Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation
Abstract
:1. Introduction
2. Treatment of the Light Curves of Ebs
2.1. Light Curves of Various Ebs and Models for Their Analysis
2.1.1. Aldedo, Limb and Gravity Darkening
2.1.2. Dark Spots and Corresponding Dark-Spots Models
3. Treatment of the (O-C) Diagrams of EBs
3.1. Period Variations
3.2. The Construction of an (O-C) Diagram
3.3. Ways of an (O-C) Diagram Analysis
4. Discussion
Funding
Conflicts of Interest
References
- Szymanski, M.; Kubiak, M.; Udalski, A. Contact binaries in OGLE-I database. Acta Astron. 2001, 51, 259–273. [Google Scholar]
- Pietrukowich, P.; Soszyński, I.; Udalski, A.; Szymański, M.K.; Wyrzykowski, L.; Poleski, R.; Kozlowski, S.; Skowron, M.K.; Mróz, P.; Pawlak, M.; et al. Eclipsing binary stars in the OGLE-III galactic disk fields. Acta Astron. 2013, 63, 115–133. [Google Scholar]
- Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M.K.; Wyrzykowski, L.; Ulaczyk, K.; Poleski, R.; Kozlowski, S.; Skowron, D.M.; et al. The OGLE collection of variable stars. Over 45,0000 eclipsing and ellipsoidal binary systems towards the galactic bulge. Acta Astron. 2016, 66, 405–420. [Google Scholar]
- Udalski, A. Eclipsing binaries in the magellanic clouds. In Proceedings of the Twenty-Fifth General Assembly, Sydney 2003; Engvold, O., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 13, p. 451. [Google Scholar]
- Pawlak, M.; Soszyński, I.; Udalski, A.; Szymański, M.K.; Wyrzykowski, L.; Ulaczyk, K.; Poleski, R.; Pietrukowicz, P.; Kozlowski, S.; Skowron, D.M.; et al. The OGLE collection of variable stars. Eclipsing binaries in the magellanic system. Acta Astron. 2016, 66, 421–432. [Google Scholar]
- Muraveva, T.; Clementini, G.; Maceroni, C.; Evans, C.J.; Moretti, M.I.; Cioni, M.-R.L.; Marquette, J.B.; Ripepi, V.; de Grijs, R.; Groenewegen, M.A.T.; et al. Eclipsing binary stars in the Large Magellanic Cloud: Results from EROS-2, OGLE and VMC surveys. Mon. Not. R. Astron. Soc. 2014, 443, 432–445. [Google Scholar] [CrossRef] [Green Version]
- Deleuil, M.; Aigrain, S.; Moutou, C.; Cabrera, J.; Bouchy, F.; Deeg, H.J.; Almenara, J.-M.; Hébrard, G.; Santerne, A.; Alonso, R.; et al. Planets, candidates and binaries from CoRoT/Exoplanet Program, the CoRoT transit catalogue. Astron. Astrophys. 2018, 619, 97–122. [Google Scholar] [CrossRef]
- Harries, T.J.; Hilditch, R.W.; Howarth, I.D. Ten eclipsing binaries in the SMC: Fundamental parameters and cloud distance. Mon. Not. R. Astron. Soc. 2003, 339, 157–172. [Google Scholar] [CrossRef]
- Hilditch, R.W.; Howarth, I.D.; Harries, T.J. Forty Eclipsing Binaries in the SMC: Fundamental parameters and cloud distance. Mon. Not. R. Astron. Soc. 2005, 357, 304. [Google Scholar] [CrossRef] [Green Version]
- Guinan, E.P.; Ribas, I.; Fitzpatric, E.L. Eclipsing Binaries in local group galaxies: Physical properties of the stars and calibration of the zero-point of the cosmic distance scale. In Variable Stars in the Local Group; Kurtz, D.W., Polland, K.R., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2004; Volume 310, pp. 363–371. [Google Scholar]
- Ribas, I.; Jordi, C.; Vilardell, F.; Giménez, A.; Guinan, E.F. A program to determine a direct and accurate distance to M31 from eclipsing binaries. New Astron. Rev. 2004, 48, 755–758. [Google Scholar] [CrossRef]
- Ribas, I.; Jordi, C.; Vilardell, F.; Giménez, A.; Guinan, E.F. First determination of the distance and fundamental properties of an eclipsing binary in the andromeda galaxy. Astrophys. J. 2005, 635, L37–L49. [Google Scholar] [CrossRef] [Green Version]
- Bonanos, A.Z.; Stanek, K.Z.; Kudritzki, R.P.; Macri, L.M.; Sasselov, D.D.; Kaluzny, J.; Stetson, P.B.; Bersier, D.; Bresolin, F.; Matheson, T.; et al. The first DIRECT distance determination to a detached eclipsing binary in M33. Astrophys. J. 2006, 652, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Guinan, E.P.; Prsa, A.; Fitzpatrick, E.L.; Bonanos, A.Z.; Engle, S.G.; Devinney, E.J.; Recker, G. Eclipsing Binaries as accurate extragalactic distance indicators: Refining the distance to the triangulum spiral galaxy M33. Am. Astron. Soc. Meet. 2013, 222, 10305. [Google Scholar]
