Electromagnetic Precursors of Short Gamma-Ray Bursts as Counterparts of Gravitational Waves
Abstract
:1. Introduction
2. Precursor Models
2.1. Pre-Merger Models
2.1.1. Magnetospheric Interactions of NS–NS/BH Binaries
2.1.2. NS Crust Crack Model
2.2. Post-Merger Models
SBO Model
3. Observational Results
4. Discussion and Prospects
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Multi-messenger Observations of a Binary Neutron Star Merger. Astrophys. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astrophys. J. Lett. 2017, 848, L14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.B.; Zhang, B.; Sun, H.; Lei, W.H.; Gao, H.; Li, Y.; Shao, L.; Zhao, Y.; Hu, Y.D.; Lü, H.J.; et al. A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor. Nat. Commun. 2018, 9, 447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astrophys. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Coulter, D.A.; Foley, R.J.; Kilpatrick, C.D.; Drout, M.R.; Piro, A.L.; Shappee, B.J.; Siebert, M.R.; Simon, J.D.; Ulloa, N.; Kasen, D.; et al. Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source. arXiv 2017, arXiv:astro-ph.HE/1710.05452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soares-Santos, M.; Holz, D.E.; Annis, J.; Chornock, R.; Herner, K.; Berger, E.; Brout, D.; Chen, H.Y.; Kessler, R.; Sako, M.; et al. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the Dark Energy Camera. Astrophys. J. Lett. 2017, 848, L16. [Google Scholar] [CrossRef]
- Valenti, S.; Sand, D.J.; Yang, S.; Cappellaro, E.; Tartaglia, L.; Corsi, A.; Jha, S.W.; Reichart, D.E.; Haislip, J.; Kouprianov, V. The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck. Astrophys. J. Lett. 2017, 848, L24. [Google Scholar] [CrossRef] [Green Version]
- Arcavi, I.; Hosseinzadeh, G.; Howell, D.A.; McCully, C.; Poznanski, D.; Kasen, D.; Barnes, J.; Zaltzman, M.; Vasylyev, S.; Maoz, D.; et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 2017, 551, 64–66. [Google Scholar] [CrossRef] [Green Version]
- Tanvir, N.R.; Levan, A.J.; González-Fernández, C.; Korobkin, O.; Mandel, I.; Rosswog, S.; Hjorth, J.; D’Avanzo, P.; Fruchter, A.S.; Fryer, C.L.; et al. The Emergence of a Lanthanide-rich Kilonova Following the Merger of Two Neutron Stars. Astrophys. J. Lett. 2017, 848, L27. [Google Scholar] [CrossRef]
- Lipunov, V.M.; Gorbovskoy, E.; Kornilov, V.G.; Tyurina, N.; Balanutsa, P.; Kuznetsov, A.; Vlasenko, D.; Kuvshinov, D.; Gorbunov, I.; Buckley, D.A.H.; et al. MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817. Astrophys. J. Lett. 2017, 850, L1. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.J.; Zhang, B.B.; Wu, X.F.; Gao, H.; Mészáros, P.; Zhang, B.; Dai, Z.G.; Zhang, S.N.; Zhu, Z.H. Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts. J. Cosmol. Astropart. Phys. 2017, 2017, 035. [Google Scholar] [CrossRef] [Green Version]
- Troja, E.; Piro, L.; van Eerten, H.; Wollaeger, R.T.; Im, M.; Fox, O.D.; Butler, N.R.; Cenko, S.B.; Sakamoto, T.; Fryer, C.L.; et al. The X-ray counterpart to the gravitational-wave event GW170817. Nature 2017, 551, 71–74. [Google Scholar] [CrossRef] [Green Version]
- Hallinan, G.; Corsi, A.; Mooley, K.P.; Hotokezaka, K.; Nakar, E.; Kasliwal, M.M.; Kaplan, D.L.; Frail, D.A.; Myers, S.T.; Murphy, T.; et al. A radio counterpart to a neutron star merger. Science 2017, 358, 1579–1583. [Google Scholar] [CrossRef] [Green Version]
