Multi-Wavelength Study of a Proto-BCG at z = 1.7
Abstract
:1. Introduction
The J1030 Protocluster: Summary of Previous Results
2. Observations and Data Reduction
2.1. Broadband Optical/IR Photometry
2.2. ALMA Photometry
2.3. JVLA Observations of Polarized Emission
2.3.1. Instrumental Calibration
2.3.2. Polarization Calibration
3. Results and Discussion
3.1. SED Fitting: A Proto-BCG Caught at the Peak of Its Stellar Mass Building
3.2. Continuum Emission at 3.3 mm
3.3. Polarized Emission at 1.4 GHz: Signatures of AGN Feedback?
4. Conclusions
- -
- Thanks to the SED fitting performed in the IR–mm band, we measured the physical parameters of the FRII host galaxy. From the best-fitting model we measured an AGN bolometric luminosity of erg/s and a IR luminosity of (24% of which ascribed to the AGN), and a stellar mass of . The SFR corresponding to the AGN-subtracted IR luminosity is ∼570 /yr. The SED-fitting bolometric AGN luminosity is consistent (×2.5) with the X-ray-derived bolometric luminosity found by [15], given the large uncertainties involved. Considering the redshift of the source, the high sSFR = unveils that the galaxy is experiencing a starburst phase in which it is assembling most of its final stellar mass. This represents a rare example of a proto-BCG caught in one of the most crucial phases of its building-up.
- -
- The flux density at 3.3 mm, measured with ALMA in the FRII core, is nicely in agreement (1) with the dust thermal emission expected from the best SED-fitting model, and is significantly higher (×1.8–13.7) than the expected SFR non-thermal emission as inferred from the 1.4 GHz emission. These findings strongly argue for a dominant thermal emission at the basis of the observed ALMA flux density. However, due to the large uncertainties in the derived quantities and exploited relations, a minor non-thermal contribution cannot be completely ruled out.
- -
- We detected polarized emission at 1.4 GHz in both FRII lobes. Both the eastern and western spots feature a fractional polarization of 10–20% and a magnetic field perpendicular to the jet, as is typically found for classical FRII. In general, we found an increased polarization fraction in the regions where the total intensity shows a bending morphology, and a magnetic field orientation that seems to follow the direction of the bendings. Coupled with the X-ray diffuse emission detected in several spots around the FRII lobes (in part ascribed to shock-heated ICM, see [15]), we interpret these features as possible signatures of compression produced by the external ICM. This strengthens the hypothesis of the positive AGN feedback scenario, wherein the AGN is responsible for the ICM heating, and also, possibly, for the SFR enhancement in the SFGs located at the edge of the major component of the X-ray diffuse emission around the eastern lobe (see also [15,16]).Further observations at higher sensitivities of the polarized emission will ultimately disclose the mechanisms at the origin of the observed features of the structure, and probe how AGN feedback affects the thermodynamics of the ICM in this early structure and the physical properties of its member galaxies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Antonuccio-Delogu, V.; Silk, J. Active galactic nuclei jet-induced feedback in galaxies—I. Suppression of star formation. MNRAS 2008, 389, 1750–1762. [Google Scholar] [CrossRef] [Green Version]
- Gaibler, V.; Khochfar, S.; Krause, M.; Silk, J. Jet-induced star formation in gas-rich galaxies. MNRAS 2012, 425, 438–449. [Google Scholar] [CrossRef] [Green Version]
- Salomé, Q.; Salomé, P.; Combes, F.; Hamer, S. Atomic-to-molecular gas phase transition triggered by the radio jet in Centaurus A. Astron. Astrophys. 2016, 595, A65. [Google Scholar] [CrossRef] [Green Version]