- Doyle, L.R.; Carter, J.A.; Fabrycky, D.C.; Slawson, R.W.; Howell, S.B.; Winn, J.N.; Orosz, J.A.; Přsa, A.; Welsh, W.; Quinn, S.N.; et al. Kepler-16: A transiting circumbinary planet. Science 2011, 333, 1602–1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welsh, W.F.; Orosz, J.A.; Carter, J.A.; Febrycky, D.C.; Ford, E.B.; Lissauer, J.J.; Přsa, A.; Quinn, S.N.; Ragozzine, D.; Short, D.R.; et al. Transiting circum binary planets Kepler -34b & Kepler-35b. Nature 2012, 481, 475. [Google Scholar] [PubMed]
- Mkrtchian, D.E.; Nazarenko, V.; Gamarova, A.; Yu, A.; Lehmann, H.; Rodriguez, E.; Olson, E.C.; Kim, S.-L.; Kusakin, A.V.; Rovithis-Livaniou, H. Pulsations in algols. In Interplay of Periodic Cyclic and Stochastic Variability in Selected Areas of the H-R Diagram; Sterken, C., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 292, pp. 113–120. [Google Scholar]
- Kim, S.-L.; Lee, J.W.; Kwon, S.-G.; Youn, J.-H.; Mkrtchian, D.E. Search for A-F spectral type pulsating components in Algol type eclipsing binary systems. Astron. Astrophys. 2003, 405, 231–236. [Google Scholar] [CrossRef]
- Kim, S.-L.; Lee, C.-U.; Koo, J.-R.; Kang, Y.B.; Lee, J.W.; Mkrtchian, D.E. Discovery of a short-periodic pulsating component in the Algol-type Eclipsing Binary System IV cas. Inf. Bull. Var. Stars 2005, 5669, 1. [Google Scholar]
- Mkrtichian, D.; Kusakin, A.V.; Rodriguez, E.; Gamarova, A.Y.; Kim, C.; Kim, S.-L.; Lee, J.W.; Youn, J.-H.; Kang, Y.W.; et al. Frequency spectrum of the rapidly-oscillating mass-accreting component of the Algol-type system AS Eri. Astron. Astrophys. 2004, 419, 1015–1024. [Google Scholar] [CrossRef] [Green Version]
- Mkrtichian, D.; Kim, S.-L.; Kusakin, A.V.; Rovithis-Livaniou, H.; Rovithis, P.; Lampens, P.; van Cauteren, P.; Shobbrook, R.R.; Rodriguez, E.; Gamarova, A.; et al. A search for pulsating, mass-accreting components in Algol-type eclipsing binaries. Astrophys. Space Sci. 2006, 304, 169–171. [Google Scholar] [CrossRef]
- Zavros, P.; Tsantilas, S.; Rovithis-Livaniou, H. AO Serpentis: Observations and interpretations. Rom. Astron. J. Suppl. 2008, 18, 113–122. [Google Scholar]
- Southworth, J.; Zima, W.; Aerts, C.; Bruntt, H.; Lehmann, H.; Kim, S.-L.; Kurtz, D.W.; Pavlovski, K.; Prsa, A.; Smalley, B.; et al. Kepler photometry of KIC 10661783: A binary star with total eclipses and δ Scuti pulsations. Mon. Not. R. Astron. Soc. 2011, 414, 2413–2423. [Google Scholar] [CrossRef]
- Moe, M.; Di Stefano, R. A new class of nascent eclipsing binaries with extreme mass ratios. Astrophys. J. 2015, 810, 61. [Google Scholar] [CrossRef] [Green Version]
- Russell, H.N.; Merrill, J.E. The Determination of the Elements of Eclipsing Binaries; Contributions from the Princeton University Observatory: Princeton, NJ, USA, 1952. [Google Scholar]
- Wood, D.B. A computer program for modelling non spherical eclipsing binary star systems. Publ. Astron. Soc. Pacific 1973, 85, 253. [Google Scholar] [CrossRef] [Green Version]
- Kopal, Z. Language of the Stars. A Discourse on the Theory of the Light Changes of Eclipsing Variables; Astrophysics & Space Science Library; Reidel: Dordrecht, The Netherlands, 1979. [Google Scholar]
- Livaniou, H. Fourier Analysis of the light curves of eclipsing variable stars. I. Photometric perturbations for total and transit eclipses. Astrophys. Space Sci. 1977, 51, 77–109. [Google Scholar] [CrossRef]
- Rovithis-Livaniou, H. Fourier Analysis of the light curves of eclipsing variable stars. II. Photometric perturbations for partial eclipses. Astrophys. Space Sci. 1977, 52, 271–306. [Google Scholar] [CrossRef]
- Rovithis-Livaniou, H. Evaluation of the Photometric Perturbations in close binary systems. I: Tidal distortion. Astrophys. Space Sci. 1983, 97, 171–202. [Google Scholar] [CrossRef]
- Rovithis-Livaniou, H. Evaluation of the Photometric Perturbations in close binary systems. II: Rotational distortion. Astrophys. Space Sci. 1984, 104, 1–17. [Google Scholar] [CrossRef]
- Tsouroplis, A.G. Determination of the elements of EV RW Tauri and U Sagittae by an analysis of the light changes in the frequency domain. Astrophys. Space Sci. 1977, 47, 361–370. [Google Scholar] [CrossRef]
- Gudur, N. A two-colour photoelectric investigation of the eclipsing binary system AG Persei. Astrophys. Space Sci. 1978, 57, 17–39. [Google Scholar] [CrossRef]
- Niarchos, P.G. Fourier analysis of the light curves of W UMa-type stars. Astrophys. Space Sci. 1978, 58, 301–333. [Google Scholar] [CrossRef]
