Characterisation of the Contact between Cross-Country Skis and Snow: A Macro-Scale Investigation of the Apparent Contact
Abstract
:1. Introduction
2. Theory
3. Method
3.1. Macro-Scale Measurement and Prediction
- The first block consists of a “Load-condition” layer that pre-processes the load condition inputs m and , and the output is then passed to the second block.
- The second block is designed to handle the ski collapse; thus, it requires both the x-coordinate and the output from the “Load-condition” block as the input. The block consists of 3 “Ski-collapse” layers which all employ the tansig transfer function.
- The third block, which governs the ski-camber processing, consists of two layers employing the tansig transfer function. This block only uses the x-coordinate as the input, making it independent of the loading condition.
- The fourth block is the “Prediction” block; it combines the output from the “Ski-collapse” block and the “Ski-camber” block to make the prediction. This block consists of a single layer which employs the pure-lin transfer function. The output from this block is the received y-coordinate of the ski-camber profile under the specified load-condition.
3.2. Meso-Scale Calculation
4. Results and Discussion
5. Conclusions
- The apparent contact area and the apparent contact pressure for a given loading condition can be calculated reliably using the present model.
- The simulated contact mechanical response of the skate ski shows that the apparent contact area of the front frictional interface splits into two different regions as the load increases.
- The simulated contact mechanical response of the classic ski shows that the ski camber collapses when the load is moved forward and that a part of the load is then carried inside the kick-wax zone, resulting in three load-carrying zones.
- The apparent contact area of the front frictional interface has a local maximum when the load is approximately half of the skier’s body weight and remains almost constant at higher loads.
- The average apparent contact pressure at both the rear and front frictional interfaces is minimal when the load is approximately half of the skier’s body weight.
- The steady increase in apparent contact area with increasing load limits the average apparent contact pressure at loads higher than half of the skier’s body weight to below 55 MPa, even with the stiffest “snow” conditions simulated (i.e., with = 400 MPa).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Elastic modulus of the ski base | Pa | |
Elastic modulus of the counter material | Pa | |
Equivalent elastic modulus | Pa | |
Poisson ratio | - | |
h | Ski-camber height | mm |
m | Load magnitude | kg |
Loading position | mm | |
x | x-coordinate | dm |
p | Apparent contact pressure | Pa |
References
- Bowden, F. The mechanism of sliding on ice and snow. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1939, 172, 280–298. [Google Scholar] [CrossRef]
- Eriksson, R. Friction of Runners on Snow and Ice. In Foreningen Skogsarbetens och Kungl. Domdnstyrelsens Arbetsstudieavdelning; University of California: Los Angeles, CA, USA, 1949; pp. 34–35. [Google Scholar]
- Bowden, F.P. Some Recent Experiments in Friction: Friction on Snow and Ice and the Development of some Fast-Running Skis. Nature 1955, 176, 946–947. [Google Scholar] [CrossRef]
- Glenne, B. Sliding Friction and Boundary Lubrication of Snow. J. Tribol. 1987, 109, 614–617. [Google Scholar] [CrossRef]
- Lehtovaara, A. Kinetic Friction Between Ski and Snow. Acta Polytechn. Scandinav. Mech. Eng. Series 1989, 93, 1–52. [Google Scholar]
- Bejan, A. The Fundamentals of Sliding Contact Melting and Friction. J. Heat Transf. 1989, 111, 13–20. [Google Scholar] [CrossRef]
- Bejan, A. Contact Melting Heat Transfer and Lubrication. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1994; Volume 24, pp. 1–38. [Google Scholar] [CrossRef]
- Makkonen, L. Application of a new friction theory to ice and snow. Ann. Glaciol. 1994, 19, 155–157. [Google Scholar] [CrossRef]
- Matveev, K.I. An analytical model for flat-ski friction in steady horizontal gliding. Sport. Eng. 2017, 20, 293–298. [Google Scholar] [CrossRef]
- Lever, J.H.; Taylor, S.; Hoch, G.R.; Daghlian, C. Evidence that abrasion can govern snow kinetic friction. J. Glaciol. 2019, 65, 68–84. [Google Scholar] [CrossRef] [Green Version]
