Astrophysical Neutrinos in Testing Lorentz Symmetry
Abstract
1. Introduction
2. SME Framework for Neutrino Searches
2.1. General SME Framework for Neutrinos
2.2. Restricting Higher-Dimensional Analysis to the Minimal SME
3. Areas to Search for LV in the Neutrino Sector
4. Neutrino Oscillations
4.1. Lorentz-Violation Specific Signals in Neutrino Oscillations
4.2. Hamiltonian and Perturbation Methods for Short- and Long-Baseline Neutrino Oscillations
4.3. Directional Dependence
4.4. Solar Neutrinos
5. Astrophysical Neutrinos
5.1. Flavor Studies of Astrophysical Neutrinos
5.2. Kinematics-Based Searches in the Astrophysical Domain
5.3. Atmospheric Spectral Analysis
6. Summary
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cleveland, B.T.; Daily, T.; Davis, R., Jr.; Distel, J.R.; Lande, K.; Lee, C.K.; Wildenhain, P.S.; Ullman, J. Measurement of the Solar Electron Neutrino Flux with the Homestake Chlorine Detector. Astrophysical J. 1998, 496, 505–526. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A.; Brown, B.C.; Bugel, L.; Cheng, G.; Conrad, J.M.; Cooper, R.L.; Dharmapalan, R.; Diaz, A.; Djurcic, Z.; Finley, D.A.; et al. Significant Excess of ElectronLike Events in the MiniBooNE Short-Baseline Neutrino Experiment. Phys. Rev. D 2018, 121, 221801. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Samuel, S. Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 1989, 39, 683–685. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Samuel, S. Gravitational phenomenology in higher-dimensional theories and strings. Phys. Rev. D 1989, 40, 1886–1903. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Samuel, S. Phenomenological gravitational constraints on strings and higher-dimensional theories. Phys. Rev. Lett. 1989, 63, 224–227. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Samuel, S. Photon and graviton masses in string theories. Phys. Rev. Lett. 1991, 66, 1811–1814. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Potting, R. CPT and strings. Nucl. Phys. B 1991, 359, 545–570. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Potting, R. CPT, strings, and meson factories. Phys. Rev. D 1995, 51, 3923–3935. [Google Scholar] [CrossRef] [PubMed]
- Kostelecký, V.A.; Potting, R. Expectation values, Lorentz invariance, and CPT in the open bosonic string. Phys. Lett. B 1996, 381, 89–96. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Potting, R. Analytical construction of a nonperturbative vacuum for the open bosonic string. Phys. Rev. D 2001, 63, 046007. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Perry, M.J.; Potting, R. Off-Shell Structure of the String Sigma Model. Phys. Rev. Lett. 2000, 84, 4541–4544. [Google Scholar] [CrossRef] [PubMed]
- Gambini, R.; Pullin, J. Lorentz violations in canonical quantum gravity. In Proceedings of the Second Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 15–18 August 2001; pp. 38–43. [Google Scholar]
- Alfaro, J.; Morales-Técotl, H.A.; Urrutia, L.F. Quantum gravity and spin-1/2 particle effective dynamics. Phys. Rev. 2002, D66, 124006. [Google Scholar] [CrossRef]
- Sudarsky, D.; Urrutia, L.; Vucetich, H. Observational Bounds on Quantum Gravity Signals using Existing Data. Phys. Rev. Lett. 2002, 89, 231301. [Google Scholar] [CrossRef]
- Sudarsky, D.; Urrutia, L.; Vucetich, H. Bounds on stringy quantum gravity from low energy existing data. Phys. Rev. D 2003, 68, 024010. [Google Scholar] [CrossRef]
- Amelino-Camelia, G. Quantum-Gravity Phenomenology: Status and Prospects. Mod. Phys. Lett. A 2002, 17, 899–922. [Google Scholar] [CrossRef]
- Ng, Y.J. Selected topics in Planck-scale physics. Mod. Phys. Lett. 2003, A18, 1073–1097. [Google Scholar] [CrossRef]
- Myers, R.; Pospelov, M. Ultraviolet Modifications of Dispersion Relations in Effective Field Theory. Phys. Rev. Lett. 2003, 90, 211601. [Google Scholar] [CrossRef]
- Mavromatos, N.E. Theoretical and Phenomenological Aspects of CPT Violation. Nucl. Instrum. Meth. B 2004, 214, 1–6. [Google Scholar] [CrossRef]
- Coleman, S.; Glashow, S.L. Cosmic Ray and Neutrino Tests of Special Relativity. Phys. Lett. B 1997, 405, 249–252. [Google Scholar] [CrossRef]
- Cohen, A.G.; Glashow, S.L. New Constraints on Neutrino Velocities. Phys. Rev. Lett. 2011, 107, 181803. [Google Scholar] [CrossRef]
- Carmona, J.M.; Cortes, J.L.; Relancio, J.J.; Reyes, M.A. Lorentz violation footprints in the spectrum of high-energy cosmic neutrinos: Deformation of the spectrum of superluminal neutrinos from electron-positron pair production in vacuum. Symmetry 2019, 11, 1419. [Google Scholar] [CrossRef]
- Jurkovich, H.; Pasquini, P.; Ferreira, C.P. Shadowing Neutrino Mass Hierarchy with Lorentz Invariance Violation. arXiv 2018, arXiv:1806.08752. Available online: https://arxiv.org/abs/1806.08752 (accessed on 1 June 2021).