- Edalati, M.T. Analysis of the light-curves of RT Persei by automatized Fourier Techniques. Astrophys. Space Sci. 1978, 58, 3–19. [Google Scholar] [CrossRef]
- Koul, J.; Abhyankar, K.O. Analysis of the UBV light-curves of TT Hydrae by Kopal’s frequency domain method. J. Astrophys. Astron. 1982, 3, 93–99. [Google Scholar] [CrossRef]
- Rovithis-Livaniou, H.; Rovithis, P. Light curves analysis of AB Andromedae. Astron. Nachr. 1986, 307, 17–19. [Google Scholar] [CrossRef]
- Rovithis, P.; Rovithis-Livaniou, H. The eclipsing system ER Orionis. Astron. Astrophys. 1986, 155, 46–50. [Google Scholar]
- Hill, G. Description of an eclipsing binary light-curve computer code with application to Y Sex and the W UMa code of Rucinsci. Publ. Dom. Obs. Vic. 1979, 15, 298–325. [Google Scholar]
- Hill, G.; Rucinski, S. Light 2: A light-curve modelling program of eclipsing binary stars. In Light Curve Modelling of Eclipsing Binary Stars; Milone, E.F., Ed.; Springer: New York, NY, USA, 1993; Volume 21, pp. 135–150. [Google Scholar]
- Bradstreet, D.H. Binary Maker 2.0. In Light Curve Modelling of Eclipsing Binary Stars; Milone, E.F., Ed.; Springer: New York, NY, USA, 1993; Volume 21, pp. 151–166. [Google Scholar]
- Etzel, P.B. User’s Guide, 3rd ed.; Department of Astronomy, University of California: Los Angeles, CA, USA, 1890. [Google Scholar]
- Djurašević, G. An analysis of active close binaries/CB/based on photometric measurements. Astrophys. Space Sci. 1992, 197, 17–31. [Google Scholar] [CrossRef]
- Wilson, R.E.; Devinney, E.J. Realization of accurate close-binary light curves: Application to MR cygni. Astrophys. J. 1971, 166, 605. [Google Scholar] [CrossRef]
- Wilson, R.E. Binary Stars and their light-curves. In Astrophysics of Variable Stars; Sterken, C., Aerts, C., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2006; Volume 349, p. 71. [Google Scholar]
- Prša, A.; Zwitter, T. A computational guide to physics of eclipsing binaries, I. Demonstrations and perspectives. Astrophys. J. 2005, 628, 426–438. [Google Scholar] [CrossRef]
- Rovithis-Livaniou, H.; Fragoulopoulou, E.; Sergis, N.; Rovithis, P.; Kranidiotis, A. Study of the contact binary AK Herculis: Light curve analysis and orbital period investigation. Astrophys. Space Sci. 2001, 275, 337–348. [Google Scholar] [CrossRef]
- Dumitrescu, A.; Suran, M.D.; Tsantilas, S.; Rovithis-Livaniou, H. Analysis of the Eclipsing Binary II UMa. In Fifty Years of Romanian Astrophysics; Dumitrache, C., Poposcu, N.A., Duran, M.D., Mioc, V., Eds.; American Institute of Physics (AIP): College Park, MD, USA, 2007; Volume 978, pp. 259–262. [Google Scholar]
- Bonanos, A.Z.; Stanek, K.Z.; Udalski, A.; Wyrzykowski, L.; Żebruń, K.; Kubiak, M.; Szymański, M.K.; Szewczyk, O.; Pietrzyński, G.; Soszyński, I. WR 20a is an eclipsing binary: Accurate determination of parameters for an extremely massive Wolf-Rayer system. Astrophys. J. 2004, 611, L33–L36. [Google Scholar] [CrossRef] [Green Version]
- Milone, E.F. Light Curve Modelling of Eclipsing Binary Stars; Springer: New York, NY, USA, 1993. [Google Scholar]
- Kallrath, J.; Milone, E.F. Eclipsing Binary Stars: Modelling and Analysis; Springer: New York, NY, USA, 1999. [Google Scholar]
- Zhang, E.H. A Study of the Eclipses of Cataclysmic Variables. Ph.D. Thesis, The University of TEXAS, Austin, TX, USA, 1986. [Google Scholar]
- Djurašević, G. An analysis of active close binaries/CB/based on photometric measurements. Part two: Active close binaries with accretion discs. Astrophys. Space Sci. 1992, 196, 267–282. [Google Scholar] [CrossRef]
- Grygar, J.; Cooper, M.L.; Jurkevich, I. The limb-darkening problem in eclipsing binaries. Bulletin Astron. Inst. Czechoslov. 1972, 23, 147–174. [Google Scholar]
- Al-Naimiy, H.M. Linearized limb-darkening coefficients for use in analysis of eclipsing binaries light curves. Astrophys. Space Sci. 1978, 63, 181–192. [Google Scholar] [CrossRef]
- Diaz-Cordovés, J.; Claret, A.; Giménez, A. Linear and non linear limb-darkening coefficients for synthetic light-curve modelling of binary stars. In Light Curve Modelling of Eclipsing Binary Stars; Milone, E.F., Ed.; Springer: New York, NY, USA, 1993; Volume 21, pp. 131–134. [Google Scholar]