- Gruppioni, C.; Pozzi, F.; Zamorani, G.; Vignali, C. Modelling galaxy and AGN evolution in the infrared: Black hole accretion versus star formation activity. MNRAS 2011, 416, 70–86. [Google Scholar] [CrossRef] [Green Version]
- Delvecchio, I.; Gruppioni, C.; Pozzi, F.; Berta, S.; Zamorani, G.; Cimatti, A.; Lutz, D.; Scott, D.; Vignali, C.; Cresci, G.; et al. Tracing the cosmic growth of supermassive black holes to z∼3 with Herschel. MNRAS 2014, 439, 2736–2754. [Google Scholar] [CrossRef] [Green Version]
- Rodighiero, G.; Brusa, M.; Daddi, E.; Negrello, M.; Mullaney, J.R.; Delvecchio, I.; Lutz, D.; Renzini, A.; Franceschini, A.; Baronchelli, I.; et al. Relationship between Star Formation Rate and Black Hole Accretion At Z = 2: The Different Contributions in Quiescent, Normal, and Starburst Galaxies. Astrophys. J. 2015, 800, L10. [Google Scholar] [CrossRef] [Green Version]
- Venemans, B.P.; Röttgering, H.J.A.; Miley, G.K.; van Breugel, W.J.M.; de Breuck, C.; Kurk, J.D.; Pentericci, L.; Stanford, S.A.; Overzier, R.A.; Croft, S.; et al. Protoclusters associated with z > 2 radio galaxies. I. Characteristics of high redshift protoclusters. Astron. Astrophys. 2007, 461, 823–845. [Google Scholar] [CrossRef] [Green Version]
- Miley, G.; De Breuck, C. Distant radio galaxies and their environments. Astron. Astrophys. Rev. 2008, 15, 67–144. [Google Scholar] [CrossRef] [Green Version]
- Chiaberge, M.; Capetti, A.; Macchetto, F.D.; Rosati, P.; Tozzi, P.; Tremblay, G.R. Three Candidate Clusters of Galaxies at Redshift ~1.8: The “Missing Link” Between Protoclusters and Local Clusters? Astrophys. J. Lett. 2010, 710, L107–L110. [Google Scholar] [CrossRef] [Green Version]
- Fragile, P.C.; Anninos, P.; Croft, S.; Lacy, M.; Witry, J.W.L. Numerical Simulations of a Jet-Cloud Collision and Starburst: Application to Minkowski’s Object. Astrophys. J. 2017, 850, 171. [Google Scholar] [CrossRef] [Green Version]
- Overzier, R.A. The realm of the galaxy protoclusters. A review. Astron. Astrophys. 2016, 24, 14. [Google Scholar] [CrossRef]
- Fan, X.; Narayanan, V.K.; Lupton, R.H.; Strauss, M.A.; Knapp, G.R.; Becker, R.H.; White, R.L.; Pentericci, L.; Leggett, S.K.; Haiman, Z.; et al. A Survey of z > 5.8 Quasars in the Sloan Digital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of Luminous Quasars at z~6. Astron. J. 2001, 122, 2833–2849. [Google Scholar] [CrossRef]
- Fanaroff, B.L.; Riley, J.M. The morphology of extragalactic radio sources of high and low luminosity. MNRAS 1974, 167, 31P–36P. [Google Scholar] [CrossRef] [Green Version]
- Condon, J.J.; Cotton, W.D.; Greisen, E.W.; Yin, Q.F.; Perley, R.A.; Taylor, G.B.; Broderick, J.J. The NRAO VLA Sky Survey. Astron. J. 1998, 115, 1693–1716. [Google Scholar] [CrossRef]
- Gilli, R.; Mignoli, M.; Peca, A.; Nanni, R.; Prandoni, I.; Liuzzo, E.; D’Amato, Q.; Brusa, M.; Calura, F.; Caminha, G.B.; et al. Discovery of a galaxy overdensity around a powerful, heavily obscured FRII radio galaxy at z = 1.7: Star formation promoted by large-scale AGN feedback? Astron. Astrophys. 2019, 632, A26. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, Q.; Gilli, R.; Prandoni, I.; Vignali, C.; Massardi, M.; Mignoli, M.; Cucciati, O.; Morishita, T.; Decarli, R.; Brusa, M.; et al. Discovery of molecular gas fueling galaxy growth in a protocluster at z = 1.7. Astron. Astrophys. 2020, 641, L6. [Google Scholar] [CrossRef]
- D’Amato, Q.; Prandoni, I.; Gilli, R.; Vignali, C.; Liuzzo, E.; Mignoli, M.; Marchesi, S.; Peca, A.; Chiaberge, M.; Norman, C.; et al. Deep 1.4 GHz Catalogue of the J1030 Equatorial Field: A New Window on the Early Stages of the Universe. Astron. Astrophys. submitted. Available online: http://j1030-field.oas.inaf.it/publications.htm (accessed on 6 December 2021).
