Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics
Abstract
:1. Introduction
2. Methods
2.1. Merger Simulations
2.2. Simulation of Jets and Cosmic Rays
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | http://gcmc.hub.yt (accessed on 1 November 2021) |
2 | https://arepo-code.org (accessed on 1 November 2021) |
3 | https://www.astropy.org (accessed on 1 November 2021) |
4 | https://matplotlib.org (accessed on 1 November 2021) |
5 | https://www.numpy.org (accessed on 1 November 2021) |
6 | https://yt-project.org (accessed on 1 November 2021) |
References
- van Weeren, R.J.; de Gasperin, F.; Akamatsu, H.; Brüggen, M.; Feretti, L.; Kang, H.; Stroe, A.; Zandanel, F. Diffuse Radio Emission from Galaxy Clusters. Space Sci. Rev. 2019, 215, 16. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Lazarian, A. Compressible turbulence in galaxy clusters: Physics and stochastic particle re-acceleration. Mon. Not. R. Astron. Soc. 2007, 378, 245–275. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, G.; Jones, T.W. Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission. Int. J. Mod. Phys. D 2014, 23, 1430007–98. [Google Scholar] [CrossRef] [Green Version]
- Pinzke, A.; Oh, S.P.; Pfrommer, C. Turbulence and particle acceleration in giant radio haloes: The origin of seed electrons. Mon. Not. R. Astron. Soc. 2017, 465, 4800–4816. [Google Scholar] [CrossRef] [Green Version]
- ZuHone, J.A.; Markevitch, M.; Brunetti, G.; Giacintucci, S. Turbulence and Radio Mini-halos in the Sloshing Cores of Galaxy Clusters. Astrophys. J. 2013, 762, 78. [Google Scholar] [CrossRef] [Green Version]
- Pfrommer, C.; Enßlin, T.A. Constraining the population of cosmic ray protons in cooling flow clusters with γ-ray and radio observations: Are radio mini-halos of hadronic origin? Astron. Astrophys. 2004, 413, 17–36. [Google Scholar] [CrossRef] [Green Version]
- Pfrommer, C.; Enßlin, T.A. Estimating galaxy cluster magnetic fields by the classical and hadronic minimum energy criterion. Mon. Not. R. Astron. Soc. 2004, 352, 76–90. [Google Scholar] [CrossRef] [Green Version]
- ZuHone, J.A.; Brunetti, G.; Giacintucci, S.; Markevitch, M. Testing Secondary Models for the Origin of Radio Mini-Halos in Galaxy Clusters. Astrophys. J. 2015, 801, 146. [Google Scholar] [CrossRef] [Green Version]
- Kempner, J.C.; Blanton, E.L.; Clarke, T.E.; Enßlin, T.A.; Johnston-Hollitt, M.; Rudnick, L. Conference Note: A Taxonomy of Extended Radio Sources in Clusters of Galaxies. In Proceedings of the Riddle of Cooling Flows in Galaxies and Clusters of Galaxies, Charlottesville, VA, USA, 31 May–4 June 2003; Reiprich, T., Kempner, J., Soker, N., Eds.; 2004; p. 335. Available online: http://www.astro.virginia.edu/coolflow/ (accessed on 29 October 2021).