- Claret, A. A new non-linear limb-darkening low for LTE stellar atmosphere models. Calculations for −5.0 ≤ logM/H ≤ + 1, 200 K ≤ Teff ≤ 50000 K at several surface gravities. Astron. Astrophys. 2000, 363, 1081–1190. [Google Scholar]
- Kopal, Z.; Kitamura, M. Light and radial-velocity changes in close binary systems. In Advances in A&A; Elsevier: Amsterdam, The Netherlands, 1968; Volume 6, pp. 125–172. [Google Scholar]
- Rafert, J.B.; Twigg, L.W. Observational determination of the gravity darkening exponent and bolometric albedo for close star systems. Mon. Not. R. Astron. Soc. 1980, 193, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Kopal, Z. Gravity darkening in the algol system. Astrophys. Space Sci. 1979, 60, 441–453. [Google Scholar] [CrossRef]
- Claret, A. Studies on stellar rotation. II: Gravity-darkening the effects of the input physics and differential rotation. New results for very low mass stars. Astron. Astrophys. 2000, 359, 289. [Google Scholar]
- Djurašević, G.; Rovithis-Livaniou, H.; Rovithis, P.; Georgiades, N.; Erkapić, S.; Pavlović, R. Gravity-darkening exponents in semi-detached binary systems from their photometric observations I. Astron. Astrophys. 2003, 402, 667–682. [Google Scholar] [CrossRef]
- Djurašević, G.; Rovithis-Livaniou, H.; Rovithis, P.; Georgiades, N.; Erkapić, S.; Pavlović, R. Gravity-darkening exponents in semi-detached binary systems from their photometric observations II. Astron. Astrophys. 2006, 445, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Budding, E. The interpretation of cyclical photometric variations in certain dwarf Me type stars. Astrophys. Space Sci. 1977, 48, 207–223. [Google Scholar] [CrossRef]
- Eaton, J.A.; Hall, D.S. Starspots as the cause of intrinsic light variations in RS Canum Venaticorum type stars. Astrophys. J. 1979, 227, 907–922. [Google Scholar] [CrossRef]
- Budding, E.; Zeilik, M. An analysis of the light curves of short-period RS Canum Venaticorum stars: Starspots and fundamental properties. Astrophys. J. 1987, 319, 827–835. [Google Scholar] [CrossRef]
- Djurašević, G. An analysis of active close binaries/CB/based on photometric measurements. Part one: A model with spots on the components. Astrophys. Space Sci. 1992, 197, 241–265. [Google Scholar] [CrossRef]
- Rovithis-Livaniou, H. Chromospherically active single and binary stars: Spots, the solar-stellar Connection. Rom. Astron. J. S. 2007, 17, 41–52. [Google Scholar]
- Rovithis, P.; Rovithis-Livaniou, H. A note on X Trianguli. Inf. Bull. Var. Stars 1983, 2448, 2. [Google Scholar]
- Dimitrov, D.P.; Kjurkchieva, D.P. GSC 2314-0530: The shortest-period eclipsing system with dMe components. Mon. Not. R. Astron. Soc. 2010, 406, 2559–2568. [Google Scholar] [CrossRef] [Green Version]
- Šmelcer, L.; Wolf, M.; Kučáková, H.; Bilek, F.; Dubovský, P.; Hoňková, K.; Vraštil, J. Flare activity on low-mass eclipsing binary GJ 3236. Mon. Not. R. Astron. Soc. 2017, 466, 2542–2546. [Google Scholar] [CrossRef]
- Luo, C.-Q.; Zhang, X.-B.; Wang, K.; Liu, C.; Fang, X.; Zhang, C.; Deng, L.; Nie, J.; Fox-Machado, L.; Luo, Y.; et al. Frequent flare events on the short-period M-type eclipsing binary BX Tri. Astrophys. J. 2019, 871, 203–216. [Google Scholar] [CrossRef]
- Gao, Q.; Xin, Y.; Liu, J.-F.; Zhang, X.-B.; Gao, S. While light flares on close binaries observed by Kepler. Astrophys. J. 2016, 224, 37–49. [Google Scholar] [CrossRef] [Green Version]
- Kaya, N.Ö.; Dal, H.A. Chromospheric activity behaviour of an eclipsing binary system KOI 68AB. Astron. Nachrichten 2019, 340, 539–552. [Google Scholar] [CrossRef]
- Rovithis-Livaniou, H. Period changes of close binary systems. Astrophys. Space Sci. 2005, 296, 91–99. [Google Scholar] [CrossRef]
- Irwin, J.B. Standard light-time curves. Astron. J. 1959, 64, 149–155. [Google Scholar] [CrossRef]
- Claret, A.; Giménez, A. The apsidal motion test of the internal stellar structure: Comparison between theory and observations. Astron. Astrophys. 1993, 277, 487–502. [Google Scholar]
- Claret, A.; Torres, D.; Wolf, M. DI Her as test of Internal stellar structure and general relativity. New apsidal motion rate and evolutionary models. Astron. Astrophys. 2010, 515, 4–10. [Google Scholar] [CrossRef] [Green Version]
