Analysis of the Open Cluster NGC 2281
Abstract
:1. Introduction
2. Photometric Observations
- Select APASS stars in the B and V images that have reasonable catalog errors (≤0.1 mag).
- Perform a least squares fit to observed magnitudes (m) and the catalog magnitudes (M) and colors (C) via the equation
- Remove observations that have residuals larger than a specified value (≤0.05 mag) and repeat the least squares fit to get the final transformation coefficients.
- Use the transformation coefficients to transform the instrumental magnitudes onto the standard system via Equation (1). Since the transformed color C is not known for non-APASS stars, a trial value is used to compute B and V, the trial value is replaced with the computed (), and then B and V are recomputed. This process is iterated until the value converges.
3. Variable Stars
3.1. The Eclipsing Binary GSC 2945:01857
3.2. GSC 2945:01760
4. Cluster Properties
4.1. Membership Probabilities
4.2. Distance and Age
4.3. Membership and Importance of GSC 2945:01857
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAVSO | American Association of Variable Star Observers |
APASS | AAVSO Photometric All-Sky Survey |
References
- Henden, A.A.; Levine, S.; Terrell, D.; Welch, D.L.; Kloppenborg, B.K. APASS Data Release 10. Manuscript in Preparation.
- Brown, A.G.; Vallenari, A.; Prusti, T.; De Bruijne, J.H.; Mignard, F.; Drimmel, R.; Babusiaux, C.; Bailer-Jones, C.A.; Bastian, U.; Biermann, M.; et al. Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties. Astron. Astrophys. 2016, 595, A2. [Google Scholar]
- Prusti, T.; De Bruijne, J.H.; Brown, A.G.; Vallenari, A.; Babusiaux, C.; Bailer-Jones, C.A.; Bastian, U.; Biermann, M.; Evans, D.W.; Eyer, L.; et al. The Gaia Mission. Astron. Astrophys. 2016, 595, A1. [Google Scholar]
- VandenBerg, D.A.; Stetson, P.B. On the Old Open Clusters M67 and NGC 188: Convective Core Overshooting, Color-Temperature Relations, Distances, and Ages. Publ. Astron. Soc. Pac. 2004, 116, 997–1011. [Google Scholar] [CrossRef]
- VandenBerg, D.A.; Denissenkov, P.A. Constraints on the Distance Moduli, Helium and Metal Abundances, and Ages of Globular Clusters from their RR Lyrae and Non-variable Horizontal-branch Stars. III. M55 and NGC 6362. Astrophys. J. 2018, 862, 72–100. [Google Scholar] [CrossRef] [Green Version]
- Leaman, R.; VandenBerg, D.A.; Mendel, J.T. The bifurcated age-metallicity relation of Milky Way globular clusters and its implications for the accretion history of the galaxy. Mon. Not. R. Astron. Soc. 2013, 436, 122–135. [Google Scholar] [CrossRef] [Green Version]
- Yoshizawa, M. Study of the intermediate-age galactic cluster NGC 2281. I. UBV photoelectric observations, binary frequency, and the luminosity function of bright members. Publ. Astron. Soc. Jpn. 1978, 30, 123–138. [Google Scholar]
- Alcaino, G. The Galactic Cluster NGC 2281. Astrophys. J. 1967, 147, 112–116. [Google Scholar] [CrossRef]
- Pesch, P. Photometric and Objective Prism Observations in Three Galactic Clusters. Astrophys. J. 1961, 134, 602–611. [Google Scholar] [CrossRef]
- Vasilevskis, S.; Balz, A.G.A. Relative proper motions of stars in the region of the open cluster NGC 2281. Astron. J. 1959, 64, 170–174. [Google Scholar] [CrossRef]