- Stecker, F.; Scully, S.T.; Liberati, S.; Mattingly, D. Searching for Traces of Planck-Scale Physics with High Energy Neutrinos. Phys. Rev. D 2015, 91, 045009. [Google Scholar] [CrossRef]
- Antonelli, V.; Miramonti, L.; Torri, M.D.C. Neutrino oscillations and Lorentz Invariance Violation in a Finslerian Geometrical model. Eur. Phys. J. C 2018, 78, 667. [Google Scholar] [CrossRef]
- Torri, M.D.C. Neutrino Oscillations and Lorentz Invariance Violation. Universe 2020, 6, 37. [Google Scholar] [CrossRef]
- Carroll, S.M.; Harvey, J.A.; Kostelecký, V.A.; Lane, C.D.; Okamoto, T. Noncommutative Field Theory and Lorentz Violation. Phys. Rev. Lett. 2001, 87, 141601. [Google Scholar] [CrossRef]
- Guralnik, Z.; Jackiw, R.; Pi, S.Y.; Polychronakos, A.P. Testing Non-commutative QED, Constructing Non-commutative MHD. Phys. Lett. B 2001, 517, 450–456. [Google Scholar] [CrossRef]
- Carlson, C.E.; Carone, C.D.; Lebed, R.F. Bounding noncommutative QCD. Phys. Lett. B 2001, 518, 201–206. [Google Scholar] [CrossRef]
- Anisimov, A.; Banks, T.; Dine, M.; Graesser, M. Remarks on noncommutative phenomenology. Phys. Rev. D 2002, 65, 085032. [Google Scholar] [CrossRef]
- Mocioiu, I.; Pospelov, M.; Roiban, R. Breaking CPT by mixed noncommutativity. Phys. Rev. D 2002, 65, 107702. [Google Scholar] [CrossRef]
- Chaichian, M.; Sheikh-Jabbari, M.M.; Tureanu, A. Comments on the Hydrogen Atom Spectrum in the Noncommutative Space. Eur. Phys. J. C 2004, 36, 251–252. [Google Scholar] [CrossRef]
- Hewett, J.L.; Petriello, F.J.; Rizzo, T.G. Noncommutativity and unitarity violation in gauge boson scattering. Phys. Rev. D 2002, 66, 036001. [Google Scholar] [CrossRef]
- Froggatt, C.D.; Nielsen, H.B. Derivation of Lorentz Invariance and Three Space Dimensions in Generic Field Theory. Bled Work. Phys. 2002, 4, 1–19. [Google Scholar]
- Bjorken, J.D. Cosmology and the standard model. Phys. Rev. D 2003, 67, 043508. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. CPT violation and the standard model. Phys. Rev. D 1997, 55, 6760–6774. [Google Scholar] [CrossRef]
- Colladay, D.; Kostelecký, V.A. Lorentz-violating extension of the standard model. Phys. Rev. D 1998, 58, 116002. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Gravity, Lorentz violation, and the standard model. Phys. Rev. D 2004, 69, 105009. [Google Scholar] [CrossRef]
- Bailey, Q.G.; Kostelecký, V.A.; Xu, R. Short-range gravity and Lorentz violation. Phys. Rev. D 2015, 91, 022006. [Google Scholar] [CrossRef]
- Long, J.C.; Kostelecký, V.A. Search for Lorentz violation in short-range gravity. Phys. Rev. D 2015, 91, 092003. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with short-range gravity. Phys. Lett. B 2017, 766, 137–143. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 2016, 757, 510–514. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Melissinos, A.; Mewes, M. Searching for photon-sector Lorentz violation using gravitational-wave detectors. Phys. Lett. B 2016, 761, 1–7. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N.; Tasson, J.D. Constraints on Torsion from Bounds on Lorentz Violation. Phys. Rev. Lett. 2008, 100, 111102. [Google Scholar] [CrossRef]
- Foster, J.; Kostelecký, V.A.; Xu, R. Constraints on nonmetricity from bounds on Lorentz violation. Phys. Rev. D 2017, 95, 084033. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Matter-gravity couplings and Lorentz violation. Phys. Rev. D 2011, 83, 016013. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Tasson, J.D. Prospects for Large Relativity Violations in Matter-Gravity Couplings. Phys. Lett. B 2009, 102, 010402. [Google Scholar] [CrossRef]
- Bluhm, R.; Fung, S.-H.; Kostelecký, V.A. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity. Phys. Rev. D 2008, 77, 065020. [Google Scholar] [CrossRef]
- Bluhm, R.; Kostelecký, V.A. Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity. Phys. Rev. D 2005, 71, 065008. [Google Scholar] [CrossRef]
- Hernaski, C.A. Quantization and stability of bumblebee electrodynamics. Phys. Rev. D 2014, 90, 124036. [Google Scholar] [CrossRef]
- Bluhm, R.; Bossi, H.; Wen, Y. Gravity with explicit spacetime symmetry breaking and the standard model extension. Phys. Rev. D 2019, 100, 084022. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Riemann-Finsler geometry and Lorentz-violating kinematics. Phys. Lett. B 2011, 701, 137–143. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N.; Tso, R. Bipartite Riemann–Finsler geometry and Lorentz violation. Phys. Lett. B 2012, 716, 470–474. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N. Classical kinematics for Lorentz violation. Phys. Lett. B 2010, 693, 443–447. [Google Scholar] [CrossRef]
- Bluhm, R.; Šehić, A. Noether identities in gravity theories with nondynamical backgrounds and explicit spacetime symmetry breaking. Phys. Rev. D 2016, 94, 104034. [Google Scholar] [CrossRef]
- Torri, M.D.C.; Antonelli, V.; Miramonti, L. Homogeneously Modified Special Relativity (HMSR)—A new possible way to introduce an isotropic Lorentz Invariance Violation in particle Standard Model. Eur. Phys. J. C 2019, 79, 808. [Google Scholar] [CrossRef]
- Bluhm, R. Explicit versus spontaneous diffeomorphism breaking in gravity. Phys. Rev. D 2015, 91, 065034. [Google Scholar] [CrossRef]
- Bluhm, R. Spacetime symmetry breaking and Einstein-Maxwell theory. Phys. Rev. D 2015, 92, 085015. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Li, Z. Gauge field theories with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2019, 99, 056016. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Li, Z. Backgrounds in gravitational effective field theory. Phys. Rev. D 2021, 103, 024059. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Russell, N. Data Tables for Lorentz and CPT Violation, 2021 edition. arXiv 2021, arXiv:0801.0287. Available online: https://arxiv.org/abs/0801.0287 (accessed on 1 June 2021).