- Pribulla, T.; Chochol, D.; Rovithis-Livaniou, H.; Rovithis, P. The contact binary AW Ursae Majoris as a member of a multiple system. Astron. Astrophys. 1999, 345, 137–148. [Google Scholar]
- Tokovinin, A.; Thomas, S.; Sterzik, M.; Udry, S. Tertiary companions to close spectroscopic binaries. Astron. Astrophys. 2006, 450, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Rucinski, S.M.; Pribulla, T.; van Kerwijk, M.H. Contact binaries with additional components III. A search using adaptive optics. Astron. J. 2007, 134, 2353–2365. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, D.; McAlister, H.A.; Henry, T.J.; Latham, D.W.; Marcy, G.W.; Mason, B.D.; Gies, D.R. A survey of stellar families: Multiplicity of solar-type stars. Astrophys. J. Suppl. Ser. 2010, 190, 1–42. [Google Scholar] [CrossRef]
- Pribulla, T.; Rucinski, S.M. Contact binaries with additional components I. The extant data. Astron. J. 2006, 131, 2986–3007. [Google Scholar] [CrossRef]
- Tokovinin, A. The updated multiple star catalogue. Astrophys. J., Suppl. Ser. 2018, 235, 6–17. [Google Scholar] [CrossRef] [Green Version]
- Hong, K.; Kang, Y.W.; Lee, C.-U. Period studies of 79 eccentric eclipsing binaries in the large magellanic cloud. In Proceedings of the Tenth Pacific Rim Conference on Stellar Astrophysics, Seoul, Korea, 27–31 May 2013; Lee, H.-W., Kand, Y.-W., Leung, K.-C., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2014; Volume 482, pp. 119–126. [Google Scholar]
- Zasche, P.; Wolf, M.; Vraštil, J.; Pilarčik, L. Apsidal motion and a light curve solution for 13 LMC eccentric eclipsing binaries. Astron. J. 2015, 150, 183. [Google Scholar] [CrossRef]
- Zasche, P.; Wolf, M.; Vraštil, J.; Pilarčik, L.; Juryšek, J. The first study of the light-travel time effect in massive LMC eclipsing binaries. Astron. Astrophys. 2016, 590, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Zasche, P.; Wolf, M.; Vraštil, J. The first study of the light-travel time effect in the Small Magellanic Cloud. Mon. Not. R. Astron. Soc. 2017, 472, 2241–2248. [Google Scholar] [CrossRef] [Green Version]
- Borkovits, T.; Sperauskas, J.; Tokovinin, A.; Latham, D.W.; Csányi, I.; Hajdu, T.; Molnár, L. The compact multiple system HIP 41431. Mon. Not. R. Astron. Soc. 2019, 487, 4631–4647. [Google Scholar] [CrossRef]
- Borkovits, T.; Forgács-Dajka, E.; Rappaport, S.A. Third-body perturbed apsidal motion in eclipsing binaries. EAS Publ. Ser. 2019, 82, 99–106. [Google Scholar] [CrossRef]
- Lanza, A.F.; Rodono, M.; Rosner, R. Orbital period modulation and magnetic cycles in close binaries. Mon. Not. R. Astron. Soc. 1998, 296, 893–902. [Google Scholar] [CrossRef]
- Huang, S.S. A dynamical problem in binary systems and its bearing on stellar evolution. Astron. J. 1956, 61, 49–61. [Google Scholar] [CrossRef]
- Kruszewski, A. Exchange of matter and period changes in close binary systems. In Advances in Astron. & Astrophys; Elsevier: Amsterdam, The Netherlands, 1966; Volume 4, pp. 233–299. [Google Scholar]
- Van’t Veer, F.; Maceroni, C. The angular momentum loss for late-type stars. Astron. Astrophys. 1989, 220, 128–134. [Google Scholar]
- Maceroni, C.; van’t Veer, F. The evolution and synchronization of angular-momentum-losing G-type main sequence binaries. Astron. Astrophys. 1991, 246, 91–98. [Google Scholar]
- Stepien, K. Loss of angular momentum of cool close binaries and formation of contact systems. Mon. Not. R. Astron. Soc. 1995, 274, 1019–1028. [Google Scholar]
- Maceroni, C. Angular momentum loss and transfer in close binaries: Effects on human time-scale? New Astron. 1999, 43, 481–486. [Google Scholar] [CrossRef]
- Kolb, U.; Ritter, H. A comparative study of the evolution of a close binary using a standard and an improved technique for computing mass transfer. Astron. Astrophys. 1990, 263, 385–392. [Google Scholar]
- Hall, D.S.; Neff, S.G. Mass Transfer Rates in Algol Binaries deduced from their Period Changes. In Structure and Evolution of Close Binary Systems; IAUS Cambridge England 1975; Eggleton, P., Milton, S., Whelan, J., Eds.; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1976; Volume 73, pp. 283–288. [Google Scholar]
- Sarna, M.J. Chemical evolution of algol-type stars: Mass-exchanging in case AB and early B. Mon. Not. R. Astron. Soc. 1992, 259, 17–36. [Google Scholar] [CrossRef] [Green Version]