- Mooley, K.P.; Nakar, E.; Hotokezaka, K.; Hallinan, G.; Corsi, A.; Frail, D.A.; Horesh, A.; Murphy, T.; Lenc, E.; Kaplan, D.L.; et al. A mildly relativistic wide-angle outflow in the neutron-star merger event GW170817. Nature 2018, 554, 207–210. [Google Scholar] [CrossRef] [Green Version]
- Mooley, K.P.; Deller, A.T.; Gottlieb, O.; Nakar, E.; Hallinan, G.; Bourke, S.; Frail, D.A.; Horesh, A.; Corsi, A.; Hotokezaka, K. Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 2018, 561, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Gill, R.; Nathanail, A.; Rezzolla, L. When Did the Remnant of GW170817 Collapse to a Black Hole? Astrophys. J. 2019, 876, 139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. The delay time of gravitational wave—Gamma-ray burst associations. Front. Phys. 2019, 14, 64402. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.S.; Zhong, S.Q.; Zhang, B.B.; Wu, S.; Zhang, B.; Yang, Y.H.; Cao, Z.; Gao, H.; Zou, J.H.; Wang, J.S.; et al. Physical Implications of the Subthreshold GRB GBM-190816 and Its Associated Subthreshold Gravitational-wave Event. Astrophys. J. 2020, 899, 60. [Google Scholar] [CrossRef]
- Troja, E.; van Eerten, H.; Ryan, G.; Ricci, R.; Burgess, J.M.; Wieringa, M.H.; Piro, L.; Cenko, S.B.; Sakamoto, T. A year in the life of GW 170817: The rise and fall of a structured jet from a binary neutron star merger. Mon. Notices Royal Astron. Soc. 2019, 489, 1919–1926. [Google Scholar] [CrossRef] [Green Version]
- Ryan, G.; van Eerten, H.; Piro, L.; Troja, E. Gamma-Ray Burst Afterglows in the Multimessenger Era: Numerical Models and Closure Relations. Astrophys. J. 2020, 896, 166. [Google Scholar] [CrossRef]
- Balasubramanian, A.; Corsi, A.; Mooley, K.P.; Brightman, M.; Hallinan, G.; Hotokezaka, K.; Kaplan, D.L.; Lazzati, D.; Murphy, E.J. Continued Radio Observations of GW170817 3.5 yr Post-merger. Astrophys. J. Lett. 2021, 914, L20. [Google Scholar] [CrossRef]
- Goldstein, A.; Hamburg, R.; Wood, J.; Hui, C.M.; Cleveland, W.H.; Kocevski, D.; Littenberg, T.; Burns, E.; Dal Canton, T.; Veres, P.; et al. Updates to the Fermi GBM Targeted Sub-threshold Search in Preparation for the Third Observing Run of LIGO/Virgo. arXiv 2019, arXiv:astro-ph.HE/1903.12597. [Google Scholar]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abraham, S.; Acernese, F.; Ackley, K.; Adams, C.; Adhikari, R.X.; Adya, V.B.; Affeldt, C.; et al. GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼3.4 M⊙. Astrophys. J. Lett. 2020, 892, L3. [Google Scholar] [CrossRef]
- von Kienlin, A.; Veres, P.; Roberts, O.J.; Hamburg, R.; Bissaldi, E.; Briggs, M.S.; Burns, E.; Goldstein, A.; Kocevski, D.; Preece, R.D.; et al. Fermi-GBM GRBs with Characteristics Similar to GRB 170817A. Astrophys. J. 2019, 876, 89. [Google Scholar] [CrossRef] [Green Version]
- Berger, E. Short-Duration Gamma-Ray Bursts. Annu. Rev. Astron. Astrophys. 2014, 52, 43–105. [Google Scholar] [CrossRef] [Green Version]
- Fernández, R.; Metzger, B.D. Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era. Annu. Rev. Nucl. Part. Sci. 2016, 66, 23–45. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B. The Physics of Gamma-Ray Bursts; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D. Kilonovae. Living Rev. Relativ. 2019, 23, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, E. Neutron star mergers and how to study them. Living Rev. Relativ. 2020, 23, 4. [Google Scholar] [CrossRef]
- Nakar, E. The electromagnetic counterparts of compact binary mergers. Phys. Rep. 2020, 886, 1–84. [Google Scholar] [CrossRef]
