Increase Service Life for Rail Wheel Bearings—A Review of Grease Lubrication for This Application
Abstract
:1. Introduction
2. Lubrication Fundamentals: Grease Composition and Bearing Lubrication
2.1. Grease Composition
- base oil
- thickener (matrix)
- additives
2.2. Lubrication in RBs
2.2.1. Basic Influence of Grease Properties on RB Lubrication
2.2.2. Lubrication in the Contact
2.3. Contact Grease Replenishment
- side flow of base oil due to capillary action
- intermittent flow of overrolled grease
2.4. Grease Induced RB Failure
- Insufficient lubricant is available
- Failure due to grease degradation
2.4.1. Grease Degradation in Bearings
2.5. Role of Additives and Base Oil Quality
3. Potential Ways to Improve Bearing Service Life by Enhancing Lubrication
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
API | American Petroleum Institute |
ASTM | American Society for Testing and Materials |
ISO | International Organization for Standardization |
RB | Rolling bearing |
PAO | Polyalphaolefins |
PFPE | Perfluoropolyethers |
PTFE | Polytetrafluoroethylene |
SEM | Scanning electron microscope |
NLGI | National Lubricating Grease Institute |
ZDDP | Zinc dithiophosphate |
References
- Allmaier, H.; Priestner, C.; Six, C.; Priebsch, H.; Forstner, C.; Novotny-Farkas, F. Predicting friction reliably and accurately in journal bearings—A systematic validation of simulation results with experimental measurements. Tribol. Int. 2011, 44, 1151–1160. [Google Scholar] [CrossRef]
- Sander, D.E.; Allmaier, H.; Priebsch, H.H.; Witt, M.; Skiadas, A. Simulation of journal bearing friction in severe mixed lubrication–Validation and effect of surface smoothing due to running-in. Tribol. Int. 2016, 96, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Sander, D.E.; Allmaier, H.; Priebsch, H.H. Friction and Wear in Automotive Journal Bearings Operating in Today’s Severe Conditions; IntechOpen: London, UK, 2016. [Google Scholar]
- Allmaier, H.; Priestner, C.; Sander, D.E.; Reich, F. Friction in Automotive Engines; IntechOpen: London, UK, 2013; pp. 149–184. [Google Scholar]
- Sander, D.E.; Allmaier, H. Starting and stopping behavior of worn journal bearings. Tribol. Int. 2018, 127, 478–488. [Google Scholar] [CrossRef]
- Allmaier, H.; Priestner, C.; Reich, F.M.; Priebsch, H.H.; Novotny-Farkas, F. Predicting friction reliably and accurately in journal bearings—Extending the EHD simulation model to TEHD. Tribol. Int. 2013, 58, 20–28. [Google Scholar] [CrossRef]
- Allmaier, H.; Sander, D.E. Piston-Pin rotation and lubrication. Lubricants 2020, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Morales-Espejel, G.E.; Lugt, P.M.; Pasaribu, H.; Cen, H. Film thickness in grease lubricated slow rotating rolling bearings. Tribol. Int. 2014, 74, 7–19. [Google Scholar] [CrossRef]
- Cann, P. Understanding grease lubrication. Tribol. Ser. 1996, 31, 573–581. [Google Scholar]
- Greenwood, J.A.; Tripp, J. The contact of two nominally flat rough surfaces. Proc. Inst. Mech. Eng. 1970, 185, 625–633. [Google Scholar] [CrossRef]
- Qiu, M.; Chen, L.; Li, Y.; Yan, J. Rolling Bearing Lubrication Theory; Springer: Berlin/Heidelberg, Germany, 2017; pp. 145–185. [Google Scholar]
- Rezasoltani, A.; Khonsari, M. On monitoring physical and chemical degradation and life estimation models for lubricating greases. Lubricants 2016, 4, 34. [Google Scholar] [CrossRef] [Green Version]
- Williams, T.; Ribadeneira, X.; Billington, S.; Kurfess, T. Rolling element bearing diagnostics in run-to-failure lifetime testing. Mech. Syst. Signal Process. 2001, 15, 979–993. [Google Scholar] [CrossRef]
- Ioannides, E. EHL in rolling element bearings, recent advances and the wider implications. Tribol. Ser. 1997, 32, 3–14. [Google Scholar]
- Lin, C.L.; Meehan, P.A. Morphological and elemental analysis of wear debris naturally formed in grease lubricated railway axle bearings. Wear 2021, 484, 203994. [Google Scholar] [CrossRef]
- Yokoyama, F. Optimization of grease properties to prolong the life of lubricating greases. J. Phys. Sci. Appl. 2014, 4, 236–247. [Google Scholar]