- De Ruiter, H.R.; Parma, P.; Fanti, C.; Fanti, R. VLA observations of low luminosity radio galaxies. VII—General properties. Astron. Astrophys. 1990, 227, 351–361. [Google Scholar]
- Brienza, M.; Gilli, R.; Prandoni, I.; D’Amato, Q.; Vignali, C.; Mignoli, M.; Peca, A.; Marchesi, S.; Liuzzo, E.; Norman, C.; et al. LOFAR Observations of the Giant FRII Radio Quasar J103025+052430 at the Centre of a Protocluster at z = 1.7. Astron. Astrophys. (in press).
- Collaboration, P.; Ade, P.A.R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A.J.; Barreiro, R.B.; Bartlett, J.G.; et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef] [Green Version]
- Gawiser, E.; van Dokkum, P.G.; Herrera, D.; Maza, J.; Castander, F.J.; Infante, L.; Lira, P.; Quadri, R.; Toner, R.; Treister, E.; et al. The Multiwavelength Survey by Yale-Chile (MUSYC): Survey Design and Deep Public UBVRI z ′ Images and Catalogs of the Extended Hubble Deep Field–South. Astrophys. J. Suppl. Ser. 2006, 162, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Blanc, G.A.; Lira, P.; Barrientos, L.F.; Aguirre, P.; Francke, H.; Taylor, E.N.; Quadri, R.; Marchesini, D.; Infante, L.; Gawiser, E.; et al. The Multiwavelength Survey by Yale-Chile (MUSYC): Wide K-Band Imaging, Photometric Catalogs, Clustering, and Physical Properties of Galaxies at z~2. Astrophys. J. 2008, 681, 1099–1115. [Google Scholar] [CrossRef] [Green Version]
- Balmaverde, B.; Gilli, R.; Mignoli, M.; Bolzonella, M.; Brusa, M.; Cappelluti, N.; Comastri, A.; Sani, E.; Vanzella, E.; Vignali, C.; et al. Primordial environment of supermassive black holes. II. Deep Y- and J-band images around the z 6.3 quasar SDSS J1030+0524. Astron. Astrophys. 2017, 606, A23. [Google Scholar] [CrossRef] [Green Version]
- Annunziatella, M.; Marchesini, D.; Stefanon, M.; Muzzin, A.; Lange-Vagle, D.; Cybulski, R.; Labbe, I.; Kado-Fong, E.; Bezanson, R.; Brammer, G.; et al. Complete IRAC Mapping of the CFHTLS-DEEP, MUSYC, and NMBS-II Fields. PASP 2018, 130, 124501. [Google Scholar] [CrossRef] [Green Version]
- Leipski, C.; Meisenheimer, K.; Walter, F.; Klaas, U.; Dannerbauer, H.; De Rosa, G.; Fan, X.; Haas, M.; Krause, O.; Rix, H.W. Spectral Energy Distributions of QSOs at z > 5: Common Active Galactic Nucleus-heated Dust and Occasionally Strong Star-formation. Astrophys. J. 2014, 785, 154. [Google Scholar] [CrossRef] [Green Version]
- Stiavelli, M.; Djorgovski, S.G.; Pavlovsky, C.; Scarlata, C.; Stern, D.; Mahabal, A.; Thompson, D.; Dickinson, M.; Panagia, N.; Meylan, G. Evidence of Primordial Clustering around the QSO SDSS J1030+0524 at z = 6.28. Astrophys. J. 2005, 622, L1–L4. [Google Scholar] [CrossRef]
- Quadri, R.; Marchesini, D.; van Dokkum, P.; Gawiser, E.; Franx, M.; Lira, P.; Rudnick, G.; Urry, C.M.; Maza, J.; Kriek, M.; et al. The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Near-Infrared Imaging and the Selection of Distant Galaxies. Astron. J. 2007, 134, 1103–1117. [Google Scholar] [CrossRef] [Green Version]