- Koshut, T.M.; Kouveliotou, C.; Paciesas, W.S.; van Paradijs, J.; Pendleton, G.N.; Briggs, M.S.; Fishman, G.J.; Meegan, C.A. Gamma-Ray Burst Precursor Activity as Observed with BATSE. Astrophys. J. 1995, 452, 145. [Google Scholar] [CrossRef] [Green Version]
- Lazzati, D. Precursor activity in bright, long BATSE gamma-ray bursts. Mon. Notices Royal Astron. Soc. 2005, 357, 722–731. [Google Scholar] [CrossRef] [Green Version]
- Burlon, D.; Ghirlanda, G.; Ghisellini, G.; Lazzati, D.; Nava, L.; Nardini, M.; Celotti, A. Precursors in Swift Gamma Ray Bursts with Redshift. Astrophys. J. Lett. 2008, 685, L19. [Google Scholar] [CrossRef] [Green Version]
- Burlon, D.; Ghirlanda, G.; Ghisellini, G.; Greiner, J.; Celotti, A. Time resolved spectral behavior of bright BATSE precursors. Astron. Astrophys. 2009, 505, 569–575. [Google Scholar] [CrossRef]
- Hu, Y.D.; Liang, E.W.; Xi, S.Q.; Peng, F.K.; Lu, R.J.; Lü, L.Z.; Zhang, B. Internal Energy Dissipation of Gamma-Ray Bursts Observed with Swift: Precursors, Prompt Gamma-Rays, Extended Emission, and Late X-ray Flares. Astrophys. J. 2014, 789, 145. [Google Scholar] [CrossRef] [Green Version]
- Lan, L.; Lü, H.J.; Zhong, S.Q.; Zhang, H.M.; Rice, J.; Cheng, J.G.; Du, S.S.; Li, L.; Lin, J.; Lu, R.J.; et al. Characteristics of Two-episode Emission Patterns in Fermi Long Gamma-Ray Bursts. Astrophys. J. 2018, 862, 155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.B.; Zhang, B.; Castro-Tirado, A.J.; Dai, Z.G.; Tam, P.H.T.; Wang, X.Y.; Hu, Y.D.; Karpov, S.; Pozanenko, A.; Zhang, F.W.; et al. Transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B. Nat. Astron. 2018, 2, 69–75. [Google Scholar] [CrossRef] [Green Version]
- Troja, E.; Rosswog, S.; Gehrels, N. Precursors of Short Gamma-ray Bursts. Astrophys. J. 2010, 723, 1711–1717. [Google Scholar] [CrossRef] [Green Version]
- Paczynski, B. Gamma-ray bursters at cosmological distances. Astrophys. J. Lett. 1986, 308, L43–L46. [Google Scholar] [CrossRef]
- Mészáros, P.; Rees, M.J. Steep Slopes and Preferred Breaks in Gamma-Ray Burst Spectra: The Role of Photospheres and Comptonization. Astrophys. J. 2000, 530, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Daigne, F.; Mochkovitch, R. The expected thermal precursors of gamma-ray bursts in the internal shock model. Mon. Notices Royal Astron. Soc. 2002, 336, 1271–1280. [Google Scholar] [CrossRef] [Green Version]
- Ruffini, R.; Aksenov, A.G.; Bernardini, M.G.; Bianco, C.L.; Caito, L.; Dainotti, M.G.; de Barros, G.; Guida, R.; Vereshchagin, G.V.; Xue, S.S. The canonical Gamma-ray Bursts and their “precursors”. In Proceedings of the 2008 Nanjing Gamma-ray Burst Conference, Nanjing, China, 11 November 2008; Huang, Y.F., Dai, Z.G., Zhang, B., Eds.; American Institute of Physics Conference Series. Volume 1065, pp. 219–222. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Ruiz, E.; MacFadyen, A.I.; Lazzati, D. Precursors and e+/− pair loading from erupting fireballs. Mon. Notices Royal Astron. Soc. 2002, 331, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Waxman, E.; Mészáros, P. Collapsar Uncorking and Jet Eruption in Gamma-Ray Bursts. Astrophys. J. 2003, 584, 390–398. [Google Scholar] [CrossRef]
- Zhang, W.; Woosley, S.E.; MacFadyen, A.I. Relativistic Jets in Collapsars. Astrophys. J. 2003, 586, 356–371. [Google Scholar] [CrossRef] [Green Version]
- Lazzati, D.; Begelman, M.C. Universal GRB Jets from Jet-Cocoon Interaction in Massive Stars. Astrophys. J. 2005, 629, 903–907. [Google Scholar] [CrossRef] [Green Version]