- Farcas, F.; Gafitanu, M. Some influence parameters on greases lubricated rolling contacts service life. Wear 1999, 225, 1004–1010. [Google Scholar] [CrossRef]
- Rhee, I. Precision Bearing Grease Selection Guide; Technical Report; The Defense Technical Information Center (DTIC) Document; The Defense Technical Information Center: Fort Belvoir, VA, USA, 2006. [Google Scholar]
- Komiya, H. Rolling Bearing Lubrication Technology Trends and R&D Efforts; Technical Report; JTEKT: Kariya, Japan, 2007. [Google Scholar]
- Fowzy, M. PFPE, A Unique Lubricant for a Unique Application; Technical Report; The Defense Technical Information Center (DTIC) Document; The Defense Technical Information Center: Fort Belvoir, VA, USA, 1998. [Google Scholar]
- HUSK-ITT. Applications and Benefits of Perfluoropolyether (PFPE) Lubricants; Technical Report; HUSKEY Specialty Lubricants: Norco, CA, USA, 2005. [Google Scholar]
- Wittel, H.; Muhs, D.; Jannasch, D.; Voßiek, J. Roloff/Matek Maschinenelemente; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Lugt, P. A review on grease lubrication in rolling bearings. Tribol. Trans. 2009, 52, 470–480. [Google Scholar] [CrossRef]
- Zhang, J.; Spikes, H. On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 2016, 63, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Bancroft, G.; Kasrai, M.; Fuller, M.; Yin, Z.; Fyfe, K.; Tan, K.H. Mechanisms of tribochemical film formation: Stability of tribo-and thermally-generated ZDDP films. Tribol. Lett. 1997, 3, 47–51. [Google Scholar] [CrossRef]
- Dawczyk, J.; Morgan, N.; Russo, J.; Spikes, H. Film thickness and friction of ZDDP tribofilms. Tribol. Lett. 2019, 67, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Stratmann, A.; Jacobs, G.; Hsu, C.J.; Gachot, C.; Burghardt, G. Antiwear tribofilm growth in rolling bearings under boundary lubrication conditions. Tribol. Int. 2017, 113, 43–49. [Google Scholar] [CrossRef]
- Evans, R.; Nixon, H.; Darragh, C.; Howe, J.; Coffey, D. Effects of extreme pressure additive chemistry on rolling element bearing surface durability. Tribol. Int. 2007, 40, 1649–1654. [Google Scholar] [CrossRef]
- Dresel, W.; Heckler, R. Lubricants, 8. Lubricating Greases. In Ullmann’s Encyclopedia of Industrial Chemistry; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Lugt, P.M. Grease Lubrication in Rolling Bearings; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Zhou, Y.; Bosman, R.; Lugt, P.M. An experimental study on film thickness in a rolling bearing for fresh and mechanically aged lubricating greases. Tribol. Trans. 2019, 62, 557–566. [Google Scholar] [CrossRef] [Green Version]
- Cann, P.; Webster, M.; Doner, J.; Wikstrom, V.; Lugt, P. Grease degradation in R0F bearing tests. Tribol. Trans. 2007, 50, 187–197. [Google Scholar] [CrossRef]
- Damiens, B.; Lubrecht, A.; Cann, P. Influence of Cage Clearance on Bearing Lubrication. Tribol. Trans. 2004, 47, 2–6. [Google Scholar] [CrossRef]
- Gershuni, L.; Larson, M.; Lugt, P. Lubricant replenishment in rolling bearing contacts. Tribol. Trans. 2008, 51, 643–651. [Google Scholar] [CrossRef]
- Cann, P.; Lubrecht, A. Bearing performance limits with grease lubrication: The interaction of bearing design, operating conditions and grease properties. J. Phys. D Appl. Phys. 2007, 40, 5446. [Google Scholar] [CrossRef]
- Li, X.; Guo, F.; Poll, G.; Fei, Y.; Yang, P. Grease film evolution in rolling elastohydrodynamic lubrication contacts. Friction 2021, 9, 179–190. [Google Scholar] [CrossRef]
- Zhou, Y. On the Mechanical Ageing of Lubricating Greases; University of Twente: Enschede, The Netherlands, 2018. [Google Scholar]
- Cann, P. Grease lubrication of rolling element bearings—Role of the grease thickener. Lubr. Sci. 2007, 19, 183–196. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, Y.; Chen, Y.; Xu, Z. Experimental Study on the Influence of Thickener Type on the Reflux Characteristics of Grease under Starved Lubrication. In Proceedings of the 2021 International Conference of Optical Imaging and Measurement (ICOIM), Xi’an, China, 27–29 August 2021; pp. 305–308. [Google Scholar]