- Francic, S.P. Mass Function for Eight Nearby Galactic Clusters. Astron. J. 1989, 98, 888–925. [Google Scholar] [CrossRef]
- Wilson, R.E. Eclipsing Binary Solutions in Physical Units and Direct Distance Estimation. Astrophys. J. 2008, 672, 575–589. [Google Scholar] [CrossRef]
- Denny, R. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System. In Proceedings of the Conference Telescopes from Afar, Waikoloa Beach, HI, USA, 28 February–3 March 2011. [Google Scholar]
- Denny, R. Dispatch Scheduling of Automated Telescopes. In Proceedings of the Society for Astronomical Sciences 23rd Annual Symposium on Telescope Science, Big Bear, CA, USA, 26–27 May 2004. [Google Scholar]
- Bertin, E.; Arnouts, S. SExtractor: Software for source extraction. Astron. Astrophys. Suppl. 1996, 117, 393–404. [Google Scholar] [CrossRef]
- Bertin, E. Automated Morphometry with SExtractor and PSFEx. In Proceedings of the Astronomical Data Analysis Software and Systems XX, Boston, MA, USA, 7–11 November 2010; Volume 442, pp. 435–438. [Google Scholar]
- Welch, D.L.; Stetson, P.B. Robust Variable Star Detection Techniques Suitable for Automated searches: New Results for NGC 1866. Astron. J. 1993, 105, 1813–1821. [Google Scholar] [CrossRef]
- Scargle, J. Studies in astronomical time series analysis. II. Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J. 1982, 263, 835–853. [Google Scholar] [CrossRef]
- von Neumann, J. Distribution of the Ratio of the Mean Square Successive Difference to the Variance. Ann. Math. Stat. 1941, 12, 367–395. [Google Scholar] [CrossRef]
- von Neumann, J. A Further Remark Concerning the Distribution of the Ratio of the Mean Square Successive Difference to the Variance. Ann. Math. Stat. 1942, 13, 86–88. [Google Scholar] [CrossRef]
- Kim, D.-W.; Protopapas, P.; Bailer-Jones, C.A.L.; Byun, Y.-I.; Chang, S.-W.; Marquette, J.-B.; Shin, M.-S. The EPOCH Project. I. Periodic variable stars in the EROS-2 LMC database. Astron. Astrophys. 2014, 566, A43. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.E.; Devinney, E.J. Realization of Accurate Close-Binary Light Curves: Application to MR Cygni. Astrophys. J. 1971, 166, 605–619. [Google Scholar] [CrossRef]
- Wilson, R.E. Eccentric orbit generalization and simultaneous solution of binary star light and velocity curves. Astrophys. J. 1979, 234, 1054–1066. [Google Scholar] [CrossRef]
- Wilson, R.E. Accuracy and Efficiency in the Binary Star Reflection Effect. Astrophys. J. 1990, 356, 613–622. [Google Scholar] [CrossRef]
- Terrell, D.; Wilson, R.E. Photometric Mass Ratios of Eclipsing Binary Stars. Astrophys. Space Sci. 2005, 296, 221–230. [Google Scholar] [CrossRef]
- Vasilevskis, S.; Klemola, A.; Preston, G. Relative proper motions of stars in the region of the open cluster NGC 6633. Astron. J. 1958, 63, 387–395. [Google Scholar] [CrossRef]
- Kharchenko, N.V.; Piskunov, A.E.; Röser, S.; Schilbach, E.; Scholz, R.-D. Astrophysical parameters of Galactic open clusters. Astron. Astrophys. 2005, 438, 1163–1173. [Google Scholar] [CrossRef] [Green Version]
- Kharchenko, N.V. All-sky compiled catalogue of 2.5 million stars. Kinemat. Phys. Celest. Bodies 2001, 17, 409–423. [Google Scholar]