- Nakar, E.; Sari, R. Relativistic Shock Breakouts—A Variety of Gamma-Ray Flares: From Low-luminosity Gamma-Ray Bursts to Type Ia Supernovae. Astrophys. J. 2012, 747, 88. [Google Scholar] [CrossRef]
- Levinson, A.; Nakar, E. Physics of radiation mediated shocks and its applications to GRBs, supernovae, and neutron star mergers. Phys. Rep. 2020, 866, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Keren, S.; Levinson, A. Sub-photospheric, Radiation-mediated Shocks in Gamma-Ray Bursts: Multiple Shock Emission and the Band Spectrum. Astrophys. J. 2014, 789, 128. [Google Scholar] [CrossRef] [Green Version]
- Ito, H.; Matsumoto, J.; Nagataki, S.; Warren, D.C.; Barkov, M.V.; Yonetoku, D. The photospheric origin of the Yonetoku relation in gamma-ray bursts. Nat. Commun. 2019, 10, 1504. [Google Scholar] [CrossRef] [Green Version]
- Gottlieb, O.; Nakar, E.; Piran, T.; Hotokezaka, K. A cocoon shock breakout as the origin of the γ-ray emission in GW170817. Mon. Notices Royal Astron. Soc. 2018, 479, 588–600. [Google Scholar] [CrossRef] [Green Version]
- Bromberg, O.; Tchekhovskoy, A.; Gottlieb, O.; Nakar, E.; Piran, T. The γ-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta. Mon. Notices Royal Astron. Soc. 2018, 475, 2971–2977. [Google Scholar] [CrossRef] [Green Version]
- Hansen, B.M.S.; Lyutikov, M. Radio and X-ray signatures of merging neutron stars. Mon. Notices Royal Astron. Soc. 2001, 322, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Lai, D. DC Circuit Powered by Orbital Motion: Magnetic Interactions in Compact Object Binaries and Exoplanetary Systems. Astrophys. J. Lett. 2012, 757, L3. [Google Scholar] [CrossRef] [Green Version]
- Palenzuela, C.; Lehner, L.; Ponce, M.; Liebling, S.L.; Anderson, M.; Neilsen, D.; Motl, P. Electromagnetic and Gravitational Outputs from Binary-Neutron-Star Coalescence. Phys. Rev. Lett. 2013, 111, 061105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palenzuela, C.; Lehner, L.; Liebling, S.L.; Ponce, M.; Anderson, M.; Neilsen, D.; Motl, P. Linking electromagnetic and gravitational radiation in coalescing binary neutron stars. Phys. Rev. D 2013, 88, 043011. [Google Scholar] [CrossRef] [Green Version]
- Paschalidis, V.; Etienne, Z.B.; Shapiro, S.L. General-relativistic simulations of binary black hole-neutron stars: Precursor electromagnetic signals. Phys. Rev. D 2013, 88, 021504. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.S.; Yang, Y.P.; Wu, X.F.; Dai, Z.G.; Wang, F.Y. Fast Radio Bursts from the Inspiral of Double Neutron Stars. Astrophys. J. Lett. 2016, 822, L7. [Google Scholar] [CrossRef]
- Paschalidis, V. General relativistic simulations of compact binary mergers as engines for short gamma-ray bursts. Class. Quantum Gravity 2017, 34, 084002. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.S.; Peng, F.K.; Wu, K.; Dai, Z.G. Pre-merger Electromagnetic Counterparts of Binary Compact Stars. Astrophys. J. 2018, 868, 19. [Google Scholar] [CrossRef] [Green Version]
- Most, E.R.; Philippov, A.A. Electromagnetic Precursors to Gravitational-wave Events: Numerical Simulations of Flaring in Pre-merger Binary Neutron Star Magnetospheres. Astrophys. J. Lett. 2020, 893, L6. [Google Scholar] [CrossRef] [Green Version]