- Kostelecký, V.A. CPT, T, and Lorentz Violation in Neutral-Meson Oscillations. Phys. Rev. D 2001, 64, 076001. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Signals for CPT and Lorentz violation in neutral-meson oscillations. Phys. Rev. D 1999, 61, 016002. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Sensitivity of CPT Tests with Neutral Mesons. Phys. Rev. Lett. 1998, 80, 1818–1821. [Google Scholar] [CrossRef]
- Berger, M.S.; Kostelecký, V.A.; Liu, Z. Lorentz and CPT violation in top-quark production and decay. Phys. Rev. D 2016, 93, 036005. [Google Scholar] [CrossRef]
- Roberts, Á. Testing CPT symmetry with correlated neutral mesons. Phys. Rev. D 2017, 96, 116015. [Google Scholar] [CrossRef]
- van Tilburg, J.; van Veghel, M. Status and prospects for CPT and Lorentz invariance violation searches in neutral meson mixing. Phys. Lett. B 2015, 742, 236–241. [Google Scholar] [CrossRef]
- Go, A.; Bay, A.; Abe, K.; Aihara, H.; Anipko, D.; Aulchenko, V.; Aushev1, T.; Bakich, A.M.; Barberio, E.; Belous, K.; et al. Measurement of Einstein-Podolsky-Rosen-Type Flavor Entanglement in Υ(4S)→B0B¯0 Decays. Phys. Rev. Lett. 2007, 99, 131802. [Google Scholar] [CrossRef]
- Di Domenico, A. CPT Symmetry and Quantum Mechanics Tests in the Neutral Kaon System at KLOE. Found. Phys. 2010, 40, 852–866. [Google Scholar] [CrossRef]
- Rosner, J.L.; Slezak, S.A. Classical illustrations of CP violation in kaon decays. Am. J. Phys. 2001, 69, 44–49. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Roberts, Á. Analogue models for T and CPT violation in neutral-meson oscillations. Phys. Rev. D 2001, 63, 096002. [Google Scholar] [CrossRef]
- Schubert, K.R.; Stiewe, J. Demonstration of K0K¯0, B0B¯0 and D0D¯0 transitions with a pair of coupled pendula. J. Phys. G 2012, 39, 033101. [Google Scholar] [CrossRef]
- Reiser, A.; Schubert, K.R.; Stiewe, J. Translation of time-reversal violation in the neutral K-meson system into a table-top mechanical system. J. Phys. G 2012, 39, 083002. [Google Scholar] [CrossRef]
- Fanchiotti, H.; Garcia, C.A.; Vento, V. The Geometric Origin of the CP Phase. arXiv 2017, arXiv:1806.08752. Available online: https://arxiv.org/abs/1705.08127 (accessed on 1 June 2021).
- Caruso, C.; Fanchiotti, H.; Garcia, C.A. Equivalence between classical and quantum dynamics. Neutral kaons and electric circuits. Ann. Phys. 2011, 326, 2717–2736. [Google Scholar] [CrossRef]
- Babusci, D.; Balwierz-Pytko, I.; Bencivenni, G.; Bloise, C.; Bossi, F.; Branchini, P.; Budanos, A.; Caldeira Balkeståhl, L.; Capon, G.; Ceradinist, F.; et al. Test of CPT and Lorentz symmetry in entangled neutral kaons with the KLOE experiment. Phys. Lett. B 2014, 730, 89–95. [Google Scholar] [CrossRef]
- Abazov, V.M.; Abbott, B.; Acharya, B.S.; Adams, M.; Adams, T.; Agnew, J.P.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Askew, A.; et al. Search for Violation of CPT and Lorentz Invariance in Bs0 Meson Oscillations. Phys. Rev. Lett. 2015, 115, 161601. [Google Scholar] [CrossRef] [PubMed]
- Aubert, B.; Barate, R.; Boutigny, D.; Couderc, F.; Gaillard, J.-M.; Hicheur, A.; Karyotakis, Y.; Lees, J.P.; Tisserand, V.; Zghiche, A.; et al. Search for the Decay B0 -> ppbar. Phys. Rev. D 2004, 69, 091503. [Google Scholar] [CrossRef]
- Aubert, B.; Bona, M.; Boutigny, D.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prudent, X.; Tisserand, V.; Zghiche, A.; Garra Tico, J.; et al. Search for CPT and Lorentz Violation in B0–B¯0 Oscillations with Dilepton Events. Phys. Rev. Lett. 2008, 100, 131802. [Google Scholar] [CrossRef] [PubMed]
- Schubert, K.R. Tests of CPT symmetry in B0-B0bar mixing and in B0 to c cbar K0 decays. arXiv 2016, arXiv:1607.05882. Available online: https://arxiv.org/abs/1607.05882 (accessed on 1 June 2021).
- Aaij, R.; Abellán Beteta, C.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; et al. Search for Violations of Lorentz Invariance and CPT Symmetry in B(s)0 Mixing. Phys. Rev. Lett. 2016, 116, 241601. [Google Scholar] [CrossRef]
- Link, J.M.; Reyes, M.; Yager, P.M.; Anjos, J.C.; Bediaga, I.; Göbel, C.; Magnin, J.; Massafferri, A.; de Miranda, J.M.; Pepe, I.M.; et al. Charm system tests of CPT and Lorentz invariance with FOCUS. Phys. Lett. B 2003, 556, 7–13. [Google Scholar] [CrossRef][Green Version]
- Nguyen, H. CPT Results from KTeV. In Proceedings of the Second Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 15–18 August 2001; pp. 121–131. [Google Scholar]
- Kostelecký, V.A.; Mewes, M. Lorentz and CPT violation in neutrinos. Phys. Rev. D 2004, 69, 016005. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Lorentz and CPT violation in the neutrino sector. Phys. Rev. D 2004, 70, 031902. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Lorentz violation and short-baseline neutrino experiments. Phys. Rev. D 2004, 70, 076002. [Google Scholar] [CrossRef]
- Katori, T.; Kostelecký, V.A.; Tayloe, R. Global three-parameter model for neutrino oscillations using Lorentz violation. Phys. Rev. D 2006, 74, 105009. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Astrophysical Tests of Lorentz and CPT Violation with Photons. Ap. J. Lett. 2008, 689, L1. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Electrodynamics with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2009, 80, 015020. [Google Scholar] [CrossRef]