- Zeballos, M.; Aretxaga, I.; Hughes, D.H.; Humphrey, A.; Wilson, G.W.; Austermann, J.; Dunlop, J.S.; Ezawa, H.; Ferrusca, D.; Hatsukade, B.; et al. AzTEC 1.1 mm observations of high-z protocluster environments: SMG overdensities and misalignment between AGN jets and SMG distribution. MNRAS 2018, 479, 4577–4632. [Google Scholar] [CrossRef] [Green Version]
- McMullin, J.P.; Waters, B.; Schiebel, D.; Young, W.; Golap, K. CASA architecture and applications. In Astronomical Data Analysis Software and Systems XVI; Shaw, R.A., Hill, F., Bell, D.J., Eds.; Astronomical Society of the Pacific Conference Series; Astronomical Society of the Pacific: San Francisco, CA, USA, 2007; Volume 376, p. 127. [Google Scholar]
- D’Amato, Q.; Gilli, R.; Vignali, C.; Massardi, M.; Pozzi, F.; Zamorani, G.; Circosta, C.; Vito, F.; Fritz, J.; Cresci, G.; et al. Dust and gas content of high-redshift galaxies hosting obscured AGN in the CDF-S. Astron. Astrophys. 2020, 636, A37. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.R.; Stil, J.M.; Sunstrum, C. A Rotation Measure Image of the Sky. Astrophys. J. 2009, 702, 1230–1236. [Google Scholar] [CrossRef] [Green Version]
- George, S.J.; Stil, J.M.; Keller, B.W. Detection Thresholds and Bias Correction in Polarized Intensity. PASA 2012, 29, 214–220. [Google Scholar] [CrossRef] [Green Version]
- Fritz, J.; Franceschini, A.; Hatziminaoglou, E. Revisiting the infrared spectra of active galactic nuclei with a new torus emission model. MNRAS 2006, 366, 767–786. [Google Scholar] [CrossRef]
- Feltre, A.; Hatziminaoglou, E.; Fritz, J.; Franceschini, A. Smooth and clumpy dust distributions in AGN: A direct comparison of two commonly explored infrared emission models. MNRAS 2012, 426, 120–127. [Google Scholar] [CrossRef]
- Circosta, C.; Vignali, C.; Gilli, R.; Feltre, A.; Vito, F.; Calura, F.; Mainieri, V.; Massardi, M.; Norman, C. X-ray emission of z > 2.5 active galactic nuclei can be obscured by their host galaxies. Astron. Astrophys. 2019, 623, A172. [Google Scholar] [CrossRef]
- Conley, A.; Cooray, A.; Vieira, J.D.; González Solares, E.A.; Kim, S.; Aguirre, J.E.; Amblard, A.; Auld, R.; Baker, A.J.; Beelen, A.; et al. Discovery of a Multiply Lensed Submillimeter Galaxy in Early HerMES Herschel/SPIRE Data. Astrophys. J. Lett. 2011, 732, L35. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Jullo, E.; Cooray, A.; Bussmann, R.S.; Ivison, R.J.; Pérez-Fournon, I.; Djorgovski, S.G.; Scoville, N.; Yan, L.; Riechers, D.A.; et al. A Comprehensive View of a Strongly Lensed Planck-Associated Submillimeter Galaxy. Astrophys. J. 2012, 753, 134. [Google Scholar] [CrossRef] [Green Version]