- Tsang, D.; Read, J.S.; Hinderer, T.; Piro, A.L.; Bondarescu, R. Resonant Shattering of Neutron Star Crusts. Phys. Rev. Lett. 2012, 108, 011102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suvorov, A.G.; Kokkotas, K.D. Precursor flares of short gamma-ray bursts from crust yielding due to tidal resonances in coalescing binaries of rotating, magnetized neutron stars. Phys. Rev. D 2020, 101, 083002. [Google Scholar] [CrossRef] [Green Version]
- Kuan, H.J.; Suvorov, A.G.; Kokkotas, K.D. General-relativistic treatment of tidal g-mode resonances in coalescing binaries of neutron stars—II. As triggers for precursor flares of short gamma-ray bursts. Mon. Notices Royal Astron. Soc. 2021, 508, 1732–1744. [Google Scholar] [CrossRef]
- Dichiara, S.; Troja, E.; O’Connor, B.; Marshall, F.E.; Beniamini, P.; Cannizzo, J.K.; Lien, A.Y.; Sakamoto, T. Short gamma-ray bursts within 200 Mpc. Mon. Notices Royal Astron. Soc. 2020, 492, 5011–5022. [Google Scholar] [CrossRef]
- Zhang, D.; Li, X.; Xiong, S.; Li, Y.; Sun, X.; An, Z.; Xu, Y.; Zhu, Y.; Peng, W.; Wang, H.; et al. Energy response of GECAM gamma-ray detector based on LaBr3:Ce and SiPM array. Nucl. Instruments Methods Phys. Res. A 2019, 921, 8–13. [Google Scholar] [CrossRef]
- Wang, J.S.; Peng, Z.K.; Zou, J.H.; Zhang, B.B.; Zhang, B. Stringent Search for Precursor Emission in Short GRBs from Fermi/GBM Data and Physical Implications. Astrophys. J. Lett. 2020, 902, L42. [Google Scholar] [CrossRef]
- Mottez, F.; Heyvaerts, J. Magnetic coupling of planets and small bodies with a pulsar wind. Astron. Astrophys. 2011, 532, A21. [Google Scholar] [CrossRef]
- Ponce, M.; Palenzuela, C.; Lehner, L.; Liebling, S.L. Interaction of misaligned magnetospheres in the coalescence of binary neutron stars. Phys. Rev. D 2014, 90, 044007. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, F.; Shibata, M.; Reula, O. Magnetospheres of black hole-neutron star binaries. arXiv 2021, arXiv:2106.09081. [Google Scholar] [CrossRef]
- Wang, J.S.; Liu, R.Y.; Aharonian, F.; Dai, Z.G. Analytical treatment for the development of electromagnetic cascades in intense magnetic fields. Phys. Rev. D 2018, 97, 103016. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, C.J.; Kadau, K. Breaking Strain of Neutron Star Crust and Gravitational Waves. Phys. Rev. Lett. 2009, 102, 191102. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.S.; Lai, D. Evolution of inspiralling neutron star binaries: Effects of tidal interactions and orbital eccentricities. Phys. Rev. D 2020, 102, 083005. [Google Scholar] [CrossRef]
- Yakovlev, D.G.; Levenfish, K.P.; Shibanov, Y.A. Cooling of neutron stars and superfluidity in their cores. Phys. Usp. 1999, 42, 737. [Google Scholar] [CrossRef] [Green Version]
- Thompson, C.; Duncan, R.C. The Giant Flare of 1998 August 27 from SGR 1900+14. II. Radiative Mechanism and Physical Constraints on the Source. Astrophys. J. 2001, 561, 980–1005. [Google Scholar] [CrossRef] [Green Version]
- Minaev, P.; Pozanenko, A.; Molkov, S. Precursors of short gamma-ray bursts detected by the INTEGRAL observatory. Int. J. Mod. Phys. D 2018, 27, 1844013. [Google Scholar] [CrossRef]
- Zhong, S.Q.; Dai, Z.G.; Cheng, J.G.; Lan, L.; Zhang, H.M. Precursors in Short Gamma-Ray Bursts as a Possible Probe of Progenitors. Astrophys. J. 2019, 884, 25. [Google Scholar] [CrossRef]
- Scargle, J.D.; Norris, J.P.; Jackson, B.; Chiang, J. Studies in Astronomical Time Series Analysis. VI. Bayesian Block Representations. Astrophys. J. 2013, 764, 167. [Google Scholar] [CrossRef] [Green Version]