- Díaz, J.S.; Kostelecký, V.A.; Mewes, M. Perturbative Lorentz and CPT violation for neutrino and antineutrino oscillations. Phys. Rev. D 2009, 80, 076007. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Neutrinos with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2012, 85, 096005. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Fermions with Lorentz-violating operators of arbitrary dimension. Phys. Rev. D 2013, 88, 096006. [Google Scholar] [CrossRef]
- Díaz, J.S.; Kostelecký, V.A.; Mewes, M. Testing Relativity with High-Energy Astrophysical Neutrinos. Phys. Rev. D 2014, 89, 043005. [Google Scholar] [CrossRef]
- Gell-Mann, M.; Ramond, P.; Slansky, R. Complex Spinors and Unified Theories. In Supergravity; van Nieuwenhuizen, P., Freedman, D.Z., Eds.; North Holland: Amsterdam, The Netherlands, 1979. [Google Scholar]
- Yanagida, T. Proceedings of the Workshop on Unified Theory and the Baryon Number of the Universe; Sawada, O., Sugamoto, A., Eds.; KEK: Ibaraki, Japan, 1979. [Google Scholar]
- Mohapatra, R.; Senjanović, G. Neutrino Mass and Spontaneous Parity Nonconservation. Phys. Rev. Lett. 1980, 44, 912–915. [Google Scholar] [CrossRef]
- Langacker, P. Alternatives to the Seesaw: Extra Z’s and Constraints on Large Extra Dimensions. Int. J. Mod. Phys. A 2003, 18, 4015–4026. [Google Scholar] [CrossRef]
- Peskin, M.E.; Schroeder, D.V. An Introduction to Quantum Field Theory; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Abe, Y.; Aberle, C.; dos Anjos, J.C.; Bergevin, M.; Bernstein, A.; Bezerra, T.J.C.; Bezrukhov, L.; Blucher, E.; Bowden, N.S.; Buck, C.; et al. First Test of Lorentz Violation with a Reactor-based Antineutrino Experiment. Phys. Rev. D 2012, 86, 112009. [Google Scholar] [CrossRef]
- Adey, D.; An2, F.P.; Balantekin, A.B.; Band, H.R.; Bishai, M.; Blyth, S.; Cao, D.; Cao, G.F.; Cao, J.; Chang, J.F.; et al. Search for a time-varying electron antineutrino signal at Daya Bay. Phys. Rev. D 2018, 98, 092013. [Google Scholar] [CrossRef]
- Katori, T.; Spitz, J. Testing Lorentz Symmetry with the Double Chooz Experiment. In Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 17–21 June 2013; pp. 9–12. [Google Scholar]
- Díaz, J.S.; Katori, T.; Spitz, J.; Conrad, J. Search for neutrino-antineutrino oscillations with a reactor experiment. Phys. Lett. B 2013, 727, 412. [Google Scholar] [CrossRef]
- Aguilar-Arevalo, A.A.; Anderson, C.E.; Bazarko, A.O.; Brice, S.J.; Brown, B.C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J.M.; Cox, D.C.; et al. Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses. Phys. Lett. B 2013, 718, 1303. [Google Scholar] [CrossRef]
- Katori, T. Tests of Lorentz and CPT violation with MiniBooNE neutrino oscillation excesses. Mod. Phys. Lett. A 2012, 27, 1230024. [Google Scholar] [CrossRef]
- Katori, T. Test for Lorentz and CPT Violation with the MiniBooNE Low-Energy Excess. In Proceedings of the Fifth Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 28 June–2 July 2010; pp. 70–74. [Google Scholar]
- Adamson, P.; Ayres, D.S.; Barr, G.; Bishai, M.; Blake, A.; Bock, G.J.; Boehnlein, D.J.; Bogert, D.; Cao, S.V.; Cavanaugh, S.; et al. Search for Lorentz invariance and CPT violation with muon antineutrinos in the MINOS Near Detector. Phys. Rev. D 2012, 85, 031101. [Google Scholar] [CrossRef]
- Adamson, P.; Andreopoulos, C.; Arms, K.E.; Armstrong, R.; Auty, D.J.; Ayres, D.S.; Baller, B.; Barr, G.; Barrett, W.L.; Becker, B.R.; et al. Testing Lorentz Invariance and CPT Conservation with NuMI Neutrinos in the MINOS Near Detector. Phys. Rev. Lett. 2008, 101, 151601. [Google Scholar] [CrossRef] [PubMed]
- Clifton, G.A. A Search for Lorentz and CPT Violation Using the T2K Near Detectors. In Proceedings of the Magellan Workshop: Connecting Neutrino Physics and Astronomy, Hamburg, Germany, 17–18 March 2016; pp. 55–64. [Google Scholar]
- Abe, K.; Amey, J.; Andreopoulos, C.; Antonova, M.; Aoki, S.; Ariga, A.; Assylbekov, S.; Autiero, D.; Ban, S.; Barbato, F.C.T.; et al. Search for Lorentz and CPT violation using sidereal time dependence of neutrino flavor transitions over a short baseline. Phys. Rev. D 2017, 95, 111101(R). [Google Scholar] [CrossRef]
- Barenboim, G.; Masud, M.; Ternes, C.A.; Tórtola, M. Exploring the intrinsic Lorentz-violating parameters at DUNE. Phys. Lett. B 2019, 788, 308. [Google Scholar] [CrossRef]
- Athanassopoulos, C.; Auerbach, L.B.; Burman, R.L.; Caldwell, D.O.; Church, E.D.; Cohen, I.; Donahue, J.B.; Fazely, A.; Federspiel, F.J.; Garvey, G.T.; et al. Results on νμ→νe Neutrino Oscillations from the LSND Experiment. Phys. Rev. Lett. 1998, 81, 1774. [Google Scholar] [CrossRef]
- Aguilar, A.; Auerbach, L.B.; Burman, R.L.; Caldwell, D.O.; Church, E.D.; Cochran, A.K.; Donahue, J.B.; Fazely, A.; Garvey, G.T.; Gunasingha, R.M.; et al. Evidence for neutrino oscillations from the observation of ν¯e appearance in a ν¯μ beam. Phys. Rev. D 2001, 64, 112007. [Google Scholar] [CrossRef]
- Auerbach, L.B.; Burman, R.L.; Caldwell, D.O.; Church, E.D.; Cochran, A.K.; Donahue, J.B.; Fazely, A.; Garvey, G.T.; Gunasingha, R.M.; Imlay, R.L.; et al. Tests of Lorentz violation in muon antineutrino to electron antineutrino oscillations. Phys. Rev. D 2005, 72, 076004. [Google Scholar] [CrossRef]