- King, A.R.; Watson, M.G. Mass transfer rates and the soft X-ray excess in AM Hercules binaries. Mon. Not. R. Astron. Soc. 1987, 227, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Schenker, K.; King, A.R. A new Evolutionary Picture for CVs and LMXBs II. The impact of thermal-time-scale mass transfer. In The Physics of Cataclysmic Variables and Related Objects; Günsicke, B.T., Beuermann, K., Reinsch, K., Eds.; Astronomical Society of the Pacific Conference Series: San Francisco, CA, USA, 2002; Volume 261, pp. 242–252. [Google Scholar]
- Büning, A.; Ritter, H. Numerical stability of mass transfer driven by roche over flow in close binaries. Astron. Astrophys. 2005, 445, 647–652. [Google Scholar] [CrossRef]
- Applegate, J.H.; Patterson, J. Magnetic activity, tides and orbital period changes in close binaries. Astrophys. J. 1987, 322, L99–L102. [Google Scholar] [CrossRef]
- Applegate, J.H. A mechanism for orbital period modulation in close binaries. Astrophys. J. 1992, 385, 621. [Google Scholar] [CrossRef]
- Matese, J.J.; Whitmire, D.P. Alternate period changes in close binaries. Astron. Astrophys. 1983, 117, L7–L9. [Google Scholar]
- Strassmeier, K.G.; Bopp, B.W. Time-series photometric SPOT modelling I parameter study and application to HD 17433 = VY Arietis. Astron. Astrophys. 1992, 259, 183–197. [Google Scholar]
- Oláh, K.; Kővári Zs Bartus, J.; Strassmeier, K.G.; Hall, D.S.; Henry, G.W. Time-series photometric SPOT modeling III thirty years in the life of HK Lacertae. Astron. Astrophys. 1997, 321, 811–821. [Google Scholar]
- Sterken, C. Binary pulsars, general relativity and light-time effects. In Proceedings of the ASP Conference Series, Brussels, Belgium, 19–22 July 2004; Sterken, C., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 335, pp. 3–23. [Google Scholar]
- Sterken, C. The light-time effect in astrophysics. Causes and cures of the O-C diagram. In Proceedings of the ASP Conference Series, Brussels, Belgium, 19–22 July 2004; Sterken, C., Ed.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2005; Volume 335. [Google Scholar]
- Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H. Efficiency of the O-C diagrams as diagnostic tools for long-period variations I. Wind-driven mass loss and magnetic braking. Astron. Astrophys. 2011, 535, 126–137. [Google Scholar] [CrossRef]
- Nanouris, N.; Kalimeris, A.; Antonopoulou, E.; Rovithis-Livaniou, H. Efficiency of ETV diagrams as diagnostic tools for long-term period variations. II. Non-conservative mass transfer, and gravitational radiation. Astron. Astrophys. 2015, 575, 64–77. [Google Scholar] [CrossRef] [Green Version]
- Kalimeris, A.; Rovithis-Livaniou, H.; Rovithis, P.; Oprescu, G.; Dumitrescu, A.; Suran, D.M. An orbital period study of the contact system AB Andromedae. Astron. Astrophys. 1994, 291, 765–774. [Google Scholar]
- Kalimeris, A.; Rovithis-Livaniou, H.; Rovithis, P. On the orbital period changes in contact binaries. Astron. Astrophys. 1994, 282, 775–786. [Google Scholar]
- Jetsu, L.; Pagano, I.; Moss, D.; Rodono, M.; Lanza, A.F.; Tuominen, I. Period changes of AR lacertae between 1900 and 1989. Astron. Astrophys. 1997, 326, 698–708. [Google Scholar]
- Koen, C. The analysis of indexed astronomical time series. X. Significance testing of O-C data. Mon. Not. R. Astron. Soc. 2006, 365, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Kalimeris, A.; Mitrou, C.K.; Doyle, J.G.; Antonopoulou, E.; Rovithis-Livaniou, H. An orbital period study of SZ Piscium. Astron. Astrophys. 1995, 293, 371–376. [Google Scholar]
- Qian, S.-B.; Liu, Q.-Y.; Yang, Y.-L. Orbital period studies of the RS CVn-type binaries. II. UV Piscium. Astrophys. Space Sci. 1999, 266, 529–538. [Google Scholar]
- Qian, S.-B.; Liu, Q.-Y.; Yang, Y.-L. A study of the periods of the active binary AR Lac. Astron. Astrophys. 1999, 23, 317–323. [Google Scholar] [CrossRef]
- Rovithis-Livaniou, H.; Kranidiotis, A.N.; Rovithis, P.; Athanassiades, G. Study of the period changes of X trianguli. Astron. Astrophys. 2000, 354, 904–908. [Google Scholar]
- Yang, Y.-L.; Liu, Q.-Y. RT leonis minoris: An unstable W ursae majoris system with a spotted component. Chin. J. Astron. Astrophys. 2004, 4, 553–562. [Google Scholar] [CrossRef]
- Manzoori, D.; Gozaliasl, G. A period study of the eclipsing binary U Sagittae. Astron. J. 2007, 133, 1302–1306. [Google Scholar] [CrossRef]