- Macario, G.; Markevitch, M.; Giacintucci, S.; Brunetti, G.; Venturi, T.; Murray, S.S. A Shock Front in the Merging Galaxy Cluster A754: X-ray and Radio Observations. Astrophys. J. 2011, 728, 82. [Google Scholar] [CrossRef] [Green Version]
- Sarazin, C.L. The Energy Spectrum of Primary Cosmic-Ray Electrons in Clusters of Galaxies and Inverse Compton Emission. Astrophys. J. 1999, 520, 529–547. [Google Scholar] [CrossRef] [Green Version]
- Markevitch, M.; Govoni, F.; Brunetti, G.; Jerius, D. Bow Shock and Radio Halo in the Merging Cluster A520. Astrophys. J. 2005, 627, 733–738. [Google Scholar] [CrossRef]
- Pinzke, A.; Oh, S.P.; Pfrommer, C. Giant radio relics in galaxy clusters: Reacceleration of fossil relativistic electrons? Mon. Not. R. Astron. Soc. 2013, 435, 1061–1082. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Ryu, D. Re-acceleration Model for Radio Relics with Spectral Curvature. Astrophys. J. 2016, 823, 13. [Google Scholar] [CrossRef]
- Ogrean, G.A.; Brüggen, M.; Röttgering, H.; Simionescu, A.; Croston, J.H.; van Weeren, R.; Hoeft, M. XMM-Newton observations of the merging galaxy cluster CIZA J2242.8+5301. Mon. Not. R. Astron. Soc. 2013, 429, 2617–2633. [Google Scholar] [CrossRef] [Green Version]
- Ogrean, G.A.; Brüggen, M.; van Weeren, R.; Röttgering, H.; Simionescu, A.; Hoeft, M.; Croston, J.H. Multiple density discontinuities in the merging galaxy cluster CIZA J2242.8+5301. Mon. Not. R. Astron. Soc. 2014, 440, 3416–3425. [Google Scholar] [CrossRef]
- van Weeren, R.J.; Röttgering, H.J.A.; Brüggen, M.; Hoeft, M. Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster. Science 2010, 330, 347. [Google Scholar] [CrossRef] [Green Version]
- ZuHone, J.A.; Markevitch, M.; Weinberger, R.; Nulsen, P.; Ehlert, K. How Merger-driven Gas Motions in Galaxy Clusters Can Turn AGN Bubbles into Radio Relics. Astrophys. J. 2021, 914, 73. [Google Scholar] [CrossRef]
- Kulsrud, R.; Pearce, W.P. The Effect of Wave-Particle Interactions on the Propagation of Cosmic Rays. Astrophys. J. 1969, 156, 445. [Google Scholar] [CrossRef]
- Wiener, J.; Oh, S.P.; Guo, F. Cosmic ray streaming in clusters of galaxies. Mon. Not. R. Astron. Soc. 2013, 434, 2209–2228. [Google Scholar] [CrossRef] [Green Version]
- Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 2010, 401, 791–851. [Google Scholar] [CrossRef] [Green Version]
- Pakmor, R.; Springel, V. Simulations of magnetic fields in isolated disc galaxies. Mon. Not. R. Astron. Soc. 2013, 432, 176–193. [Google Scholar] [CrossRef] [Green Version]
- Marinacci, F.; Vogelsberger, M.; Pakmor, R.; Torrey, P.; Springel, V.; Hernquist, L.; Nelson, D.; Weinberger, R.; Pillepich, A.; Naiman, J.; et al. First results from the IllustrisTNG simulations: Radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 2018, 480, 5113–5139. [Google Scholar] [CrossRef] [Green Version]
- Ascasibar, Y.; Markevitch, M. The Origin of Cold Fronts in the Cores of Relaxed Galaxy Clusters. Astrophys. J. 2006, 650, 102–127. [Google Scholar] [CrossRef] [Green Version]
- ZuHone, J.A.; Markevitch, M.; Johnson, R.E. Stirring Up the Pot: Can Cooling Flows in Galaxy Clusters be Quenched by Gas Sloshing? Astrophys. J. 2010, 717, 908–928. [Google Scholar] [CrossRef] [Green Version]
- ZuHone, J.A.; Miller, E.D.; Simionescu, A.; Bautz, M.W. Simulating Astro-H Observations of Sloshing Gas Motions in the Cores of Galaxy Clusters. Astrophys. J. 2016, 821, 6. [Google Scholar] [CrossRef]
- ZuHone, J.A.; Miller, E.D.; Bulbul, E.; Zhuravleva, I. What Do the Hitomi Observations Tell Us About the Turbulent Velocities in the Perseus Cluster? Probing the Velocity Field with Mock Observations. Astrophys. J. 2018, 853, 180. [Google Scholar] [CrossRef] [Green Version]
- ZuHone, J.A.; Zavala, J.; Vogelsberger, M. Sloshing of Galaxy Cluster Core Plasma in the Presence of Self-interacting Dark Matter. Astrophys. J. 2019, 882, 119. [Google Scholar] [CrossRef]