- Adamson, P.; Auty, D.J.; Ayres, D.S.; Backhouse, C.; Barr, G.; Barrett, W.L.; Bishai, M.; Blake, A.; Bock, G.J.; Boehnlein, D.J.; et al. A Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector. Phys. Rev. Lett. 2010, 105, 151601. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; et al. Search for a Lorentz-violating sidereal signal with atmospheric neutrinos in IceCube. Phys. Rev. D 2010, 82, 112003. [Google Scholar] [CrossRef]
- Abe, K.; Abgrall, N.; Aihara, H.; Akiri, T.; Albert, J.B.; Andreopoulos, C.; Aoki, S.; Ariga, A.; Ariga, T.; Assylbekov, S.; et al. Evidence of Electron Neutrino Appearance in a Muon Neutrino Beam. Phys. Rev. D 2013, 88, 032002. [Google Scholar] [CrossRef]
- Rebel, B.; Mufson, S. The Search for Neutrino-Antineutrino Mixing Resulting from Lorentz Invariance Violation using neutrino interactions in MINOS. Astropart. Phys. 2013, 48, 78. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Neutrino Interferometry for High-Precision Tests of Lorentz Symmetry with IceCube. Nat. Phys. 2018, 14, 961. [Google Scholar]
- Akiri, T. Sensitivity of atmospheric neutrinos in Super-Kamiokande to Lorentz violation. In Proceedings of the Sixth Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 17–21 June 2013; pp. 99–102. [Google Scholar]
- Abe, K.; Haga, Y.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kishimoto, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; et al. Test of Lorentz invariance with atmospheric neutrinos. Phys. Rev. D 2015, 91, 052003. [Google Scholar] [CrossRef]
- Moriyama, S. New atmospheric and solar results from Super-Kamiokande. J. Phys. Conf. Ser. 2017, 888, 012005. [Google Scholar] [CrossRef]
- Wendell, R. Atmospheric Results from Super-Kamiokande. AIP Conf. Proc. 2015, 1666, 100001. [Google Scholar]
- Díaz, J.S.; Schwetz, T. Limits on CPT violation from solar neutrinos. Phys. Rev. D 2016, 93, 093004. [Google Scholar] [CrossRef]
- Aharmim, B.; Ahmed, S.N.; Anthony, A.E.; Barros, N.; Beier, E.W.; Bellerive, A.; Beltran, B.; Bergevin, M.; Biller, S.D.; Blucher, E.; et al. Tests of Lorentz invariance at the Sudbury Neutrino Observatory. Phys. Rev. D 2018, 98, 112013. [Google Scholar] [CrossRef]
- Gando, A.; Gando, Y.; Ichimura, K.; Ikeda, H.; Inoue, K.; Kibe, Y.; Kishimoto, Y.; Koga, M.; Minekawa, Y.; Mitsui, T.; et al. Search for extraterrestrial antineutrino sources with the KamLAND detector. Astrophys. J. 2012, 745, 193. [Google Scholar] [CrossRef]
- Díaz, J.S.; Kostelecký, V.A.; Lehnert, R. Relativity violations and beta decay. Phys. Rev. D 2013, 88, 071902(R). [Google Scholar] [CrossRef]
- Albert, J.B.; Barbeau, P.S.; Beck, D.; Belov, V.; Breidenbach, M.; Brunner, T.; Burenkov, A.; Cao, G.F.; Chambers, C.; Cleveland, B.; et al. First Search for Lorentz and CPT Violation in Double Beta Decay with EXO-200. Phys. Rev. D 2016, 93, 072001. [Google Scholar] [CrossRef]
- Díaz, J.S. Limits on Lorentz and CPT violation from double beta decay. Phys. Rev. D 2014, 89, 036002. [Google Scholar] [CrossRef]
- Díaz, J.S. Test of Lorentz symmetry in single beta decay. Adv. High Energy Phys. 2014, 2014, 305298. [Google Scholar]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. First search for Lorentz violation in double beta decay with scintillating calorimeters. Phys. Rev. D 2019, 100, 092002. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Barabash, A.S.; Basharina-Freshville, A.; Blondel, S.; Blot, S.; Bongrand, M.; Boursette, D.; Brudanin, V.; Busto, J.; et al. Detailed studies of 100Mo two-neutrino double beta decay in NEMO-3. Eur. Phys. J. C 2019, 79, 440. [Google Scholar] [CrossRef]
- Nitescu, O.V.; Ghinescu, S.A.; Stoica, S. Lorentz violation effects in two neutrino double-beta decay. J. Phys. G Nucl. Part. Phys. 2020, 47, 055112. [Google Scholar] [CrossRef]
- Nitescu, O.V.; Ghinescu, S.A.; Mirea, M.; Stoica, S. Probing Lorentz violation in 2νββ using single electron spectra and angular correlations. Phys. Rev. D 2021, 103, 031701. [Google Scholar] [CrossRef]
- Brofferio, C.; Cremones, O.; Dell’Oro, S. Neutrinoless Double Beta Decay Experiments With TeO2 Low-Temperature Detectors. Front. Phys. 2019, 7, 1–86. [Google Scholar] [CrossRef]
- Pertoldi, L. Search for Lorentz and CPT Symmetries Violation in Double-Beta Decay Using Data from the GERDA Experiment. Master’s Thesis, Universita degli Studi di Padova, Padova, Italy, 2017. [Google Scholar]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; et al. Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Rev. D 2018, 98, 092007. [Google Scholar] [CrossRef]
- Chodos, A.; Kostelecký, V.A.; Potting, R.; Gates, E. Null Experiments for Neutrino Masses. Mod. Phys. Lett. A 1992, 7, 467–476. [Google Scholar] [CrossRef]
- Kostelecký, V.A. Mass Bounds For Space-Like Neutrinos; Mansouri, F., Scanio, J.J., Eds.; World Scientific: Singapore, 1993; pp. 369–376. [Google Scholar]
- Chodos, A.; Kostelecký, V.A. Nuclear null tests for spacelike neutrinos. Phys. Lett. B 1994, 336, 295–302. [Google Scholar] [CrossRef]
- Gonzalez-Mestres, L. Astrophysical consequences of the OPERA superluminal neutrino. arXiv 2011, arXiv:1109.6630. Available online: https://arxiv.org/abs/1109.6630 (accessed on 1 June 2021).