- Lever, J.H.; Asenath-Smith, E.; Taylor, S.; Lines, A.P. Assessing the Mechanisms Thought to Govern Ice and Snow Friction and Their Interplay With Substrate Brittle Behavior. Front. Mech. Eng. 2021, 7, 690425. [Google Scholar] [CrossRef]
- Scherge, M.; Stoll, M.; Moseler, M. On the Influence of Microtopography on the Sliding Performance of Cross Country Skis. Front. Mech. Eng. 2021, 7, 659995. [Google Scholar] [CrossRef]
- Almqvist, A.; Pellegrini, B.; Lintzén, N.; Emami, N.; Holmberg, H.C.; Larsson, R. A Scientific Perspective on Reducing Ski-Snow Friction to Improve Performance in Olympic Cross-Country Skiing, the Biathlon and Nordic Combined. Front. Sport. Act. Living 2022, 4, 844883. [Google Scholar] [CrossRef]
- Persson, B.N.J. Elastoplastic Contact between Randomly Rough Surfaces. Phys. Rev. Lett. 2001, 87, 116101. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Tartaglino, U.; Persson, B.N. A multiscale molecular dynamics approach to contact mechanics. Eur. Phys. J. E 2006, 19, 47–58. [Google Scholar] [CrossRef] [Green Version]
- Persson, B. Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 2006, 61, 201–227. [Google Scholar] [CrossRef] [Green Version]
- Goryacheva, I.G. Multiscale Modelling in Contact Mechanics. In IUTAM Symposium on Scaling in Solid Mechanics; Borodich, F., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2009; pp. 123–134. [Google Scholar] [CrossRef]
- Yastrebov, V.A.; Anciaux, G.; Molinari, J.F. The role of the roughness spectral breadth in elastic contact of rough surfaces. J. Mech. Phys. Solids 2017, 107, 469–493. [Google Scholar] [CrossRef] [Green Version]
- Vakis, A.; Yastrebov, V.; Scheibert, J.; Nicola, L.; Dini, D.; Minfray, C.; Almqvist, A.; Paggi, M.; Lee, S.; Limbert, G.; et al. Modeling and Simulation in Tribology across Scales: An Overview. Tribol. Int. 2018, 125, 169–199. [Google Scholar] [CrossRef]
- Aramfard, M.; Pérez-Ràfols, F.; Nicola, L. A 2D dual-scale method to address contact problems. Tribol. Int. 2022, 171, 107509. [Google Scholar] [CrossRef]
- Bonari, J.; Paggi, M.; Dini, D. A New Finite Element Paradigm to Solve Contact Problems with Roughness. Int. J. Solids Struct. 2022, 253, 111643. [Google Scholar] [CrossRef]
- Bäurle, L.; Kaempfer, T.; Szabó, D.; Spencer, N. Sliding friction of polyethylene on snow and ice: Contact area and modeling. Cold Reg. Sci. Technol. 2007, 47, 276–289. [Google Scholar] [CrossRef]
- Mössner, M.; Hasler, M.; Nachbauer, W. Calculation of the contact area between snow grains and ski base. Tribol. Int. 2021, 163, 107183. [Google Scholar] [CrossRef]
- Bäckström, M.; Dahlen, L.; Tinnsten, M. Essential Ski Characteristics for Cross-Country Skis Performance (P251). In The Engineering of Sport 7; Springer: Paris, France, 2008; pp. 543–549. [Google Scholar] [CrossRef]
- Schindelwig, K.; Hasler, M.; Van Putten, J.; Rohm, S.; Nachbauer, W. Temperature Below a Gliding Cross Country Ski. Procedia Eng. 2014, 72, 380–385. [Google Scholar] [CrossRef] [Green Version]
- Kristiansen, P. Prototyping a Measurement Device for Evaluating the Performance of Cross-Country Skis Investigation of Pressure-Distribution. Master’s Thesis, University of Oslo, Oslo, Norway, 2019. [Google Scholar]
- Breitschädel, F. Effects of temperature change on cross-country ski characteristics. Procedia Eng. 2010, 2, 2913–2918. [Google Scholar] [CrossRef] [Green Version]
- Breitschädel, F. Variation of Nordic Classic Ski Characteristics from Norwegian national team athletes. Procedia Eng. 2012, 34, 391–396. [Google Scholar] [CrossRef] [Green Version]
- Kalliorinne, K. The influence of cross-country skiers’ tucking position on ski-camber profile, apparent contact area and the load partitioning. Part P J. Sport. Eng. Technol. 2022, 7. [Google Scholar]
- Pellegrini, B.; Stöggl, T.L.; Holmberg, H.C. Developments in the biomechanics and equipment of Olympic cross-country skiers. Front. Physiol. 2018, 9, 976. [Google Scholar] [CrossRef] [Green Version]
- Pellegrini, B.; Sandbakk, Ø.; Stöggl, T.; Supej, M.; Ørtenblad, N.; Schürer, A.; Steiner, T.; Lunina, A.; Manhard, C.; Liu, H.; et al. Methodological Guidelines Designed to Improve the Quality of Research on Cross-Country Skiing. J. Sci. Sport Exerc. 2021. [Google Scholar] [CrossRef]
- SkiSelector; SkiSelector Sportdata AB.: Piteå, Sweden, 2022.