- Riechers, D.A.; Bradford, C.M.; Clements, D.L.; Dowell, C.D.; Pérez-Fournon, I.; Ivison, R.J.; Bridge, C.; Conley, A.; Fu, H.; Vieira, J.D.; et al. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34. Nature 2013, 496, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Gilli, R.; Norman, C.; Vignali, C.; Vanzella, E.; Calura, F.; Pozzi, F.; Massardi, M.; Mignano, A.; Casasola, V.; Daddi, E.; et al. ALMA reveals a warm and compact starburst around a heavily obscured supermassive black hole at z = 4.75. Astron. Astrophys. 2014, 562, A67. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, N.; Maloney, P.R.; Glenn, J.; Wilson, C.D.; Rykala, A.; Isaak, K.; Baes, M.; Bendo, G.J.; Boselli, A.; Bradford, C.M.; et al. Observations of Arp 220 Using Herschel-SPIRE: An Unprecedented View of the Molecular Gas in an Extreme Star Formation Environment. Astron. Astrophys. 2011, 743, 94. [Google Scholar] [CrossRef] [Green Version]
- Padovani, P.; Alexander, D.M.; Assef, R.J.; De Marco, B.; Giommi, P.; Hickox, R.C.; Richards, G.T.; Smolčić, V.; Hatziminaoglou, E.; Mainieri, V.; et al. Active galactic nuclei: What’s in a name? Astron. Astrophys. Rev. 2017, 25, 2. [Google Scholar] [CrossRef] [Green Version]
- Kennicutt, R.C., Jr. The Global Schmidt Law in Star-forming Galaxies. Astrophys. J. 1998, 498, 541–552. [Google Scholar] [CrossRef] [Green Version]
- Duras, F.; Bongiorno, A.; Ricci, F.; Piconcelli, E.; Shankar, F.; Lusso, E.; Bianchi, S.; Fiore, F.; Maiolino, R.; Marconi, A.; et al. Universal bolometric corrections for active galactic nuclei over seven luminosity decades. Astron. Astrophys. 2020, 636, A73. [Google Scholar] [CrossRef]
- Lusso, E.; Comastri, A.; Simmons, B.D.; Mignoli, M.; Zamorani, G.; Vignali, C.; Brusa, M.; Shankar, F.; Lutz, D.; Trump, J.R.; et al. Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey. MNRAS 2012, 425, 623–640. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, C.; Pannella, M.; Elbaz, D.; Béthermin, M.; Inami, H.; Dickinson, M.; Magnelli, B.; Wang, T.; Aussel, H.; Daddi, E.; et al. The Herschel view of the dominant mode of galaxy growth from z = 4 to the present day. Astron. Astrophys. 2015, 575, A74. [Google Scholar] [CrossRef] [Green Version]
- Lapi, A.; Pantoni, L.; Zanisi, L.; Shi, J.; Mancuso, C.; Massardi, M.; Shankar, F.; Bressan, A.; Danese, L. The Dramatic Size and Kinematic Evolution of Massive Early-type Galaxies. Astrophys. J. 2018, 857, 22. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. MNRAS 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Maraschi, L.; Celotti, A.; Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 2014, 515, 376–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delvecchio, I.; Daddi, E.; Sargent, M.T.; Jarvis, M.J.; Elbaz, D.; Jin, S.; Liu, D.; Whittam, I.H.; Algera, H.; Carraro, R.; et al. The infrared-radio correlation of star-forming galaxies is strongly M☆-dependent but nearly redshift-invariant since z∼4. Astron. Astrophys. 2021, 647, A123. [Google Scholar] [CrossRef]
- Giovannini, G.; Cotton, W.D.; Feretti, L.; Lara, L.; Venturi, T. VLBI Observations of a Complete Sample of Radio Galaxies: 10 Years Later. Astrophys. J. 2001, 552, 508–526. [Google Scholar] [CrossRef] [Green Version]