- Bi, X.-J.; Yin, P.-F.; Yu, Z.-H.; Yuan, Q. Constraints and Tests of the OPERA Superluminal Neutrinos. Phys. Rev. Lett. 2011, 107, 241802. [Google Scholar] [CrossRef] [PubMed]
- Cowsik, R.; Nussinov, S.; Sarkar, U. Superluminal Neutrinos at OPERA Confront Pion Decay Kinematics. Phys. Rev. Lett. 2011, 107, 251801. [Google Scholar] [CrossRef] [PubMed]
- Altschul, B. Consequences of Neutrino Lorentz Violation For Leptonic Meson Decays. Phys. Rev. D 2011, 84, 091902. [Google Scholar] [CrossRef]
- Baccetti, V.; Tate, K.; Visser, M. Lorentz violating kinematics: Threshold theorems. JHEP 2012, 03, 087. [Google Scholar] [CrossRef]
- Mannarelli, M.; Mitra, M.; Villante, F.L.; Vissani, F. Non-standard neutrino propagation and pion decay. JHEP 2012, 01, 136. [Google Scholar] [CrossRef]
- Mohanty, S.; Rao, S. Neutrino processes with power law dispersion relations. Phys. Rev. D 2012, 85, 102005. [Google Scholar] [CrossRef]
- Coleman, S.; Glashow, S.L. High-energy tests of Lorentz invariance. Phys. Rev. D 1999, 59, 116008. [Google Scholar] [CrossRef]
- Altschul, B. Testing relativity with neutrinos. J. Phys. Conf. Ser. 2009, 173, 012003. [Google Scholar] [CrossRef]
- Altschul, B. Neutrino Beam Constraints on Flavor-Diagonal Lorentz Violation. Phys. Rev. D 2013, 87, 096004. [Google Scholar] [CrossRef]
- Stecker, F.W.; Scully, S.T. Propagation of Superluminal PeV IceCube Neutrinos: A High Energy Spectral Cutoff or New Constraints on Lorentz Invariance Violation. Phys. Rev. D 2014, 90, 043012. [Google Scholar] [CrossRef]
- Stecker, F.W. Constraining Superluminal Electron and Neutrino Velocities using the 2010 Crab Nebula Flare and the IceCube PeV Neutrino Events. Astropart. Phys. 2014, 56, 16–18. [Google Scholar] [CrossRef]
- Greenberg, O.W. CPT Violation Implies Violation of Lorentz Invariance. Phys. Rev. Lett. 2002, 89, 231602. [Google Scholar] [CrossRef] [PubMed]
- Ereditato, A.; Migliozzi, P. Accelerator studies of neutrino oscillations. Riv. Del Nuovo C. 2000, 23, 1–136. [Google Scholar] [CrossRef]
- Hampel, W.; Handt, J.; Heusser, G.; Kiko, J.; Kirsten, T.; Laubenstein, M.; Pernicka, E.; Rau, W.; Wojcika, M.; Zakharov, Y.; et al. GALLEX solar neutrino observations: Results for GALLEX IV. Phys. Lett. B 1999, 447, 127–133. [Google Scholar] [CrossRef]
- Altmann, M.; Balata, M.; Belli, P.; Bellotti, E.; Bernabei, R.; Burkert, E.; Cattadori, C.; Cerichelli, G.; Chiarini, M.; Cribier, M.; et al. GNO Solar Neutrino Observations: Results for GNOI. Phys. Lett. B 2000, 490, 16–26. [Google Scholar] [CrossRef]
- Abdurashitov, J.N.; Veretenkin, E.P.; Vermul, V.M.; Gavrin, V.N.; Girin, S.V.; Gorbachev, V.V.; Gurkina, P.P.; Zatsepin, G.T.; Ibragimova, T.V.; Kalikhov, A.V.; et al. Measurement of the Solar Neutrino Capture Rate by the Russian-American Gallium Solar Neutrino Experiment During One Half of the 22-Year Cycle of Solar Activity. J. Exp. Theor. Phys. 2002, 95, 181–193. [Google Scholar] [CrossRef]
- Fukuda, S.; Fukuda, Y.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kobayashi, K.; Koshio, Y.; Miura, M.; et al. Solar 8B and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data. Phys. Rev. Lett. 2001, 86, 5651–5655. [Google Scholar] [CrossRef]
- Fukuda, S.; Fukuda, Y.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kobayashi, K.; Koshio, Y.; Miura, M.; et al. Constraints on Neutrino Oscillations Using 1258 Days of Super-Kamiokande Solar Neutrino Data. Phys. Rev. Lett. 2001, 86, 5656–5660. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Fukuda, Y.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kobayashi, K.; Koshio, Y.; Miura, M.; et al. Determination of Solar Neutrino Oscillation Parameters using 1496 Days of Super-Kamiokande-I Data. Phys. Lett. B 2002, 539, 179–187. [Google Scholar] [CrossRef]
- Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Bühler, G.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.; et al. Measurement of the Rate of νe+d→p+p+e- Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2001, 87, 071301. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; et al. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 2002, 89, 0110301. [Google Scholar] [CrossRef]