- Gao, X.-H. Membership and fundamental parameters of the intermediate-age open clusters NGC 2281 and NGC 2539 based on Gaia-DR2. Publ. Astron. Soc. Jpn. 2019, 71, 62. [Google Scholar] [CrossRef]
- Lindegren, L.; Hernández, J.; Bombrun, A.; Klioner, S.; Bastian, U.; Ramos-Lerate, M.; De Torres, A.; Steidelmüller, H.; Stephenson, C.; Hobbs, D.; et al. Gaia Data Release 2: The astrometric solution. Astron. Astrophys. 2018, 616, A2. [Google Scholar] [CrossRef] [Green Version]
- Wilson, R.E.; Hurley, J.R. Impersonal parameters from Hertzsprung-Russell diagrams. Mon. Not. R. Astron. Soc. 2003, 344, 1175–1186. [Google Scholar] [CrossRef]
- Wilson, R.E. Improving CMD Areal Density Analysis: Algorithms and Strategies. J. Astron. Space Sci. 2014, 31, 121–130. [Google Scholar] [CrossRef]
- Bressan, A.; Marigo, P.; Giradi, L.; Salasnich, B.; Dal Cero, C.; Rubele, S.; Nanni, A. PARSEC: Stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 2012, 427, 127–145. [Google Scholar] [CrossRef] [Green Version]
- Schlafly, E.F.; Finkbeiner, D.P. Measuring Reddening with Sloan Digital Sky Survey Stellar Spectra and Recalibrating SFD. Astrophys. J. 2011, 737, 103. [Google Scholar] [CrossRef]
- Glaspey, J.W. A spectroscopic study of the open cluster NGC 2281. Publ. Astron. Soc. Pac. 1987, 99, 1089–1092. [Google Scholar] [CrossRef]
Gaia DR2 ID | R.A. | Dec. | B | V | |||||
---|---|---|---|---|---|---|---|---|---|
951676899239237632 | 102.090500 | 41.302285 | 8.661 | 0.073 | 7.452 | 0.124 | 0.998 | 14 | 14 |
945679509986190848 | 101.734608 | 41.180515 | 9.496 | 0.023 | 8.328 | 0.021 | 0.000 | 316 | 301 |
951480155378231424 | 102.170191 | 41.066461 | 8.989 | 0.021 | 8.695 | 0.018 | 0.992 | 299 | 316 |
951468163829512192 | 102.496837 | 40.997471 | 8.977 | 0.028 | 8.825 | 0.021 | 0.998 | 314 | 298 |
951481083091175808 | 102.086839 | 41.084098 | 9.036 | 0.022 | 8.876 | 0.014 | 0.998 | 285 | 268 |
HJD | B | HJD | V |
---|---|---|---|
2,456,305.76174 | 12.900 | 2,456,305.76042 | 12.285 |
2,456,305.77159 | 12.900 | 2,456,305.77382 | 12.286 |
2,456,305.78881 | 12.894 | 2,456,305.78782 | 12.288 |
2,456,305.79812 | 12.888 | 2,456,305.79917 | 12.278 |
2,456,307.79320 | 12.902 | 2,456,307.79177 | 12.278 |
Quantity | Value |
---|---|
(mas) | 1.89 ± 0.11 |
(mas yr) | −2.92 ± 0.43 |
(mas yr) | −8.32 ± 0.41 |
Z | E(B-V) | SMD | N | |
---|---|---|---|---|
and =5 | ||||
8.80 | 0.02 | 0.123 | 1.0 | 1 |
8.808 ± 0.012 | 0.02 ± 0.0 | 0.118 ± 0.005 | 1.01 | 50 |
8.819 ± 0.018 | 0.021 ± 0.001 | 0.103 ± 0.013 | 1.05 | 622 |
and =5 | ||||
8.82 | 0.018 | 0.125 | 1.0 | 1 |
8.816 ± 0.005 | 0.018 ± 0.0 | 0.123 ± 0.002 | 1.01 | 15 |
8.823 ± 0.018 | 0.020 ± 0.001 | 0.103 ± 0.014 | 1.05 | 349 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Terrell, D.; Gross, J.; Cooney, W.R., Jr. Analysis of the Open Cluster NGC 2281. Galaxies 2021, 9, 7. https://doi.org/10.3390/galaxies9010007
Terrell D, Gross J, Cooney WR Jr. Analysis of the Open Cluster NGC 2281. Galaxies. 2021; 9(1):7. https://doi.org/10.3390/galaxies9010007
Chicago/Turabian StyleTerrell, Dirk, John Gross, and Walter R. Cooney, Jr. 2021. "Analysis of the Open Cluster NGC 2281" Galaxies 9, no. 1: 7. https://doi.org/10.3390/galaxies9010007
APA StyleTerrell, D., Gross, J., & Cooney, W. R., Jr. (2021). Analysis of the Open Cluster NGC 2281. Galaxies, 9(1), 7. https://doi.org/10.3390/galaxies9010007