- Ruffa, I.; Prandoni, I.; Laing, R.A.; Paladino, R.; Parma, P.; de Ruiter, H.; Mignano, A.; Davis, T.A.; Bureau, M.; Warren, J. The AGN fuelling/feedback cycle in nearby radio galaxies I. ALMA observations and early results. MNRAS 2019, 484, 4239–4259. [Google Scholar] [CrossRef] [Green Version]
- Parma, P.; Morganti, R.; Capetti, A.; Fanti, R.; de Ruiter, H.R. Polarization properties at 1.4 GHz of low luminosity radio galaxies. Astron. Astrophys. 1993, 267, 31–38. [Google Scholar]
- Muxlow, T.W.B.; Garrington, S.T. Observations of large scale extragalactic jets. In Beams and Jets in Astrophysics; Cambridge University Press & Assessment: Cambridge, UK, 1991; Volume 19, p. 52. [Google Scholar]
- Pentericci, L.; Van Reeven, W.; Carilli, C.L.; Röttgering, H.J.A.; Miley, G.K. VLA radio continuum observations of a new sample of high redshift radio galaxies. Astron. Astrophys. Suppl. Ser. 2000, 145, 121–159. [Google Scholar] [CrossRef]
- Saikia, D.J.; Salter, C.J. Polarization properties of extragalactic radio sources. Annu. Rev. Astron. Astrophys. 1988, 26, 93–144. [Google Scholar] [CrossRef]
[m] | [Jy] | Instrument | Reference |
---|---|---|---|
0.9 | HST/ACS | [26], reanalyzed in [16] | |
1.2 | CFHT/WIRCam | [23] (reanalyzed) | |
2.1 | CTIO/ISPI | [27], reanalyzed in [15] | |
3.5 | Spitzer/IRAC | [24] (reanalyzed, see also [23]) | |
4.5 | Spitzer/IRAC | ” | |
5.7 | Spitzer/IRAC | ” | |
7.8 | Spitzer/IRAC | ” | |
23.5 | Spitzer/MIPS | IRSA archive | |
105.4 | Herschel/PACS | [25] | |
169.5 | <30,000 | Herschel/PACS | ” |
246.7 | 33,400 ± 9800 | Herschel/SPIRE | ” |
348.7 | 43,600 ± 12,600 | Herschel/SPIRE | ” |
495.3 | 36,100 ± 15,000 | Herschel/SPIRE | ” |
1120.5 | AzTEC | [28] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Amato, Q.; Prandoni, I.; Brienza, M.; Gilli, R.; Vignali, C.; Paladino, R.; Loi, F.; Massardi, M.; Mignoli, M.; Marchesi, S.; et al. Multi-Wavelength Study of a Proto-BCG at z = 1.7. Galaxies 2021, 9, 115. https://doi.org/10.3390/galaxies9040115
D’Amato Q, Prandoni I, Brienza M, Gilli R, Vignali C, Paladino R, Loi F, Massardi M, Mignoli M, Marchesi S, et al. Multi-Wavelength Study of a Proto-BCG at z = 1.7. Galaxies. 2021; 9(4):115. https://doi.org/10.3390/galaxies9040115
Chicago/Turabian StyleD’Amato, Quirino, Isabella Prandoni, Marisa Brienza, Roberto Gilli, Cristian Vignali, Rosita Paladino, Francesca Loi, Marcella Massardi, Marco Mignoli, Stefano Marchesi, and et al. 2021. "Multi-Wavelength Study of a Proto-BCG at z = 1.7" Galaxies 9, no. 4: 115. https://doi.org/10.3390/galaxies9040115
APA StyleD’Amato, Q., Prandoni, I., Brienza, M., Gilli, R., Vignali, C., Paladino, R., Loi, F., Massardi, M., Mignoli, M., Marchesi, S., Peca, A., & Jagannathan, P. (2021). Multi-Wavelength Study of a Proto-BCG at z = 1.7. Galaxies, 9(4), 115. https://doi.org/10.3390/galaxies9040115