- Manzoori, D. Orbital period modulation of SW Cygni. Publ. Astron. Soc. Aust. 2007, 24, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Hasanzadeh, A.; Jassur, D.M.Z.; Kermani, M.H. Period changes and light curves analysis of eclipsing binary AB Andromedae. Astrophys. Space Sci. 2008, 317, 71–77. [Google Scholar] [CrossRef]
- Manzoori, D. The (O-C) curve analysis and simultaneous light curve solution of classical Algol system U Cephei. Astrophys. Space Sci. 2008, 318, 57–67. [Google Scholar] [CrossRef]
- Tsantilas, S.; Rovithis-Livaniou, H. VSAA: A method for analysis and prediction of quasi periodic phenomena. Commun. Asteroseismol. 2008, 157, 87–91. [Google Scholar]
- Reindel, A.; Bradley, P.A.; Tsantilas, S.; Guzik, J.A. Applying Fourier and VSAA to Solar Data. In Solar-Stellar Dynamos as Revealed by Helio and-Asteroseismology: GONG 2008/SOHO; Dikpati, M., Arentoft, T., González Hernández, I., Lindsey, C., Hill, F., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2009; Volume 416, pp. 533–536. [Google Scholar]
- Kolenberg, K.; Tsantilas, S. A different approach to analysing the Blazhko effect: The VSAA applied to RR Lyr. Commun. Asteroseismol. 2008, 157, 52–55. [Google Scholar]
- Pelt, J.; Olspert, N.; Mantere, M.J.; Tuominen, I. Multiperiodicity, modulations and flip-flops in variable stars light-curves—I. Carrier fit method. Astron. Astrophys. 2011, 535, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Kopal, Z. Close Binary Systems; Chapman & Hill: London, UK, 1959. [Google Scholar]
- Kopal, Z. Dynamics of Close Binary Stars; Reidel: Dordrect, The Nederlands, 1978. [Google Scholar]
- Hilditch, R.W. An Introduction to Close Binary Stars; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Graczyk, D.; Eyer, L. The light curve statistical moments analysis: The identification of eclipsing binaries. Acta Astron. 2008, 60, 109–119. [Google Scholar]
- Van Kerkwijk, M.H.; Rappaport, S.A.; Breton, R.P.; Justham, S.; Podsiadlowski, P.; Han, Z. Observations of doppler boosting in kepler light curves. Astrophys. J. 2010, 715, 51–58. [Google Scholar] [CrossRef]
- Hinners, T.A.; Tat, K.; Thort, R. Machine learning techniques for stellar light curve classification. Astron. J. 2018, 156, 7–30. [Google Scholar] [CrossRef] [Green Version]
- Rovithis-Livaniou, H.; Rovithis, P.; Oprescu, G.; Dumitrescu, A.; Suran, M.D. The GO Cygni system: A near contact eclipsing binary. Astron. Astrophys. 1997, 327, 1017–1022. [Google Scholar]
- Rovithis, P.; Rovithis-Livaniou, H.; Suran, M.D.; Fragoulopoulou, E.; Skopal, A. The first photometric study of the binary star WZ Cygni. Astron. Astrophys. 1999, 348, 184–188. [Google Scholar]
- Oláh, K.; Rappaport, S.; Borkovits, T.; Jacobs, T.; Latham, D.; Bieryla, A.; Biró, I.B.; Bartus, J.; Kővári, Z.; Vida, K.; et al. Eclipse Spotted giant with K2 and historical photometry. Astron. Astrophys. 2018, 620, 189–202. [Google Scholar] [CrossRef] [Green Version]
- Czesla, S.; Terzenbach, S.; Wichmann, R.; Schmitt, J.H.M.M. Spot evolution in the eclipsing binary CoRoT 105895502. Astron. Astrophys. 2019, 623, 107–116. [Google Scholar] [CrossRef]
- Djurašević, G.; Rovithis-Livaniou, H.; Rovithis, P.; Borkovits, T.; Biró, I.B. Possible accretion disk in DL Cygni system? New Astron. 2005, 10, 517–521. [Google Scholar] [CrossRef]
- Skopal, A.; Djurasevic, G.; Jones, A.; Drechsel, H.; Rovithis-Livaniou, H.; Rovithis, P. A photometric study of the eclipsing symbiotic binary AR Pav. Mon. Not. R. Astron. Soc. 2000, 311, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Dumitrescu, A.; Suran, M.D.; Rovithis-Livaniou, H.; Iliev, L. Analysis of the first ground-based Observations of the eclipsing binary hip 12039 (V376And). Rom. Astron. J. 2006, 16, 75–81. [Google Scholar]
- Prša, A.; Guinan, E.F.; Devinney, E.J.; DeGeorge, M.; Bradstreet, D.H.; Giammarco, J.M.; Alcock, C.R.; Engle, S.G. Artificial intelligence approach to the determination of physical properties of eclipsing binaries, I. The EBAI project. Astrophys. J. 2008, 687, 542–565. [Google Scholar] [CrossRef] [Green Version]
- Hause, C.; Prša, A.; Matijevic, G.; Guinan, E.F. Artificial neutral network solutions to eclipsing binary light curves from the kepler space telescope database. Am. Astron. Soc. 2017, 229, 229344408. [Google Scholar]