- Ahmad, Q.R.; Allen, R.C.; Andersen, T.C.; Anglin, J.D.; Barton, J.C.; Beier, E.W.; Bercovitch, M.; Bigu, J.; Biller, S.D.; Black, R.A.; et al. Measurement of Day and Night Neutrino Energy Spectra at SNO and Constraints on Neutrino Mixing Parameters. Phys. Rev. Lett. 2002, 89, 0110302. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.N.; Anthony, A.E.; Beier, E.W.; Bellerive, A.; Biller, S.D.; Boger, J.; Boulay, M.G.; Bowler, M.G.; Bowles, T.J.; Brice, S.J.; et al. Measurement of the Total Active 8B Solar Neutrino Flux at the Sudbury Neutrino Observatory with Enhanced Neutral Current Sensitivity. Phys. Rev. Lett. 2004, 92, 102004. [Google Scholar] [CrossRef]
- Eguchi, K.; Enomoto, S.; Furuno, K.; Goldman, J.; Hanada, H.; Ikeda, H.; Ikeda, K.; Inoue, K.; Ishihara, K.; Itoh, W.; et al. First Results from KamLAND: Evidence for Reactor Antineutrino Disappearance. Phys. Rev. Lett. 2003, 90, 021802. [Google Scholar] [CrossRef]
- Achkar, B.; Aleksan, R.; Avenier, M.; Bagieu, G.; Bouchez, J.; Brissot, R.; Cavaignac, J.F.; Collot, J.; Cousinou, M.-C.; Cussonneau, J.P.; et al. Comparison of anti-neutrino reactor spectrum models with the Bugey 3 measurements. Phys. Lett. B 1996, 374, 243–248. [Google Scholar] [CrossRef][Green Version]
- Apollonio, M.; Baldini, A.; Bemporad, C.; Caffau, E.; Cei, F.; Declais, Y.; de Kerret, H.; Dieterle, B.; Etenko, A.; Foresti, L.; et al. Limits on Neutrino Oscillations from the CHOOZ Experiment. Phys. Lett. B 1999, 466, 415–430. [Google Scholar] [CrossRef]
- Zacek, G.; von Feilitzsch, F.; Mössbauer, R.L.; Oberauer, L.; Zacek, V.; Boehm, F.; Fisher, P.H.; Gimlett, J.L.; Hahn, A.A.; Henrikson, H.E.; et al. Neutrino-oscillation experiments at the Gösgen nuclear power reactor. Phys. Rev. D 1986, 34, 2621–2636. [Google Scholar] [CrossRef]
- Boehm, F.; Busenitz, J.; Cook, B.; Gratta, G.; Henrikson, H.; Kornis, J.; Lawrence, D.; Lee, K.B.; McKinney, K.; Miller, L.; et al. Final results from the Palo Verde neutrino oscillation experiment. Phys. Rev. D 2001, 64, 112001. [Google Scholar] [CrossRef]
- Ahn, M.H.; Aoki, S.; Bhang, H.; Boyd, S.; Casper, D.; Choi, J.H.; Fukuda, S.; Fukuda, Y.; Gajewski, W.; Hara, T.; et al. Indications of Neutrino Oscillation in a 250 km Long-Baseline Experiment. Phys. Rev. Lett. 2003, 90, 041801. [Google Scholar] [CrossRef] [PubMed]
- Borodovsky, L.; Chi, C.Y.; Ho, Y.; Kondakis, N.; Lee, W.; Mechalakos, J.; Rubin, B.; Seto, R.; Stoughton, C.; Tzanakos, G.; et al. Search for muon-neutrino oscillations νmu→νe(ν¯μ→ν¯e) in a wide-band neutrino beam. Phys. Rev. Lett. 1992, 68, 274–277. [Google Scholar] [CrossRef]
- Romosan, A.; Arroyo, C.G.; de Barbaro, L.; de Barbaro, P.; Bazarko, A.O.; Bernstein, R.H.; Bodek, A.; Bolton, T.; Budd, H.; Conrad, J.; et al. High Statistics Search for νμ(ν¯μ)→νe(ν¯e) Oscillations in the Small Mixing Angle Regime. Phys. Rev. Lett. 1997, 78, 2912–2915. [Google Scholar] [CrossRef]
- Eskut, E.; Kayis-Topaksu, A.; Onengüt, G.; van Dantzig, R.; de Jong, M.; Konijn, J.; Melzer, O.; Oldeman, R.G.C.; Pesen, E.; van der Poel, C.A.F.J.; et al. New results from a search for νμ→ντ and νe→ντ oscillation. Phys. Lett. B 2001, 497, 8–22. [Google Scholar] [CrossRef]
- Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; et al. Final NOMAD results on νμ→ντ and νe→ντ oscillations including a new search for ντ appearance using hadronic τ decays. Nucl. Phys. B 2001, 611, 3–39. [Google Scholar] [CrossRef]
- Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; et al. Search for νμ→νe Oscillations in the NOMAD Experiment. Phys. Lett. B 2003, 570, 19–31. [Google Scholar] [CrossRef]
- Avvakumov, S.; Adams, T.; Alton, A.; deBarbaro, L.; deBarbaro, P.; Bernstein, R.H.; Bodek, A.; Bolton, T.; Brau, G.; Buchholz, D.; et al. A Search for Muon-neutrino to Electron-neutrino and Muon-antineutrino to Electron-antineutrino Oscillations at NuTeV. Phys. Rev. Lett. 2002, 89, 011804. [Google Scholar] [CrossRef]
- Armbruster, B.; Blair, I.M.; Bodmann, B.A.; Booth, N.E.; Drexlin, G.; Edgington, J.A.; Eichner, C.; Eitel, K.; Finckh, E.; Gemmeke, H.; et al. Upper limits for neutrino oscillations muon-antineutrino to electron-antineutrino from muon decay at rest. Phys. Rev. D 2002, 65, 112001. [Google Scholar] [CrossRef]
- Kostelecký, V.A.; Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev. D 2002, 66, 056005. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Differential limit on the extremely-high-energy cosmic neutrino flux in the presence of astrophysical background from nine years of IceCube data. Phys. Rev. D 2018, 98, 062003. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; et al. The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors. arXiv 2015, arXiv:1510.05223. Available online: https://arxiv.org/abs/1510.05223 (accessed on 1 June 2021).
