procelewska, J.; Wang, L.; Bair, S.; Skylaris, C.-K. Evaluation of Methods for Viscosity Simulations of Lubricants at Different Temperatures and Pressures: A Case Study on PAO-2. Tribol. Trans. 2021, 64, 1138–1148. [Google Scholar] [CrossRef]
- Fan, F.R.; Xie, S.; Wang, G.; Tian, Z. Tribocatalysis: Challenges and perspectives. Sci. China Chem. 2021, 64, 1609–1613. [Google Scholar] [CrossRef]
- Kajdas, C.; Furey, M.J.; Ritter, A.L.; Molina, G.J. Triboemission as a basic part of the boundary friction regime: A review. Lubr. Sci. 2002, 14, 223–254. [Google Scholar]
- Nakayama, K. Triboemission, Triboplasma Generation, and Tribochemistry. In Encyclopedia of Tribology; Chung, Q.J., Wang, Y.W., Eds.; Springer: Boston, MA, USA, 2013. [Google Scholar]
- Sun, J.; Wood, R.J.K.; Wang, L.; Care, I.; Powrie, H.E.G. Wear monitoring of bearing steel using electrostatic and acoustic emission techniques. Wear 2005, 259, 1482–1489. [Google Scholar] [CrossRef]
- Esmaeili, K.; Wang, L.; Terry, J.; Neil, M. White and Walter Holweger. Electrical Discharges in Oil-Lubricated Rolling Contacts and Their Detection Using Electrostatic Sensing Technique. Sensors 2022, 22, 392. [Google Scholar] [CrossRef] [PubMed]
- Esmaeili, K.; Zuercher, M.; Wang, L.; Harvey, T.; Holweger, W.; White, N.; Schlücker, E. A Study of White Etching Crack Bearing Failure Detection Using Electrostatic Sensing in Wind Turbine; WCM: London, UK, 2017; pp. 13–16. [Google Scholar]
- Wranik, J.; Holweger, W.; Lutz, T.; Albrecht, P.; Reichel, B.; Wang, L. A Study on Decisive Early Stages in White Etching Crack Formation Induced by Lubrication. Lubricants 2022, 10, 2022. [Google Scholar] [CrossRef]
- Spille, J.; Wranik, J.; Barteldes, S.; Mayer, J.; Schwedt, A.; Zürcher, M.; Lutz, T.; Wang, L.; Holweger, W. A study on the initiation processes of white etching cracks (WECs) in AISI 52100 bearing steel. Wear 2021, 477, 203864. [Google Scholar] [CrossRef]
- Esmaeili, K.; Zuercher, M.; Wang, L.; Harvey, T.; Holweger, W.W.; Neil, S.E. A study of white etching crack bearing failure detection using electrostatic sensing in wind turbine gearboxes. Int. J. Cond. Monit. 2018, 8, 82–88. [Google Scholar] [CrossRef]
- Diederichs, A.M.; Schwedt, A.; Mayer, J.; Dreifert, T. Electron microscopy analysis of structural changes within white etching areas. Mater. Sci. Technol. 2016, 32, 1683–1693. [Google Scholar] [CrossRef]
A | Poly-a-Olefine (ISO VG 46) | Baseoil |
B | Alkylated Napthalene | Baseoil and Adjuvant |
C | Di-ethylhexyl-Sebacate | Baseoil and Adjuvant |
D | Zinc-2-ethylhexyl-dithiophosphate | Anti Wear Additive |
E | Boronic Acid Ester | Anti Wear Additive |
F | Poly-methyl.methacrylate | Viscosity Improver |
G | Calcium-dodecylsulfonate, overbased | Corrosion Inhibitor |
H | Calcium-dodecylsulfonate, neutral | Corrosion Inhibitor |
I | Di-Cyclohexylamine | Corrosion Inhibitor |
Oil/Oil Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
PAO | x | x | x | x | x | x | x | ||
Alkylnaphtalene | x | ||||||||
ZndtP | x | x | x | x | x | ||||
Boronic Acid Ester | x | ||||||||
Ca-Sulfonate neutral | x | ||||||||
Ca-Sulfonate overbased | x | ||||||||
Polymethylmethacrylate | x | ||||||||
Dicyclohexylamine | x | x | |||||||
Perfluorinated Oil | x | ||||||||
WEC Predictor | 0 | 0 | 0.04 | 0 | 0.15 | 2.96 | 5.01 | 4.71 | 9.30 |
Reference result | [12] | [3] | [12] | [25] |
Oil | Purpose | Predictor | WEC | SIF/ Pitting | |
---|---|---|---|---|---|
Yes | No | ||||
L1 | R&D | 0 | x | x | |
L2 | R&D | 6.6 | x | ||
L3 | R&D | 0.15 | x | ||
L4 | R&D | 0.016 | x | ||
L5 | R&D | 0.007 | x | ||
L6 | R&D | 1.43 | x | ||
L7 | R&D | 4.7 | x | ||
L8 | R&D | 0.176 | x | ||
L9 | R&D | 5.01 | x | ||
L10 | R&D | 0 | |||
L11 | R&D | 0 | x | ||
L12 | R&D | 4.71 | x | ||
L13 | I | 7.6 | x | ||
L14 | I | 6.7 | x | ||
L15 | I | 6.06 | x | ||
L16 | R&D | 4.71 | |||
L17 | R&D | 4.71 | |||
L18 | R&D | 4.71 | x | ||
L19 | I | 0 | x | ||
L20 | I | 0.24 | x | ||
L21 | I | 0.86 | x | ||
L22 | I | 1.3 | x | ||
L23 | I | 5.82 | x | x | |
L24 | I | 2.81 | x | x | |
L25 | I | 0.992 | x | ||
L26 | I | 4.24 | x | ||
L27 | I | 3.85 | x | ||
L28 | I | 1.12 | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holweger, W.; Bobbio, L.; Mo, Z.; Fliege, J.; Goerlach, B.; Simon, B. A Validated Computational Study of Lubricants under White Etching Crack Conditions Exposed to Electrical Fields. Lubricants 2023, 11, 45. https://doi.org/10.3390/lubricants11020045
Holweger W, Bobbio L, Mo Z, Fliege J, Goerlach B, Simon B. A Validated Computational Study of Lubricants under White Etching Crack Conditions Exposed to Electrical Fields. Lubricants. 2023; 11(2):45. https://doi.org/10.3390/lubricants11020045
Chicago/Turabian StyleHolweger, Walter, Luigi Bobbio, Zhuoqiong Mo, Joerg Fliege, Bernd Goerlach, and Barbara Simon. 2023. "A Validated Computational Study of Lubricants under White Etching Crack Conditions Exposed to Electrical Fields" Lubricants 11, no. 2: 45. https://doi.org/10.3390/lubricants11020045
APA StyleHolweger, W., Bobbio, L., Mo, Z., Fliege, J., Goerlach, B., & Simon, B. (2023). A Validated Computational Study of Lubricants under White Etching Crack Conditions Exposed to Electrical Fields. Lubricants, 11(2), 45. https://doi.org/10.3390/lubricants11020045