- Kalimeris, A.; Livaniou-Rovithis, H. On (m-P) and (J-P)-type relations for close binaries. Astrophys. Space Sci. 2006, 304, 111–113. [Google Scholar]
- Tylenda, R.; Haiduk, M.; Kamiński, T.; Udalski, A.; Soszyński, I.; Szymański, M.K.; Kubiak, M.; Pietrzyński, G.; Poleski, R.; Wyrzykowski, L.; et al. V1309 Scorpii: Merger of a contact binary. Astron. Astrophys. 2011, 528, 114–124. [Google Scholar] [CrossRef]
- Kalimeris, A.; Rovithis-Livaniou, H.; Rovithis, P. Star spots and the photometric noise on the O-C diagrams. Astron. Astrophys. 2002, 387, 969–976. [Google Scholar] [CrossRef] [Green Version]
- Gies, D.R.; Williams, S.J.; Matson, R.A.; Guo, Z.; Thomas, S.M.; Orosz, J.A.; Peters, G.J. A search for hierarchical Triples using kepler eclipse timing. Astron. J. 2012, 143, 137–145. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, C.; van Kerkwijk, M.H.; Rucinski, S.M. Contact binaries with additional components II. A spectroscopic search for faint tertiaries. Astron. J. 2006, 132, 650–662. [Google Scholar] [CrossRef] [Green Version]
- Juryšek, J.; Zasche, P.; Wolf, M.; Vraštil, L.; Vokrouhlický, D.; Skarka, M.; Liska, J.; Janik, J.; Zejda, M.; Kurfürst, P.; et al. New inclination changing eclipsing binary in the magellanic clouds. Astron. Astrophys. 2018, 609, 46–61. [Google Scholar] [CrossRef] [Green Version]
- Ibanoglu, C.; Keskin, V.; Akan, M.C.; Evren, S.; Tunca, Z. Long-term luminosity variations and period changes in V471 Tauri. Astron. Astrophys. 1994, 281, 811–816. [Google Scholar]
- Guinan, E.F.; Ribas, I. The best brown dwarf yet? A companion to the hyades eclipsing binary V471 Tauri. Astrophys. J. 2001, 546, L43–L47. [Google Scholar] [CrossRef]
- Mkrtichian, D.; Lehmann, H.; Rodrigez, E.; Olson, E.; Kim, S.-L.; Kusakin, A.V.; Lee, J.W.; Youn, J.-H.; Kwon, S.-G.; López-González, M.J.; et al. The eclipsing binary star RZ Cas: Accretion-driven variability of the multimode oscillation spectrum. Mon. Not. R. Astron. Soc. 2018, 475, 4745–4767. [Google Scholar] [CrossRef]
- Maceroni, C.; Lehman, H.; da Silva, R.; Montalbán, J.; Lee, C.-U.; Ak, H.; Deshpande, R.; Yakut, K.; Debosscher, J.; Guo, Z.; et al. KIC 3858884: A hybrid δ Scuti pulsator in a highly eccentric eclipsing binary. Astron. Astrophys. 2014, 563, 59–76. [Google Scholar] [CrossRef]
- Marconi, M.; Molinaro, R.; Bono, G.; Pietrzyński, G.; Gieren, W.; Pilecki, B.; Stellingwerf, R.F.; Graczyk, D.; Smolec, R.; Konorski, P.; et al. The eclipsing binary cepheid OGLE-LMC-CEP-0227 in the large magellanic cloud: Pulsation modeling of light and radial velocity curves. Astrophys. J. 2013, 768, L6–L15. [Google Scholar] [CrossRef] [Green Version]
- Derekas, A.; Borkovits, T.; Fuller, J.; Szabó, G.M.; Pavlovski, K.; Csák, B.; Dózsa, Á.; Kovács, J.; Szabó, R.; Hambleton, K.M.; et al. HD183648: A Kepler eclipsing binary with anomalous ellipsoidal variations and a pulsating component. In The Space Photometry Revolution, -CoRoT Symp 3, Kepler KASC-7 Joint Meeting, 2015, EPJ of Conferences 101, id.06021; Garcia, R.A., Ballot, J., Eds.; EDP Sciences: Paris, France, 2015. [Google Scholar]
- Meng, Z.; Quillen, A.C.; Bell, C.P.M.; Mamajek, E.E.; Scott, E.L.; Zhou, J.-L. A search for eclipsing binaries that host discs. Mon. Not. R. Astron. Soc. 2014, 441, 3733–3741. [Google Scholar] [CrossRef] [Green Version]
- Garcés, L.J.; Mennickent, R.E.; Djurašević, G.; Poleski, R.; Soszynski, I. Structural changes in the hot algol OGLE-LMC-DVP-097 and its disc related to its long cycle. Mon. Not. R. Astron. Soc. 2018, 477, L11–L15. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rovithis-Livaniou, H. Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation. Galaxies 2020, 8, 78. https://doi.org/10.3390/galaxies8040078
Rovithis-Livaniou H. Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation. Galaxies. 2020; 8(4):78. https://doi.org/10.3390/galaxies8040078
Chicago/Turabian StyleRovithis-Livaniou, Helen. 2020. "Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation" Galaxies 8, no. 4: 78. https://doi.org/10.3390/galaxies8040078
APA StyleRovithis-Livaniou, H. (2020). Study of Eclipsing Binaries: Light Curves & O-C Diagrams Interpretation. Galaxies, 8(4), 78. https://doi.org/10.3390/galaxies8040078