- Speedmax 3D Classic/Skate; Fischer Sports GmbH.: Ried im Innkreis, Austria, 2020.
- MATLAB. 9.11.0 (R2021b); The MathWorks Inc.: Natick, MA, USA, 2021. [Google Scholar]
- Almqvist, A.; Sahlin, F.; Larsson, R.; Glavatskih, S. On the dry elasto-plastic contact of nominally flat surfaces. Tribol. Int. 2007, 40, 574–579. [Google Scholar] [CrossRef]
- Sahlin, F.; Larsson, R.; Almqvist, A.; Lugt, P.M.; Marklund, P. A mixed lubrication model incorporating measured surface topography. Part 1: Theory of flow factors. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2010, 224, 335–351. [Google Scholar] [CrossRef] [Green Version]
- Almqvist, A.; Campana, C.; Prodanov, N.; Persson, B.N.J. Interfacial Separation between Elastic Solids with Randomly Rough Surfaces: Comparison between Theory and Numerical Techniques. J. Mech. Phys. Solids 2011, 59, 2355–2369. [Google Scholar] [CrossRef]
- Ghaednia, H.; Wang, X.; Saha, S.; Xu, Y.; Sharma, A.; Jackson, R.L. A Review of Elastic–Plastic Contact Mechanics. Appl. Mech. Rev. 2017, 69, 060804. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.; Almqvist, A.; Persson, B.N.J. Plastic Deformation of Rough Metallic Surfaces. Tribol. Lett. 2020, 68. [Google Scholar] [CrossRef]
- Pérez-Ràfols, F.; Almqvist, A. On the Stiffness of Surfaces with Non-Gaussian Height Distribution. Sci. Rep. 2021, 11, 1863. [Google Scholar] [CrossRef]
- Kalliorinne, K.; Larsson, R.; Pérez-Ràfols, F.; Liwicki, M.; Almqvist, A. Artificial Neural Network Architecture for Prediction of Contact Mechanical Response. Front. Mech. Eng. 2021, 6, 579825. [Google Scholar] [CrossRef]
- Huang, D.; Yan, X.; Larsson, R.; Almqvist, A. Boundary Element Method for the Elastic Contact Problem with Hydrostatic Load at the Contact Interface. Appl. Surf. Sci. Adv. 2021, 6, 100176. [Google Scholar] [CrossRef]
- Lintzén, N.; Edeskär, T. Uniaxial Strength and Deformation Properties of Machine-Made Snow. J. Cold Reg. Eng. 2015, 29, 04014020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalliorinne, K.; Sandberg, J.; Hindér, G.; Larsson, R.; Holmberg, H.-C.; Almqvist, A. Characterisation of the Contact between Cross-Country Skis and Snow: A Macro-Scale Investigation of the Apparent Contact. Lubricants 2022, 10, 279. https://doi.org/10.3390/lubricants10110279
Kalliorinne K, Sandberg J, Hindér G, Larsson R, Holmberg H-C, Almqvist A. Characterisation of the Contact between Cross-Country Skis and Snow: A Macro-Scale Investigation of the Apparent Contact. Lubricants. 2022; 10(11):279. https://doi.org/10.3390/lubricants10110279
Chicago/Turabian StyleKalliorinne, Kalle, Joakim Sandberg, Gustav Hindér, Roland Larsson, Hans-Christer Holmberg, and Andreas Almqvist. 2022. "Characterisation of the Contact between Cross-Country Skis and Snow: A Macro-Scale Investigation of the Apparent Contact" Lubricants 10, no. 11: 279. https://doi.org/10.3390/lubricants10110279
APA StyleKalliorinne, K., Sandberg, J., Hindér, G., Larsson, R., Holmberg, H. -C., & Almqvist, A. (2022). Characterisation of the Contact between Cross-Country Skis and Snow: A Macro-Scale Investigation of the Apparent Contact. Lubricants, 10(11), 279. https://doi.org/10.3390/lubricants10110279