- Brzycki, B.; ZuHone, J. A Parameter Space Exploration of Galaxy Cluster Mergers. II. Effects of Magnetic Fields. Astrophys. J. 2019, 883, 118. [Google Scholar] [CrossRef]
- Weinberger, R.; Ehlert, K.; Pfrommer, C.; Pakmor, R.; Springel, V. Simulating the interaction of jets with the intracluster medium. Mon. Not. R. Astron. Soc. 2017, 470, 4530–4546. [Google Scholar] [CrossRef]
- Pfrommer, C.; Pakmor, R.; Schaal, K.; Simpson, C.M.; Springel, V. Simulating cosmic ray physics on a moving mesh. Mon. Not. R. Astron. Soc. 2017, 465, 4500–4529. [Google Scholar] [CrossRef] [Green Version]
- Ehlert, K.; Weinberger, R.; Pfrommer, C.; Pakmor, R.; Springel, V. Simulations of the dynamics of magnetized jets and cosmic rays in galaxy clusters. Mon. Not. R. Astron. Soc. 2018, 481, 2878–2900. [Google Scholar] [CrossRef]
- Perucho, M.; Martí, J.M. A numerical simulation of the evolution and fate of a Fanaroff-Riley type I jet. The case of 3C 31. Mon. Not. R. Astron. Soc. 2007, 382, 526–542. [Google Scholar] [CrossRef] [Green Version]
- Wiener, J.; Pfrommer, C.; Oh, S.P. Cosmic ray-driven galactic winds: Streaming or diffusion? Mon. Not. R. Astron. Soc. 2017, 467, 906–921. [Google Scholar] [CrossRef] [Green Version]
- Pakmor, R.; Pfrommer, C.; Simpson, C.M.; Kannan, R.; Springel, V. Semi-implicit anisotropic cosmic ray transport on an unstructured moving mesh. Mon. Not. R. Astron. Soc. 2016, 462, 2603–2616. [Google Scholar] [CrossRef] [Green Version]
- Desiati, P.; Zweibel, E.G. The Transport of Cosmic Rays Across Magnetic Fieldlines. Astrophys. J. 2014, 791, 51. [Google Scholar] [CrossRef] [Green Version]
- Pfrommer, C. Toward a Comprehensive Model for Feedback by Active Galactic Nuclei: New Insights from M87 Observations by LOFAR, Fermi, and H.E.S.S. Astrophys. J. 2013, 779, 10. [Google Scholar] [CrossRef] [Green Version]
- Kempski, P.; Quataert, E. Thermal instability of halo gas heated by streaming cosmic rays. Mon. Not. R. Astron. Soc. 2020, 493, 1801–1817. [Google Scholar] [CrossRef] [Green Version]
- ZuHone, J.A.; Kowalik, K.; Öhman, E.; Lau, E.; Nagai, D. The Galaxy Cluster Merger Catalog: An Online Repository of Mock Observations from Simulated Galaxy Cluster Mergers. Astrophys. J. Suppl. Ser. 2018, 234, 4. [Google Scholar] [CrossRef] [Green Version]
- Astropy Collaboration; Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M.; et al. Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef]
- Hunter, J.D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
- Harris, C.R.; Millman, K.J.; van der Walt, S.J.; Gommers, R.; Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith, N.J.; et al. Array programming with NumPy. Nature 2020, 585, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Turk, M.J.; Smith, B.D.; Oishi, J.S.; Skory, S.; Skillman, S.W.; Abel, T.; Norman, M.L. yt: A Multi-code Analysis Toolkit for Astrophysical Simulation Data. Astrophys. J. 2011, 192, 9. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ZuHone, J.; Ehlert, K.; Weinberger, R.; Pfrommer, C. Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics. Galaxies 2021, 9, 91. https://doi.org/10.3390/galaxies9040091
ZuHone J, Ehlert K, Weinberger R, Pfrommer C. Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics. Galaxies. 2021; 9(4):91. https://doi.org/10.3390/galaxies9040091
Chicago/Turabian StyleZuHone, John, Kristian Ehlert, Rainer Weinberger, and Christoph Pfrommer. 2021. "Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics" Galaxies 9, no. 4: 91. https://doi.org/10.3390/galaxies9040091
APA StyleZuHone, J., Ehlert, K., Weinberger, R., & Pfrommer, C. (2021). Turning AGN Bubbles into Radio Relics with Sloshing: Modeling CR Transport with Realistic Physics. Galaxies, 9(4), 91. https://doi.org/10.3390/galaxies9040091