- Torri, M.C.D.; Caccianiga, L.; di Matteo, A.; Maino, A.; Miramonti, L. Predictions of Ultra-High Energy Cosmic Ray Propagation in the Context of Homogeneously Modified Special Relativity. Symmetry 2020, 12, 1961. [Google Scholar] [CrossRef]
- Farzan, Y.; Smirnov, A.Y. Coherence and oscillations of cosmic neutrinos. Nucl. Phys. B 2008, 805, 356–376. [Google Scholar] [CrossRef]
- Argüelles, C.A.; Katori, T.; Salvado, J. New Physics in Astrophysical Neutrino Flavor. Phys. Rev. Lett. 2015, 115, 161303. [Google Scholar] [CrossRef]
- Katori, T.; Argüelles, C.A.; Farrag, K.; Mandalia, S. Test of Lorentz Violation with Astrophysical Neutrino Flavor in IceCube. In Proceedings of the Eighth Meeting on CPT and Lorentz Symmetry, Bloomington, IN, USA, 12–16 May 2019; pp. 166–169. [Google Scholar]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector. Science 2013, 342, 1242856. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T.C.; et al. Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data. Phys. Rev. Lett. 2014, 113, 101101. [Google Scholar] [CrossRef]
- Mena, O.; Palomares-Ruiz, S.; Vincent, A.C. On the flavor composition of the high-energy neutrino events in IceCube. Phys. Rev. Lett. 2014, 113, 091103. [Google Scholar] [CrossRef]
- Mena, O.; Palomares-Ruiz, S.; Vincent, A.C. Spectral analysis of the high-energy IceCube neutrinos. Phys. Rev. D 2015, 91, 103008. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T.C.; et al. Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube. Phys. Rev. Lett. 2015, 114, 171102. [Google Scholar] [CrossRef]
- Palladino, A.; Pagliaroli, G.; Villante, F.; Vissani, F. Which is the flavor of cosmic neutrinos seen by IceCube? Phys. Rev. Lett. 2015, 114, 171101. [Google Scholar] [CrossRef] [PubMed]
- Kawanaka, N.; Ioka, K. Neutrino Flavor Ratios Modified by Cosmic Ray Secondary Acceleration. Phys. Rev. D 2015, 92, 085047. [Google Scholar] [CrossRef]
- Hirata, K.; Kajita, T.; Koshiba, M.; Nakahata, M.; Oyama, Y.; Sato, N.; Suzuki, A.; Takita, M.; Totsuka, Y.; Kifune, T.; et al. Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 1987, 58, 1490–1493. [Google Scholar] [CrossRef] [PubMed]
- Bionta, R.M.; Blewitt, G.; Bratton, C.B.; Casper, D.; Ciocio, A.; Claus, R.; Cortez, B.; Crouch, M.; Dye, S.T.; Errede, S.; et al. Observation of a neutrino burst in coincidence with supernova 1987A in the Large Magellanic Cloud. Phys. Rev. Lett. 1987, 58, 1494–1496. [Google Scholar] [CrossRef]
- Longo, M.J. Tests of relativity from SN1987A. Phys. Rev. D 1987, 36, 3276–3277. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Nandori, I.; Somogyi, G. Lorentz Breaking and SU(2)L x U(1)Y Gauge Invariance for Neutrino Decays. Int. J. Mod. Phys. E 2019, 28, 1950072. [Google Scholar] [CrossRef]
- Jentschura, U.D. Squeezing the Parameter Space for Lorentz Violation in the Neutrino Sector by Additional Decay Channels. Particles 2020, 3, 41. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array. JCAP 2016, 01, 037. [Google Scholar]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Constraints on ultra-high-energy cosmic ray sources from a search for neutrinos above 10 PeV with IceCube. Phys. Rev. Lett. 2016, 117, 241101. [Google Scholar] [CrossRef] [PubMed]
- Pisanti, O. Astrophysical neutrinos: Theory. J. Phys. Conf. Ser. 2019, 1263, 012004. [Google Scholar] [CrossRef]
- Deligny, O. The energy spectrum of ultra-high energy cosmic rays measured at the Pierre Auger Observatory and at the Telescope Array. In Proceedings of the 36th International Cosmic Ray Conference, Madison, WI, USA, 24 July–1 August 2019; p. 234. [Google Scholar]
- Álvarez-Muñiz, J.; Alves Batista, R.; Balagopal, V.; Bolmont, J.; Bustamante, M.; Carvalho, W., Jr.; Charrier, D.; Cognard, I.; Decoene, V.; Denton, P.B.; et al. The Giant Radio Array for Neutrino Detection (GRAND): Science and Design. Sci. China-Phys. Mech. Astron. 2020, 63, 219501. [Google Scholar] [CrossRef]
- Aab, A. Probing the origin of ultra-high-energy cosmic rays with neutrinos in the EeV energy range using the Pierre Auger Observatory. JCAP 2019, 10, 022. [Google Scholar] [CrossRef]
- Gorham, P.W.; Allison, P.; Banerjee, O.; Batten, L.; Beatty, J.J.; Belov, K.; Besson, D.Z.; Binns, W.R.; Bugaev, V.; Cao, P.; et al. Constraints on the ultra-high energy cosmic neutrino flux from the fourth flight of ANITA. Phys. Rev. D 2019, 99, 122001. [Google Scholar] [CrossRef]
- Allison, P.; Archambault, S.; Beatty, J.J.; Beheler-Amass, M.; Besson, D.Z.; Beydler, M.; Chen, C.C.; Chen, C.H.; Chen, P.; Clark, B.A.; et al. Constraints on the Diffuse Flux of Ultra-High Energy Neutrinos from Four Years of Askaryan Radio Array Data in Two Stations. Phys. Rev. D 2020, 102, 043021. [Google Scholar] [CrossRef]
- Anker, A.; Barwick, S.W.; Bernhoff, H.; Besson, D.Z.; Bingefors, N.; García-Fernández, D.; Gaswint, G.; Glaser, C.; Hallgren, A.; Hanson, J.C.; et al. A search for cosmogenic neutrinos with the ARIANNA test bed using 4.5 years of data. JCAP 2020, 03, 053. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Multi-messenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 2018, 361, eaat1378. [Google Scholar]
- Aartsen, M.G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Observation and Characterization of a Cosmic Muon Neutrino Flux from the Northern Hemisphere using six years of IceCube data. Astrophys. J. 2016, 833, 3. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Al Samarai, I.; Altmann, D.; Andeen, K.; Anderson, T.; et al. Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 2018, 361, 147–151. [Google Scholar]
- Crivellin, A.; Kirk, F.; Schreck, M. Implications of SU(2)L gauge invariance for constraints on Lorentz violation. J. High Energy Phys. 2021, 82. [Google Scholar] [CrossRef]
Coefficient | d | j | Number |
---|---|---|---|
odd, | |||
even, |
Coefficient | Bound | Coefficient | Bound |
---|---|---|---|
< | > | ||
< | > | ||
< | > | ||
< | > |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, Á. Astrophysical Neutrinos in Testing Lorentz Symmetry. Galaxies 2021, 9, 47. https://doi.org/10.3390/galaxies9030047
Roberts Á. Astrophysical Neutrinos in Testing Lorentz Symmetry. Galaxies. 2021; 9(3):47. https://doi.org/10.3390/galaxies9030047
Chicago/Turabian StyleRoberts, Ágnes. 2021. "Astrophysical Neutrinos in Testing Lorentz Symmetry" Galaxies 9, no. 3: 47. https://doi.org/10.3390/galaxies9030047
APA StyleRoberts, Á. (2021). Astrophysical Neutrinos in Testing Lorentz Symmetry. Galaxies, 9(3), 47. https://doi.org/10.3390/galaxies9030047