- Coppin, P.; de Vries, K.D.; van Eijndhoven, N. Identification of gamma-ray burst precursors in Fermi-GBM bursts. Phys. Rev. D 2020, 102, 103014. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, B.B.; Virgili, F.J.; Liang, E.W.; Kann, D.A.; Wu, X.F.; Proga, D.; Lv, H.J.; Toma, K.; Mészáros, P.; et al. Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs. Astrophys. J. 2009, 703, 1696–1724. [Google Scholar] [CrossRef] [Green Version]
- Virgili, F.J.; Zhang, B.; O’Brien, P.; Troja, E. Are All Short-hard Gamma-ray Bursts Produced from Mergers of Compact Stellar Objects? Astrophys. J. 2011, 727, 109. [Google Scholar] [CrossRef] [Green Version]
- Bromberg, O.; Nakar, E.; Piran, T.; Sari, R. Short versus Long and Collapsars versus Non-collapsars: A Quantitative Classification of Gamma-Ray Bursts. Astrophys. J. 2013, 764, 179. [Google Scholar] [CrossRef] [Green Version]
- Lü, H.J.; Zhang, B.; Liang, E.W.; Zhang, B.B.; Sakamoto, T. The ‘amplitude’ parameter of gamma-ray bursts and its implications for GRB classification. Mon. Notices Royal Astron. Soc. 2014, 442, 1922–1929. [Google Scholar] [CrossRef] [Green Version]
- Metzger, B.D.; Giannios, D.; Thompson, T.A.; Bucciantini, N.; Quataert, E. The protomagnetar model for gamma-ray bursts. Mon. Notices Royal Astron. Soc. 2011, 413, 2031–2056. [Google Scholar] [CrossRef] [Green Version]
- Matsumoto, T.; Piran, T. On short GRBs similar to GRB 170817A detected by Fermi-GBM. Mon. Notices Royal Astron. Soc. 2020, 492, 4283–4290. [Google Scholar] [CrossRef]
- Yu, S.; Gonzalez, F.; Wei, J.; Zhang, S.; Cordier, B. SVOM: A Joint Gamma-ray Burst Detection Mission. Chin. Astron. Astrophys. 2020, 44, 269–282. [Google Scholar] [CrossRef]
- Adler, S.L. Photon splitting and photon dispersion in a strong magnetic field. Ann. Phys. 1971, 67, 599–647. [Google Scholar] [CrossRef]
- Baring, M.G.; Harding, A.K. Photon Splitting and Pair Creation in Highly Magnetized Pulsars. Astrophys. J. 2001, 547, 929–948. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, N.; Burgess, J.M.; Cadoux, F.; Greiner, J.; Hulsman, J.; Kole, M.; Li, H.C.; Mianowski, S.; Pollo, A.; Produit, N.; et al. Development and science perspectives of the POLAR-2 instrument: A large scale GRB polarimeter. arXiv 2021, arXiv:2109.02978. [Google Scholar]
Name | (s) | (s) | (s) |
---|---|---|---|
GRB060502B | 0.09 | 0.32 | 0.24 |
GRB071112B | 0.01 | 0.59 | 0.27 |
GRB080702A | 0.31 | 0.13 | 0.64 |
GRB100213A | 0.44 | 0.68 | 1.04 |
GRB081024A | 0.06 | 0.91 | 0.94 |
GRB081216 | |||
GRB090510 | 0.4 | 12.9 | - |
GRB090510 | |||
GRB100223110 | |||
GRB100827455 | |||
GRB101208498 | |||
GRB111117A | |||
GRB140209A | |||
GRB141102A | |||
GRB150604434 | |||
GRB150922A | |||
GRB160804180 | |||
GRB170709334 | |||
GRB170802638 | |||
GRB180511437 | |||
GRB181126A | |||
GRB191221802 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, L. Electromagnetic Precursors of Short Gamma-Ray Bursts as Counterparts of Gravitational Waves. Galaxies 2021, 9, 104. https://doi.org/10.3390/galaxies9040104
Wang J, Liu L. Electromagnetic Precursors of Short Gamma-Ray Bursts as Counterparts of Gravitational Waves. Galaxies. 2021; 9(4):104. https://doi.org/10.3390/galaxies9040104
Chicago/Turabian StyleWang, Jieshuang, and Liangduan Liu. 2021. "Electromagnetic Precursors of Short Gamma-Ray Bursts as Counterparts of Gravitational Waves" Galaxies 9, no. 4: 104. https://doi.org/10.3390/galaxies9040104
APA StyleWang, J., & Liu, L. (2021). Electromagnetic Precursors of Short Gamma-Ray Bursts as Counterparts of Gravitational Waves. Galaxies, 9(4), 104. https://doi.org/10.3390/galaxies9040104