- Lundberg, J. Grease lubrication of roller bearings in railway waggons. Part 1: Field tests and systematic evaluation to determine the optimal greases. Ind. Lubr. Tribol. 2000, 52, 36–44. [Google Scholar] [CrossRef]
- Cann, P.; Doner, J.; Webster, M.; Wikstrom, V. Grease degradation in rolling element bearings. Tribol. Trans. 2001, 44, 399–404. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, Y.; Wang, W. Influence of the cage on the migration and distribution of lubricating oil inside a ball bearing. Friction 2021, 1–11. [Google Scholar] [CrossRef]
- Mérieux, J.; Hurley, S.; Lubrecht, A.; Cann, P. Shear-degradation of grease and base oil availability in starved EHL lubrication. Tribol. Ser. 2000, 38, 581–588. [Google Scholar]
- Chevalier, F.; Lubrecht, A.; Cann, P.; Colin, F.; Dalmaz, G. Film thickness in starved EHL point contacts. J. Tribol. 1998, 120, 126–133. [Google Scholar] [CrossRef]
- Hibino, S.; Hosoya, T.; Nakamura, K.; Matsuoka, K.; Nagayama, T.; Kitamura, M.; Sunohara, T. A New Grease-Pocket Shape to Extend the Service Life of Grease. Tribol. Online 2008, 3, 54–58. [Google Scholar] [CrossRef]
- Zhou, Y.; Bosman, R.; Lugt, P.M. A master curve for the shear degradation of lubricating greases with a fibrous structure. Tribol. Trans. 2019, 62, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Lugt, P.M. On the application of the mechanical aging master curve for lubricating greases to rolling bearings. Tribol. Int. 2020, 141, 105918. [Google Scholar] [CrossRef]
- Zhou, Y.; Bosman, R.; Lugt, P.M. A model for shear degradation of lithium soap grease at ambient temperature. Tribol. Trans. 2018, 61, 61–70. [Google Scholar] [CrossRef]
- Lundberg, J.; Parida, A.; Söderholm, P. Running temperature and mechanical stability of grease as maintenance parameters of railway bearings. Int. J. Autom. Comput. 2010, 7, 160–166. [Google Scholar] [CrossRef]
- Booser, R.; Khonsari, M. Grease life in ball bearings: The effect of temperatures. Tribol. Lubr. Technol. 2010, 66, 36–44. [Google Scholar]
- Mikami, H. Development of Long Life Grease for High Speed Application ’ME-1’ Grease for Motor Bearings; NTN Technical Review; NTN: Osaka, Japan, 2004; pp. 20–25. [Google Scholar]
- Hurley, S.; Cann, P.; Spikes, H. Thermal Degradation of Greases and the Effect on Lubrication Performance; Tribology Series; Elsevier: Amsterdam, The Netherlands, 1998; Volume 34, pp. 75–83. [Google Scholar]
- Jin, X. The effect of contamination particles on lithium grease deterioration in sealed ball bearings. Lubr. Sci. 1995, 7, 233–245. [Google Scholar] [CrossRef]
- Ciekurs, P.V.; Rosenleib, J. Failure Progression Monitoring of Grease Lubricated Tapered Roller Bearings by Wear Debris Analysis; Technical Report; Naval Air Engineering Center, Support Equipment Engineering Department: Lakehurst, NJ, USA, 1982. [Google Scholar]
- Franke, E.; Poll, G. Service life and lubrication conditions of different grease types in high-speed rolling bearings. Tribol. Ser. 1999, 36, 601–609. [Google Scholar]
NLGI Number | Appearance | ASTM Worked Penetration (1/10 mm) | Application |
---|---|---|---|
000 | 445–475 | gear greases | |
00 | Semifluid | 400–430 | |
0 | 355–385 | ||
1 | Soft | 310–340 | |
2 | Creamy | 265–295 | greases for bearings |
3 | 220–250 | ||
4 | 175–205 | ||
5 | 130–160 | ||
6 | Soaplike | 85–115 | block greases |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allmaier, H. Increase Service Life for Rail Wheel Bearings—A Review of Grease Lubrication for This Application. Lubricants 2022, 10, 36. https://doi.org/10.3390/lubricants10030036
Allmaier H. Increase Service Life for Rail Wheel Bearings—A Review of Grease Lubrication for This Application. Lubricants. 2022; 10(3):36. https://doi.org/10.3390/lubricants10030036
Chicago/Turabian StyleAllmaier, Hannes. 2022. "Increase Service Life for Rail Wheel Bearings—A Review of Grease Lubrication for This Application" Lubricants 10, no. 3: 36. https://doi.org/10.3390/lubricants10030036
APA StyleAllmaier, H. (2022). Increase Service Life for Rail Wheel Bearings—A Review of Grease Lubrication for This Application. Lubricants, 10(3), 36. https://doi.org/10.3390/lubricants10030036